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Abstract 

We use a Bayesian method to resolve the boundary solution problem of the maximum likelihood (ML) estimate in an 

incomplete two-way contingency table, using a loglinear model and Dirichlet priors. We compare five Dirichlet priors in 

estimating multinomial cell probabilities under nonignorable nonresponse. Three priors among them have been used for an 

incomplete one-way table, while the remaining two new priors are newly proposed to reflect the difference in the response 

patterns between respondents and the undecided. The Bayesian estimates with the previous three priors do not always 

perform better than ML estimates unlike previous studies, whereas the two new priors perform better than both the previous 

three priors and the ML estimates whenever a boundary solution occurs. We use four sets of data from the 1998 Ohio state 

polls to illustrate how to use and interpret estimation results for the elections. We use simulation studies to compare 

performance of the five Bayesian estimates under nonignorable nonresponse. 
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1. Introduction 

 
The problem of nonresponse is common in most surveys 

becoming a serious issue as the nonresponse rate increases 

(De Heer 1999; Groves and Couper 1998). When survey 

data is summarized in a two-way contingency table, the 

table includes fully classified counts, partially classified 

counts (i.e., item nonresponse), and unclassified counts (i.e., 

unit nonresponse). For example, in the Ohio (Buckeye 

State) Poll (BSP) (Chen and Stasny 2003), one category 

involves the voting preference (candidates A,B,C, or unde-

cided) and the other category is the likelihood of voting 

(likely to vote, not likely to vote, and undecided). First 

supplemental margin contains data only on the voting 

preference, second contains data only on the likelihood of 

voting, and third is only the number of unit nonresponses 

(both responses unknown). Our interest is to incorporate 

these missing observations into estimating the true support 

for each candidate and to present Bayesian models to predict 

the winner. 

In some surveys, the undecided answers are treated as a 

valid response category when the respondents do not have 

strong preference for a candidate and voting intention 

(Smith 1984; Rubin, Stern and Vehovar 1995). Many 

studies, however, have shown that the voting behavior of 

the undecided voters can have a significant impact on the 

final result and that by considering these undecided voters, 

the accuracy of election forecasting can be improved (Perry 

1979; Fenwick, Wiseman, Becker and Heiman 1982; Myers 

and O’Connor 1983; Kim 1995; Chen and Stasny 2003; 

Martin, Traugott and Kennedy 2005). Perry (1979), among 

them, showed that the undecided percentage in a poll is 

likely to be greater than the true percentage by presenting an 

empirical evidence using a secret ballot approach. Kim 

(1995) also indicated that these undecided voters are critical, 

especially in cases where the number of undecided voters is 

greater than the gap between the two leading runners in an 

election race. Three of our empirical studies in Section 3 

belong to this critical case. Fenwick et al. (1982) and Kim 

(1995) applied a discriminant analysis to the October 1980 

poll data in Massachusetts and the 1992 USA presidential 

election, from which they allocated the undecided voters to 

candidates to show that undecided voters generally do not 

vote in the same proportions as their decided counterparts. 

When the focus is on the candidate the undecided voter may 

vote for, undecided responses are better treated as missing 

data (Myers and O’Connor 1983). As indicated in Flannelly, 

Flannelly and McLeod (2000) and Lau (1994), the 

forecasting error for the actual election results increases as 

the rate of undecided voters increases. To overcome this 

problem, Monterola, Lim, Garcia and Saloma (2001) 

applied a neural network approach to classify undecided 

voters in a public opinion survey. Smith, Skinner and Clarke 

(1999) and Molenberghs, Kenward and Goetghebeur (2001) 

utilized model based imputation methods for the 1992 

British General Election Panel Survey and the 1991 

Slovenian plebiscite public opinion survey. Because our 

main goal is to obtain more accurate forecasts by allocating 

undecided voters to proper cell, we treat undecided voters as 

missing observations in the same way as these researchers 

handled them. 
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Nonresponse (or undecided, equivalently) can be distin-

guished by three types of nonresponses (Little and Rubin 

2002, page 11): missing completely at random (MCAR) 

means that the probability of a nonresponse on a variable of 

interest is independent of all survey variables including 

itself; missing at random (MAR) means that the probability 

of a nonresponse depends only on the observed data; 

missing not at random (MNAR) means that the probability 

of nonresponse depends on the unobserved values. Models 

for MCAR or MAR are called ignorable nonresponse 

models while models for MNAR are called nonignorable. 

For example, in a pre-election survey, if the respondents do 

not answer with their preference of a candidate, although 

they support a particular candidate, the pattern for candidate 

preference can be different between the respondents and 

nonrespondents. Then, the nonresponse mechanism is 

nonignorable. When data is assumed to be MCAR, the 

effect of nonresponse can be removed in likelihood 

inference (Little and Rubin 2002, page 11). However, when 

the nonrespondents follow a response pattern different from 

that of the respondents, discarding nonresponses or mis-

specifying the nonresponse mechanism leads to larger 

variances and biases in estimation (Chen 1972; Park and 

Brown 1994). 

When nonresponse is nonignorable in contingency 

tables, ML estimation often yields boundary solutions 

where the probability of nonresponse is estimated to be 

zero in some cells. These boundary solutions often provide 

a local maximum of the likelihood function. In this case, 

the maximum likelihood (ML) estimates of the loglinear 

model parameters cannot have a unique solution and 

usually have large standard deviations (see Section 4 or 

Baker, Rosenberger and Dersimonian (1992) and Park and 

Brown (1994) for more detailed discussions). 

The conditions where the ML estimate falls on the 

boundary solution have been proposed in a one-way 

contingency table (Baker and Laird 1988; Michiels and 

Molenbergs 1997). The geometric explanation for the 

boundary solution of the ML estimate was presented (Smith 

et al. 1999; Clark 2002). Baker et al. (1992) presented a 

sufficient and necessary condition under which the ML 

estimate can have a boundary solution in a two-way 

contingency table. 

To overcome such a boundary problem in the ML 

estimate under the existence of nonignorable nonresponses, 

Park and Brown (1994) and Park (1998) proposed Bayesian 

approach using empirical priors based only on respondent 

information. Clogg, Rubin, Schenker and Schultz (1991) 

used constant prior for an incomplete one-way contingency 

table. Although they showed that, under nonignorable 

nonresponse, Bayesian methods provided smaller mean 

squared errors (MSE) than ML estimate in estimating cell 

expectations, our simulation study shows that this is 

generally not true in an incomplete two-way contingency 

table. Thus, we present two Bayesian models whose priors 

depend on information from both respondents and 

undecided. We, then, apply each to analyze incomplete two-

way contingency table. An extension to a multi-way table is 

straightforward. We can easily apply this extension to 

weighted data from stratified or cluster sampling using 

appropriate covariates (see Section 2.2). 

The remainder of this paper is divided into four sections. 

In Section 2, we consider Bayesian models with five 

different priors and present a generalized expectation 

maximization (EM) algorithm to estimate cell probabilities. 

In Section 3, we apply the Bayesian models to four 

empirical data sets from the Buckeye State Poll (BSP) and 

compare the Bayesian estimates with the ML estimate and 

the actual election results. In Section 4, we use simulation 

studies to compare MSEs and biases of the Bayesian 

estimates from different missing percentages and response 

patterns of the respondents and nonrespondents. In this 

section, we also calculate the coverage probability to 

examine the performance of the Bayesian estimates. Section 

5 includes some concluding remarks. 

 
2. Bayesian models 

 
We discuss five Bayesian estimates to accommodate 

nonignorable nonresponse in an incomplete two-way 

contingency table. We present an EM algorithm to tackle 

the nonresponse problem in a two-way contingency table in 

Section 2.1. Then, in Section 2.2, we specify five priors and 

extend our approach to a multi-way contingency table. 

Let 1X  and 2X  be response variables indexed by I  and 

J  categories, respectively, in a two-way contingency table. 

We also let 1 = 1R  when 1X  is observed and 1 = 2R  when 

1X  is missing. Similarly, 2 = 1R  when 2X  is observed and 

2 = 2R  when 2X  is missing. Then the full array of 1,X  

2,X 1,R  and 2R  constructs a 2 2I J× × ×  contingency 

table in which we have completely classified counts, 

partially classified counts, and unclassified counts. To 

distinguish these three types of observations, let ijkly  be the 

count belonging to the thi  category of 1,X  the thj  category 

of 2,X  the thk  value of 1,R  and the thl  value of 2.R  Thus, 

11ijy  is used for the completely classified counts, 12iy +  and 

21jy+  for the respective column and row supplemental 

margins, and 22y++  for the unclassified counts. We assume 

a multinomial distribution for these three types of 

observations to have the following log likelihood:  

11 11 12 12

21 21 22 22

= log( ) log( )

log( ) log( )

ij ij i i

i j i

j j
j

l y y

y y

+ +

+ + ++ ++

⋅ π + ⋅ π

+ ⋅ π + ⋅ π

∑∑ ∑

∑  (1)
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where 1 2 1 2= Pr[ = , = , = , = ]ijkl X i X j R k R lπ  and 

, , ,= i j k l ijklN y∑  is fixed. 

Since this likelihood function involves more parameters 

than degrees of freedom available for estimation, we link 

ijklπ  to relevant covariates using a loglinear function. Since 

no explanatory variable is available, we do not use any 

explanatory variables. However, the loglinear model can 

easily incorporate explanatory variables in the same way as 

it incorporates the categorical variables (see Baker and Laird 

1988 and Park and Brown 1994 for details). 

A nonignorable nonresponse model for all of the 

variables 1 2 1, , ,X X R  and 2R  is defined by  

0
1 2 1 2

1 1 2 2 1 2 1 2

log( ) =

for  = 1, , ,  = 1, , ,  = 1, 2, and  = 1, 2

i j k l

ijkl X X R R

ik jl ij kl

X R X R X X R R

m

i I j J k l

β + β + β + β + β

+ β + β + β + β

… …  (2)

 

where =ijkl ijklm N ⋅ π  is the expected cell count for the 
th( , , , )i j k l  category and the sum of each β -term over any 

of its respective super script(s) is zero. 

This loglinear model is saturated since the number of 

parameters is exactly the same as the number of cells 

observed from the incomplete two-way contingency table. 

This model is also a nonignorable nonresponse model 

because of the interaction terms between 1X  and 1R  and 

between 2X  and 2,R  implying that the nonresponse of 

each response variable depends on its own status. The 

loglinear model is a tool frequently used for analyzing 

incomplete contingency tables with nonignorable non-

responses. Let p  be the number of parameters (i.e., β ) to 

be estimated. We introduce the 1p ×  design vector ijklz  to 

indicate the affiliation of the observation belonging to the 
th( , , , )i j k l  category. Then the loglinear model given in (2) 

can be rewritten as  

log = Zm β  (3) 

where the 2 2I J× × ×  vector m  is the cell expectation 

and β  is the vector representation of the β s. To avoid a 

boundary solution of the ML estimate in model (2), we 

impose Dirichlet priors to the cell probabilities 11 12( , ,ij ijπ π  

21 22, )ij ijπ π  as given by  

11 12 21 22
11 12 21 22
ij ij ij ij
ij ij ij ij

i j

δ δ δ δ
π ⋅ π ⋅ π ⋅ π∏∏  (4) 

where the hyper parameters, the ijklδ s are specified in 

Section 2.2. These Dirichlet priors produce an explicit and 

convenient form of a posterior distribution because they are 

conjugated to a multinomial distribution (Clogg et al. 1991; 

Park and Brown 1994; Forster and Smith 1998). Together 

with (3), the multinomial distribution of (1) for 

observations, and the prior distribution (4), we have the 

following log posterior distribution:  

( )
( )
( )
( )

( )
( )

11 11

11
, , ,

12 12

12

, , ,

21 21

21

, , ,

22 22

= ( )

log exp( )

log exp( )

log exp( )

log exp( )

log exp( )

log exp( )

pos ij ij
i j

ij ijkl
i j i j k l

i ij
i j

i ijkl

i i j k l

j ij
j i

j ijkl

j i j k l

ij
i j

l y

y

y

y

y

y

y

+

+

+

+

++

⋅ ⋅

− ⋅ ⋅

+ ⋅ ⋅

− ⋅ ⋅

+ ⋅ ⋅

− ⋅ ⋅

+ ⋅ ⋅

∑∑

∑∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑∑

z β

z β

z β

z β

z β

z β

z β

( )

( )

22
, , ,

, , ,

, , , , , ,

log exp( )

( )

log exp( ) .

ijkl
i j k l

ijkl ijkl
i j k l

ijkl ijkl
i j k l i j k l

y++− ⋅ ⋅

+ δ ⋅ ⋅

− δ ⋅ ⋅

∑

∑

∑ ∑

z β

z β

z β  (5)
 

Equation (5) is rather complex and thus we use the EM 

algorithm to estimate the parameters (i.e., β ). 
 
2.1 The EM algorithm  

We maximize the posterior distribution given in (5) over 

the parameter β  using the generalized expectation maxi-

mization (GEM) algorithm (Dempster, Laird and Rubin 

1977) with the following E and M steps.  

E-step: Using augmented 12 21, ,ij ijy y  and 22ijy  for 

= 1, ...,i I  and = 1, ..., ,j J  the posterior (5) can be 

written as  

.pos 11 11 11

12 12 12

21 21 21

22 22 22

= ( ) log( )

( ) log( )

( ) log( )

( ) log( ).

a ij ij ij
i j

ij ij ij

i j

ij ij ij
i j

ij ij ij
i j

l y

y

y

y

+ δ π

+ + δ π

+ + δ π

+ + δ π

∑∑

∑∑

∑∑

∑∑  (6)

 

To determine the expected augmented log posterior in 

(6), we average over the missing counts 12 21, ,ij ijy y  and 

22ijy  conditioning on the current parameter estimates, old,ijklπ  

and the marginal sums 12 21, ,i jy y+ +  and 22:y++  
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old .pos 11 11 11

old

old 12 12 12 12

old

old 21 21 21 21

old

old 22 22 22 22

[ ] = ( ) log( )

( [ | , ] ) log( )

( [ | , ] ) log( )

( [ | , ] ) log( ).

a ij ij ij
i j

ij ijkl i ij ij
i j

ij ijkl j ij ij
i j

ij ijkl ij ij

i j

E l y

E y y

E y y

E y y

+

+

++

+δ ⋅ π

+ π +δ ⋅ π

+ π +δ ⋅ π

+ π +δ ⋅ π

∑∑

∑∑

∑∑

∑∑

 

(7)

 

Since 12 21, ,ij ijy y  and 22ijy  are multinomial random 

variates conditioned on the respective marginal sum 12,iy +  

21,jy+  and 22,y++  the conditional expectations in the 

equation (7) are given by  

old

12old

old 12 12 12 old

12

old

21old

old 21 21 21 old

21

( | , ) = ,

( | , ) = ,

ij

ij ijkl i i

i

ij

ij ijkl j j

j

m
E y y y

m

m
E y y y

m

+ +
+

+ +
+

π

π

 

and 

old

22old

old 22 22 22 old

22

( | , ) =
ij

ij ijkl

m
E y y y

m
++ ++

++

π  

where old old= .ijkl ijklm N ⋅ π  

M-step: In this step, we maximize the expected log 

posterior (7) using the pseudo observations 11 =ijyɶ 11ijy +  
old old

11 12 12 12 12 12, = / ,ij ij i ij i ijy y m m+ +δ +δɶ
old old

21 21 21 21= /ij j ij jy y m m+ + +ɶ  

21,ijδ  and old old
22 22 22 22 22= / .ij ij ijy y m m++ ++ + δɶ  We impose the 

constraints on these pseudo observations so that their 

marginal sums are the same as the corresponding marginal 

sums of observations: 11 11= ,y y++ ++ɶ 12 12= ,i iy y+ +ɶ 21 =jy+ɶ  

21,jy+  and 22 22= .y y++ ++ɶ  Under these constraints, the 

pseudo observations are now  

11
11

11 11

12
12

12 12*

21

21
21 21

22
22

22 22

for k = 1 and l = 1

for k = 1 and l = 2

=

for k = 2 and l = 1

for k = 2 and l = 2.
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i
ij

i i

ijkl
j

ij
j j
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y
y

y

y
y

y
y

y
y

y

y
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++ ++

+

+ +
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+ +
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++ ++


 + δ

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+ δ



+ δ


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ɶ

ɶ

ɶ

ɶ

 

 

 

 

 

Then, the expected log posterior function (7) becomes  

*

old .pos 11 11

*

12 12

*

21 21

*

22 22

[ ] = log( )

log( )

log( )

log( ).

a ij ij
i j

ij ij
i j

ij ij
i j

ij ij

i j

E l y

y

y

y

⋅ π

+ ⋅ π

+ ⋅ π

+ ⋅ π

∑∑

∑∑

∑∑

∑∑

 

This equation has the same form as the likelihood obtained 

from a four-way contingency table with fully observed cell 

counts *
ijkly s. Thus, using the iterative re-weighted least 

squares method (Agresti 2002, page 342), we obtain the 

maximum posterior estimator (MPE) of β  as follows:  

( 1) 1 1 1 ( )ˆ ˆ= ( ,t T T t

t tZ V Z) Z V+ − − − γβ  

where ( )tγ  has element ( ) ( ) ( ) ( )= log ( ) /t t t t
ijkl ijkl ijkl ijkl ijklm y m mγ + −  

and ( ) 1ˆ = [diag( )] .t

tV
−m  We finally iterate these E and 

M-steps until a convergence criterion is achieved. The 

convergence criterion we use is 610 ,−ε ≤  where ε  is the 

difference between two consecutive log posterior functions. 

Let obs 11 12 21 22= ( , , , )ij i jY y y y y+ + ++  and mis =Y  

12 21 22( , , )ij ij ijy y y  for = 1, ,i I…  and = 1, ,j J…  be the 

observed count vector and the missing count vector, 

respectively. Then the log posterior distribution (5) can be 

written as  

pos obs obs mis

mis obs

= ( | ) = ( | , )

log ( | , ).

l l Y l Y Y

f Y Y−

β β

β  (8)
 

By taking differentiation twice with respect to ,β  (8) 

yields  

2 2

obs obs mis

2

mis obs

( | ) ( | , )
=

log ( | , )

= [diag( ) / ]

[diag( ) ] ,

T T

T

T T

T T

l Y l Y Y

f Y Y

N

AB

∂ ∂
∂ ∂ ∂ ∂

∂
−

∂ ∂

− −

+ −

β β

β β β β

β

β β

Z m mm Z

Z π ππ Z  (9)

 

where π  is vector expression of cell probabilities ijklπ  and 

,A B  are given by 
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2
1212

1212 12
2

21 21

2121 21

2
2222

2222 22

0 0 0 0

0 diag 0 0

0 0 diag 0

0 0 0 diag

iji

ii i

j ij

jj j

ij
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my
A

y m

my
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my

+

++ +

+

++ +

++

++++ ++

 
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 
  
  + δ  =
  
  

+ δ   
  
   + δ  

 

 

and 

12

21

22

0 0 0 0

0 0 0
= .

0 0 0

0 0 0
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I B
B

I B

I B

 
 

− 
 −
  − 

 

Here, to save the space and since there is no difficulty to 

extend for general i  and 12 21, , ,j B B  and 22B  are illustrated 

only for = 2I  and = 3:J  

13121112 1212
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and 
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 
 
 
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.  

We observe that the observed data information 
2

obs( | ) / Tl Y∂ ∂ ∂β β β  is equal to the augmented data 

information minus the missing data information. As shown 

in Gelman, Carlin, Stern and Rubin (2004, page 103), the 

inverse of the observed data information evaluated at the 

MPE of β  is the variance of the MPE of .β  
 
2.2 Specification of priors  

To complete the EM algorithm, we need to determine the 

hyper-parameters, ijklδ s. We set the sum of priors 

, , ,i j k l ijkl∑ δ  equal to the number of parameters involved in 

the loglinear model, ,p  as suggested by Clogg et al. (1991). 

Under this constraint, we propose five types of priors as 

follows. We first allocate ijklδ  for the MPE of ijklm  to 

shrink toward the MLE obtained under ignorable non-

response. That is, we determine ijklδ  depending only on the 

known response counts 11ijy  and call them respondent-

driven priors. 

The first type of respondent-driven prior is, for all 

= 1, ,i I…  and = 1, , ,j J…  

11 11

11 11 12 12 21
11 11

11 11

21 22 22
11 11

= , = , 

= , and =  

ij ij

ij ij ij

ij ij

ij

y y

y y

y y

y y

++ ++

++ ++

δ ∇ δ ∇ δ

∇ δ ∇  (10)
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where = /kl klp y y++ ++++∇ ⋅  for = 1, 2k  and = 1, 2.l  

The second type of respondent-driven prior gives no prior 

(i.e, no need of prior as described below) on 11ijπ  in the first 

type of priors. That is, the second type is the same as the 

first type except 11 = 0ijδ  for all i  and .j  In the case of a 

one-way contingency table (i.e., either 1X  or 2X  is fully 

observed without missing information) and 22 = 0,y++  the 

first type is reduced to the priors used in Park (1998), 

whereas the second type is reduced to the priors used in 

Park and Brown (1994). These two types of respondent-

driven priors may be too simplistic because the non-

respondents are usually assumed to have a different 

response pattern from the respondents under a nonignorable 

nonresponse model. For example, the candidate preference 

of nonrespondents could be different from that of 

respondents in a pre-election survey. 

In order to define the third type of prior, denote ˆ ijklm  as 

the MLE for .ijklm  The closed form of ˆ ijklm  can be obtained 

from Baker et al. (1992) where some ˆ ijklm  could be zero 

because of boundary solutions. For example, when a 

supplemental column margin has a boundary solution in an 

incomplete 2 2×  table, the MLEs are 1 11 1 11ˆ = ,j jm y  

2 11 2 11 21

2 11 12 11
2 11 21

( )
ˆ ˆ ˆ= , =

j j

j ij ij j

y y y
m m m b

y y
+ +

+ ++

+
+

 

where jb  is the solution of 2
=1 11 12= ,j ij j iy b y +∑ 1 21ˆ = 0,jm  

21
2 21 2 11 1 22

2 11

ˆ ˆ ˆ= , = 0,j j j

y
m m m

y
++

+
 

and 2 22 2 12 22 2 12ˆ ˆ= / .j jm m y y++ +  Therefore, these ML 

estimates accommodate both the information of respondents 

and nonrespondents, as well. The ML estimates can also be 

obtained from our EM algorithm in Section 2.1 by setting 

= 0ijklδ  for all , ,i j k  and .l  Using these ML estimates, 

we define the third type of prior as  

11

11 11 12
11

12

12
12

21

21 21
21

ˆ
= , 

ˆ

ˆ 1 1= ,
ˆ 2

ˆ 1 1= ,
ˆ 2

ij

ij ij

ij

ij

ij

m

m

m

m I J

m

m I J

++

++

++

 
δ ∇ ⋅ δ 

 

 
∇ ⋅ + ⋅ ⋅ 

 
δ ∇ ⋅ + ⋅ ⋅ 

 

and (11) 

22

22 22
22

ˆ 1 1=
ˆ 2

ij

ij

m

m I J++

 
δ ∇ ⋅ + ⋅ ⋅ 

 

where ˆ ˆ= /kl klp m m++ ++++∇ ⋅  for , = 1, 2,k l  and the term 

1/IJ  is the constant prior of Clogg et al. (1991) to prevent 

possible boundary solutions for 12 21, ,ij ijm m  and 22ijm  (also 

see the fifth prior below). Thus, we allocate the third prior of 

ijklδ  for the MPE of ijklm  to shrink toward the ML obtained 

under the nonignorable nonresponse, whereas the first prior 

is obtained under an ignorable nonresponse model. 

The fourth type of prior is defined by letting 11 = 0ijδ  in 

(11) as we did in obtaining the second type of prior from the 

first type. The last type of prior is from Clogg et al. (1991) 

defined as  

( ) ( )11 12 21
1 1= 0, = , = , 

3 3ij ij ij

p p

I J I J
δ δ ⋅ δ ⋅

⋅ ⋅
 

and (12) 

( )22
1= .

3ij

p

I J
δ ⋅

⋅
 

These five types of priors are summarized in Table 1 and 

are compared in the next section using empirical data and 

simulation studies. 

 

 
Table 1 

Five types of priors δδδδ ijkl  ( ˆ ijklm  is MLE, I and J are the numbers of row and columns in a two-way table, and p is the 
number of parameters) 
 

 11δδδδ ij  12δδδδ ij  21δδδδ ij  22δδδδ ij   

Type I 
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∇  11
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Up to this point, we have presented methods for a two-

way table, and ijkly  is defined for the count of the ( , )i j  cell 

of the thi  row and thj  column (i.e., 1 2= , = ),X i X j  and 

indicator 1R  for a missing row and 2R  for a missing 

column (i.e., 1 2= , = ).R k R l  This can be easily extended 

to the 3-way table. Denote ijklmny  to be the th( , , )i j k  cell 

count for the three response variables (i.e., 1 = ,X i  

2 = ,X j  and 3 = )X k  and respective missing rows and 

columns (i.e., 1 = ,R l  2 = ,R m  and 3 =R n  for 

, , = 1, 2).l m n  Thus, = 111lmn  implies that all of the 

three variables are observed, = 112lmn  implies that 1X  

and 2X  are observed but 3X  is missing; similarly for 

= 121,122, 211, 212, 221, 222;lmn  1  is for observed and 

2  designates missing. Accordingly, the EM algorithm and 

priors for an incomplete three-way contingency table can be 

defined. The conditional expectation in the E-step for the 
th( , , )i j k  cell with unknown information of k  margin is 

old
112old

old 112 112 112 old
112

( | , ) = .
ijk

ijk ijklmn ij ij

ij

m
E y y y

m
+ +

+

π  

Similarly,  

old
122old

old 122 122 122 old
122

( | , ) = .
ijk

ijk ijklmn i i

i

m
E y y y

m
++ ++

++

π  

and 
old

222old

old 222 222 222 old
222

( | , ) = .
ijk

ijk ijklmn

m
E y y y

m
+++ +++

+++

π  

Other expectations and five types of priors can be similarly 

defined. 

The Buckeye state poll is a Random Digit Dialing 

(RDD). No modification is necessary for the Bayesian 

procedures if the RDD is strictly a self-weighting survey 

(Lavrakas 1993; Potthoff 1994). However, RDD is not 

always done by a self-weighting design. For example, a 

telephone sample comprises a sample of households, not 

persons. If one person is interviewed in a household, a 

weight should be superimposed on the response by the 

number of persons in the household. A weight is also 

needed for the households with more than one telephone 

number. If an accurate estimate of the total number of 

households is available, stratification by region or state is 

possible and weighting must be considered in a 

comprehensive analysis. RDD was used in the 1998 Ohio 

election surveys. In this study, our method and models do 

not include weighting from stratification, clustering, and 

other factors leading to different probabilities of selection in 

a telephone survey. 

However, further extension can be made for such 

weighting. A simple extension below shows how to 

accommodate a typical stratification. In a three-way table, 

let 3X  be the third response variable indexed by h  

( = 1, , )h H…  that is assumed to be always observed. The 

H  categories can be strata in a stratified sampling. Since 

3X  is always observed, the corresponding missingness 

variable 3R  is equal to 1 and its observation can be denoted 

by 1.ijhlmy  Then, we can write the following log likelihood 

for each stratum :h  

111 11 121 12
=1 =1 =1

211 21 221 22
=1

= log( ) log( )

log( ) log( )

I J I

h ijh ijh i h i h
i j i

J

jh jhk h h
j

l y y

y y

+ +

+ + ++ ++

π + π

+ π + π

∑∑ ∑

∑
 

where 1 2 1 2 3= [ = , = , = , = | = ]ijhlm P X i X j R l R m X hπ . 

Thus, the terminology 3X  used for a three-way table acts as 

an indicator for strata. For each stratum ,h  the likelihood of 

(13) is exactly the same as that of a 2-way table. 

Then, a log linear model for the cell expectation 

=ijhlm h ijhlmm N ⋅ π  can be defined in a similar way as in (2) 

where , , ,= i j l mh ijhlmN y∑  for each = 1, 2, ..., .h H  A 

nonignorable nonresponse model is given by  

0
1 2 1

2 1 2 1 1 2 2

log( ) =

.

i j l
ijhlm h X h X h R h

m ij il jm
R h X X h X R h X R h

m β + β + β + β

+ β + β + β + β  (13)

 

To avoid a boundary solution problem as in Section 2, we 

use the Dirichlet priors for ijhlmπ   

11 12 21 22
11 12 21 22 .ijh ijh ijh ijh

ijh ijh ijh ijh
i j

δ δ δ δ
π ⋅ π ⋅ π ⋅ π∏∏  

Then, we follow exactly the same procedures as shown 

in Section 2 to estimate the cell expectations ijhlmm  for each 

= 1, 2 , .h H…  The estimate of the th( , )i j  cell expectation 

is  

=1 ,

ˆ ˆ( ) =
H

ij h ijhlm
h l m

E y w m∑ ∑  

where hw  is the known weight for the thh  stratum and 

ˆ ijhlmm  is the ijhlmm  evaluated at the MPE of .β  For 

example, = / hh h hw N N∑  is for a stratified sample where 

hN  is the population size of the thh  stratum. 

The variance-covariance matrix of an approximation to 

the distribution of m̂  is  

ˆ ˆˆVar( )
T∂ ∂

∂ ∂MPE
m mβ
β β

 (14) 

where m̂  is a vector expression of the cell estimates 

ˆ ,ijhlmm ˆ
MPEβ  is the MPE of β  and its variance ˆVar( )MPEβ  

is given by the inverse of (9), and / = hN∂ ∂ ×m β  

ˆ ˆ ˆ[diag( ) ]T−π ππ Z  where π̂  has  
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( , , , , )

ˆexp( )
ˆˆ = ( ) =

ˆexp( )

ijhlm

ijhlm ijhlm

kk i j h l m∈

π π
∑

MPE

MPE

MPE

z β
β

z β
 

as its typical element. 

 
3. An application to a Buckeye State Poll 

 
In forecasting the winner in a poll, the accuracy of the 

poll often depends on how to handle undecided voters who 

are likely to vote but who have not yet decided their 

preference for a candidate. We compare the Bayesian 

estimates based on the five types of priors with the ML 

estimate using the Buckeye State Poll (BSP) conducted in 

1998 by the Center for Survey Research at Ohio State 

University. The BSP surveys produced incomplete two-way 

contingency tables with one category being candidate 

preference and the other category being the likelihood of 

voting in the November 1998 races for Ohio Governor, 

Attorney-General, Mayor of Columbus, and Treasurer. 

Table 2 summarizes these four polls and shows a substantial 

number of undecided voters. 

For comparison, we consider the following ignorable 

Model 1 and the two nonignorable nonresponse Model 2 

and Model 3.  

0
1 2 1

2 1 2 1 2

Model 1: log( ) =

,

i j k

ijkl X X R

l ij kl

R X X R R

m β + β + β + β

+ β + β + β
 

0
1 2 1 2

1 1 2 2 1 2 1 2

Model 2: log( ) =

,

i j k l

ijkl X X R R

ik jl ij kl

X R X R X X R R

m β + β + β + β + β

+ β + β + β + β
 

0
1 2 1 2

1 2 2 1 1 2 1 2

Model 3: log( ) =

.

i j k l

ijkl X X R R

il jk ij kl

X R X R X X R R

m β + β + β + β + β

+ β + β + β + β
 

Model 1 is missing completely at random, and cases with 

missing data can be ignorable in likelihood inferences. 

Model 2 and Model 3 are nonignorable where the 

probability of missing a variable depends on itself in Model 

2 while the probability in Model 3 depends on the other 

variable. Note that the ML estimates in Model 1 and Model 

3 are not on the boundary of the parameter space as shown 

by Baker et al. (1992). Moreover, since we found that, 

under Model 1 and Model 3, all of the five Bayesian 

estimates for the expected cell counts are not only fairly 

close to the ML estimate and their standard deviations are 

almost the same, we only present the ML estimates for 

Model 1 and Model 3. 

We denote the ML estimates under ignorable Model 1, 

nonignorable Model 2, and nonignorable Model 3 by 

1 ,MLIG  2 ,MLNON  and 3 ,MLNON  respectively. IG  and 

NON  stand for ignorable and nonignorable, respectively. 

We also let 2BE

iNON  be the Bayesian estimator using the 
thi  type of priors under Model 2. That is, 12

BENON  uses 

the respondent-driven priors of (10) and 22BENON  is the 

same priors as 12
BENON  except  for  11 = 0.ijδ  Similarly, 

32BENON  is given by (11) and 42BENON  is the same priors 

except for 11 = 0.ijδ  52BENON  is the Bayesian estimate 

using the constant priors of (12). In addition, we can use the 

Stasny method (1986, 1988) to estimate the expected cell 

counts under Model 1 and Model 3 that she implicitly 

assumed. However, her estimates appear to be exactly the 

same as 1 .MLIG  

 

 
Table 2 

Observed data for BSP pre-election surveys 
 

 Governor race Attorney-general race 

 Fisher Taft Others Undecided Montgomery Cordray Undecided 

Likely to vote 112 140 23 61 197 82 57 

Unlikely to vote 96 108 21 73 161 65 75 

Undecided 7 11 1 4 15 4 0 

 Mayor race Treasurer race 

 Coleman Teater Espy Undecided Deters Donofrio Undecided 

Likely to vote 40 32 25 30 127 119 90 

Unlikely to vote 37 47 41 56 127 90 84 

Undecided 0 2 1 0 10 7 0 
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The top table in Table 3 shows predicted values of 

elections using only “likely to vote” for the four races and 

their standard deviations in parentheses. The standard 

deviations are close to each other and show significant 

differences between the first and second leading candidates, 

except in the race for Mayor. This table also includes the 

actual election results and shows whether or not the ML 

estimates fall into the boundary solutions. 

The bottom table shows the predictions of elections using 

both “likely to vote” and “unlikely to vote” to see what 

happens if those who responded to “unlikely to vote” 

actually voted. Comparing the two tables, we may conclude 

that the winners for Governor, Attorney-General, and the 

Treasurer’s elections remained unchanged regardless of the 

likelihood of voting, whereas the winner could have 

changed in the Mayor’s election if most of those who were 

“unlikely to vote” actually voted. 

Based on Table 3, we can classify the 7 estimates, except 

2 ,MLNON  into two groups: 32 ,BENON  42 ,BENON  and 

52BENON  to the first group and the remaining four 

estimates, 12 ,BENON  22 ,BENON  1 ,MLIG  and 3MLNON  to 

the second group. As expected, since the priors ijklδ  for 

12
BENON  and 22BENON  are so defined that the estimate of 

ijklm  shrinks toward the ML under an ignorable 

nonresponse model, these two Bayesian estimates are very 

close to 1MLIG  and hence have little advantage over the 

1 .MLIG  It is also interesting to note that 3MLNON  is almost 

the same as 1MLIG  although their loglinear models are 

differently specified. 

There is no general criterion to evaluate whether an 

ignorable nonresponse model or a nonignorable non-

response model is appropriate. However, as stated in Chen 

and Stasny (2003), the assumption of nonignorability for a 

nonresponse may be a reasonable assumption in the 

Buckeye State Poll study because people might be reluctant 

to express their preference for an unpopular candidate, or 

their current preferences are not firm or accurate at the time 

of the interview. In this regard, the 12 ,BENON 22 ,BENON  

and 3MLNON  may not be appropriate in these particular 

case studies because they are almost the same as the 1MLIG  

of Model 1. 

 

 
Table 3 
Prediction of elections based on the October 98 and April 98 Buckeye State Polls (the unit is % and the numbers in parentheses 

are standard deviations) 
 

 Governor  Mayor Attorney-General Treasurer 

 Fisher Taft Others  Coleman Teater Espy Mongomery Cordray Deters Donofrio 

 Likely to vote only used 

2MLNON  33.2(2.75) 42.1(3.00) 24.8  31.5(4.65) 25.3(4.23) 43.2 75.6(3.71) 24.4 57.0(3.48) 43.0 

12
BENON  40.6(3.04) 48.5(3.27) 10.9  38.1(5.14) 34.2(4.78) 27.7 72.1(3.61) 27.9 52.7(3.36) 47.3 

22BENON  40.9(3.01) 50.7(3.20) 8.40  39.9(5.04) 33.6(4.83) 26.5 71.0(3.59) 29.0 52.1(3.34) 47.9 

32BENON  35.8(2.85) 44.5(3.08) 19.7  35.6(4.87) 29.3(4.51) 35.1 63.0(3.67) 37.0 54.3(3.41) 45.7 

42BENON  36.3(2.87) 45.2(3.11) 18.6  35.9(4.91) 29.4(4.52) 34.6 63.0(3.64) 37.0 53.9(3.40) 46.1 

52BENON  38.9(2.99) 47.4(3.20) 13.7  37.7(4.99) 33.6(4.77) 28.7 66.0(3.54) 34.0 51.5(3.32) 48.5 

1MLIG  40.6(3.03) 51.2(3.28) 8.20  40.8(5.16) 33.4(4.76) 25.8 70.9(3.59) 29.1 51.8(3.32) 48.2 

3MLNON  40.6(3.03) 51.2(3.28) 8.20  40.9(5.16) 33.3(4.75) 25.8 70.9(3.58) 29.1 51.7(3.32) 48.3 

Actual result 45 50 5  39 37 24 63 37 57 43 

Boundary yes  yes yes no 

 Likely to vote +  Unlikely to vote 

2MLNON  32.7(1.83) 39.4(1.91) 27.8  24.8(2.45) 26.2(2.49) 49.0 77.0(1.64) 23.0 60.2(1.93) 39.8 

12
BENON  41.3(1.93) 46.4(1.96) 12.3  30.7(2.68) 37.1(2.75) 32.2 72.8(1.74) 27.2 56.0(1.96) 44.0 

22BENON  41.9(1.93) 49.2(1.95) 8.90  32.7(2.63) 36.5(2.76) 30.8 71.4(1.77) 28.6 55.3(1.96) 44.7 

32BENON  35.4(1.87) 41.8(1.93) 22.7  27.8(2.55) 30.5(2.62) 41.7 61.0(1.72) 39.0 57.6(1.95) 42.4 

42BENON  36.0(1.88) 42.6(1.93) 21.4  28.7(2.57) 30.6(2.62) 40.7 60.9(1.75) 39.1 57.2(1.95) 42.8 

52BENON  39.1(1.91) 45.1(1.95) 15.8  30.7(2.63) 35.8(2.74) 33.5 64.8(1.88) 35.2 54.8(1.96) 45.2 

1MLIG  41.5(1.96) 49.8(1.96) 8.70  33.9(2.70) 36.1(2.74) 29.9 71.2(1.78) 28.8 55.0(1.96) 45.0 

3MLNON  41.5(1.96) 49.8(1.96) 8.70  34.1(2.71) 36.0(2.74) 29.9 71.1(1.78) 28.9 55.0(1.96) 45.0 
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Compared to actual election results, 2MLNON  gives the 

worst prediction for Governor, Mayor, and Attorney-

General because the 2MLNON  lies on a boundary solution; 

whereas it provides the best prediction for Treasurer 

because it does not lie on a boundary solution. In the 

Attorney-General’s election, 32BENON  and 42BENON  not 

only predicted the exact actual result but also are quite 

different from the other estimates. Since 32BENON  and 

42BENON  have the priors to reflect different response 

patterns between respondents and the undecided, we can 

infer that the undecided voters in the Attorney-General race 

have quite different preference for the candidate from the 

respondents (i.e., 32BENON  and 42BENON  allocate 19.4 % 

of the undecided voters who are likely to vote for 

Montgomery and 80.6% for Cordray, whereas the data in 

Table 2 indicates the percentage of Montgomery vs  

Cordray is 29.4% vs  70.6% among respondents who are 

likely to vote).  

To see this difference between the respondents and 

undecided voters in terms of parameter estimates and to 

examine the effect of occurrence of the boundary solution 

on the estimates under the nonignorable Model 2, we 

present the ML estimates and 32BENON  estimates and their 

corresponding standard deviations for the Attorney-General 

race in Table 4. Because of a boundary solution, all of the 

ML estimates have too large standard deviations as 

expected. On the other hand, 32BENON  is very stable. Since 
11

1 2
= 0.0472X Xβ  is the smallest and its standard deviation is 

relatively large, we neglect 11

1 2
X Xβ  to avoid complexity of 

interpretation. Under 11

1 2
= 0,X Xβ   it is not difficult to show 

that, using the estimates of 32BENON  in Table 4, 
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for each fixed i  and .k  Thus, by 
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X X R
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m

m
β + β  

those who are likely to vote (i.e., = 1i ) are 1.09 times (i.e., 
0.09e ) more than those who are unlikely to vote (i.e., = 2i ) 

among respondents ( = 1k ), whereas, by 

1 2 1 11

1 1 1
2 2

log = 2( ) = 1.3916,
j l

X X R
j l

m

m
β − β  

likely voters of = 1i  are 4.02 times (i.e., 1.3916e ) more than 

unlikely voters of = 2i  among undecided ( = 2k ); by  

1 111 1

2 2 2
2 1

log = 2( ) = 0.8982,i k
X X R

i k

m

m
β + β  

those who vote for Montgomery are 2.46 times more than 

those who vote for Cordray among respondents; whereas, 

by  

1 111 2

2 2 2
2 2

log = 2( ) = 1.4942,i k
X X R

i k

m

m
β − β −  

unlikely voters are 4.46 times more than likely voters 

among the undecided. This implies that the response pattern 

is much different between respondents and the undecided. 

 

 
Table 4 
ML and the third type Bayesian Estimates under nonignorable Model 2 for Attorney-General (the standard deviations 
are in parentheses) 
 

 0ββββ  
1

1
ββββX  1

2
ββββX  

1

1
ββββR  1

2
ββββR  11

1 1
ββββX R  11

2 2
ββββX R  11

1 2
ββββX X  

11

1 2
ββββR R  

-1.9487 3.2134 4.8496 4.8186 2.0283 -2.7594 -0.0452 -1.5588 
2MLNON  -3.3735 

(3.120) (8.515) (3.996) (8.871) (3.120) (8.512) (0.045) (2.501) 

0.3704 -0.1490 3.3024 2.2942 -0.3254 0.5981 0.0472 -1.5450 

32BENON  0.6860 
(0.118) (0.052) (2.501) (2.501) (0.117) (0.052) (0.041) (2.501) 
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The extent of this difference can be measured by the 

most important terms,  11

1 1
X Rβ  and  11

2 2
,X Rβ  in the nonigno-

rable nonresponse model, Model 2. Since 

11 1111 2111

1 1
1121 2121

/1= log = 0.3254
4 /X R

m m

m m
β −  

and 

11 111111 1211

2 2 1 1
1112 1212

/1= log = 0.5981,
4 /X R X R

m m

m m
β β  

is the log-odds ratio that shows the log difference between 

the ratio of the number of those “likely to vote” to that of 

those “unlikely to vote” among the decided voters for 

Montgomery and the same ratio among the undecided 

voters who prefer Montgomery but who do not express their 

likelihood of voting. Whereas, 11

2 2
X Rβ  is the log-odds ratio 

that shows the log difference between the ratio of the 

number of voters for Montgomery to the voters for Cordray 

among the decided who are likely to vote and the same ratio 

among the undecided voters who are likely to vote but who 

do not express their candidate preference. Thus, among 

voters for Montgomery, the possibility for the undecided 

voters to vote relative to not voting is about 3.67 times  

4 0.3254 11111 2111

1121 2121

/
. ., = = 3.67

/

m m
ie e

m m
×− − 

 
 

 

larger than the possibility of the decided, implying that 

Montgomery needs a strategy to raise the turnout of voters. 

On the other hand, among those likely to vote, the 

supporting rate of the decided for Montgomery is about 

10.94 times  

4 0.59811111 1211

1112 1212

/
. ., = = 10.94

/

m m
ie e

m m
× 

 
 

 

larger than the undecided voters for Montgomery, implying 

that most of the undecided voters not exposing their 

preference of candidate are likely to vote for Cordray as the 

Attorney-General. This also confirms the popular account 

that voters are inclined to remain “undecided” in a poll if 

they support the candidate who is seen as inferior in a race 

and that the voters are inclined to abstain from voting if they 

support the candidate who certainly dominates the race. 

 
4. Simulation study  

We consider a 2 2×  contingency table with supplemen-

tal margins to compare the performance of the five Bayesian 

estimates described in Section 2 for different missing 

percentages and different response patterns under the 

following nonignorable nonresponse model (i.e., Model 2):  

0
1 2 1 2

1 1 2 2 1 2 1 2

log( ) =

.

i j k l

ijkl X X R R

ik jl ij kl

X R X R X X R R

m β + β + β + β + β

+ β + β + β + β
 

Thus, we only compare 2MLNON  and 2BE

iNON  for 

= 1, ..., 5i  in this simulation study. 

Since there are two levels in all of 1 2 1, , ,X X R  and 2,R  

there are 8 parameters to be determined for the simulation 

study. From the equations of  

11 111111 2111 1111 1211

1 1 2 2
1121 2121 1112 1212

/ /
4 = log and 4 = log ,

/ /X R X R

m m m m

m m m m
β β  

11 11

1 1 2 2
= = 0X R X Rβ β  

means that there is no difference in the response pattern 

between respondents and undecided. The bigger 11

1 1
X Rβ  and 

11

2 2
X Rβ  are, the more different the response pattern between 

respondents and undecided voters is. We vary these two 

parameters from 0.2 to 0.8 with an increment of 0.2. We set 

the missing percentage to 20% and 30% by adjusting 1

1
Xβ  

and 1

1
Rβ  and fixing 

1111 1211 1111 1112

2111 2211 1112 1122

/ /
= 5, = 2,

/ /

m m m m

m m m m
 

and 

= = 1,000.ijklijkl
N m∑  

This implies that the size and missing percentage for the cell 

of 1 = 1X  and 2 = 1X  are approximately 5 times and 2 

times the size of the other three cells, respectively. 

We generate a large number of samples { , , , ,ijkly i j k  

= 1, 2}l  from the above setting until we have 1,000 

random samples with boundary solutions and the other 

1,000 with no boundary solutions. The occurrence of a 

boundary solution is determined by the criterion given in 

Michiels and Molenberghs (1997) (also see Clarke (2002), 

Smith et al. (1999) for more details). Using 11 12{ , ,ij iy y +  

21 22, , , , = 1, 2}jy y i j+ ++  obtained from the generated 

data, the expected cell counts ijklm ’s are estimated by each 

of the five Bayesian estimates and the ML estimate 

described in Section 2. 

We calculate mean squared errors (MSEs) and absolute 

biases of 1 52 , 2 , ..., 2BE BE

MLNON NON NON  for { ,kl ijklm∑  

, = 1, 2}.i j  Then we take the mean over the four MSEs 

and the four absolute biases, which we obtain from each 

estimate to see the overall performance of the estimate. 

Similarly, we calculate mean MSEs and mean absolute 

biases for 12 21 22{ , , = 1, 2}ij ij ijm m m i j+ +  to see the 

performance of each estimate in imputing the nonresponses.  
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Table 5 shows the ratios of the mean MSEs and mean 

absolute biases of the five Bayesian estimates (i.e., 

1 52 , ..., 2 ),BE BENON NON  relative to the ML estimate (i.e., 

2 )MLNON  when the boundary solutions occur; whereas 

Table 5 shows the ratios when no boundary occurs. Thus, 

values less than 1 imply that the corresponding Bayesian 

estimate has a smaller mean MSE or a smaller mean 

absolute bias than the ML estimate. Both tables only show 

the cases for 11 11

1 1 2 2
<X R X Rβ β  and for 20% of the missing 

percentage because the MSEs and biases are almost 

symmetric about the coordinate of 11 11

1 1 2 2
( , ).X R X Rβ β  They 

increase as we increase the missing percentage to 30% 

while keeping the same patterns of the MSEs and biases as 

those of the missing 20%. 

Table 5, where a boundary solution occurs, shows that 

1 3 42 , 2 , 2BE BE BENON NON NON  have smaller MSEs than 

the ML estimate (i.e., 2 )MLNON  for all values of 11

1 1
X Rβ  

and     11

2 2
,X Rβ     except 11 11

1 1 2 2
( , ) = (0.8, 0.8).X R X Rβ β  Here, 

32BENON  has a smaller MSE than the ML estimate. This is 

true for the absolute biases. On the other hand, Table 6, 

where no boundary solution occurs, shows that only 

32BENON  is comparable to the ML estimate in the MSE 

although it is slightly biased. In particular, 32BENON  has a 

smaller MSE than the ML estimate as long as 11

1 1
0.8X Rβ ≠  

or 11

2 2
0.8X Rβ ≠  (i.e., The response pattern between 

respondents and nonrespondents is not very different.). 

 

 

 

Table 5 

Ratios of mean MSEs and mean absolute biases of Bayesian estimates relative to the ML estimate when boundary solutions occur 
under a 20% missing percentage (the ratios for absolute biases are in parentheses) 
 

 ,11 11

1 1 2 2
(β β )X R X R

 
12
BE

NON  
22
BE

NON  
32
BE

NON  
42
BE

NON  
52
BE

NON  

(0.2, 0.2) 0.68(0.66) 0.47(0.22) 0.76(0.76) 0.65(0.48) 0.42(0.05) 

(0.2, 0.4) 0.68(0.48) 0.57(0.20) 0.77(0.68) 0.60(0.29) 0.56(0.30) 

(0.2, 0.6) 0.67(0.23) 0.73(0.66) 0.77(0.57) 0.64(0.10) 0.69(0.64) 

(0.2, 0.8) 0.77(0.26) 1.08(1.55) 0.83(0.43) 0.76(0.28) 0.95(1.34) 

(0.4, 0.4) 0.65(0.32) 0.69(0.57) 0.76(0.63) 0.61(0.17) 0.65(0.52) 

(0.4, 0.6) 0.58(0.14) 0.83(0.90) 0.71(0.56) 0.56(0.06) 0.69(0.71) 

(0.4, 0.8) 0.75(0.36) 1.46(2.07) 0.78(0.36) 0.74(0.42) 1.12(1.61) 

(0.6, 0.6) 0.66(0.22) 1.35(1.73) 0.73(0.43) 0.66(0.16) 1.01(1.29) 

(0.6, 0.8) 0.85(0.87) 2.27(3.19) 0.76(0.17) 0.83(0.81) 1.52(2.35) 

For 

11 12 21{ ij ij ijm m m+ + 22, , = 1, 2}ijm i j+  

(0.8, 0.8) 1.12(1.93) 3.58(5.49) 0.83(0.24) 1.04(1.67) 2.18(3.95) 

(0.2, 0.2) 0.57(0.63) 0.27(0.13) 0.69(0.74) 0.41(0.40) 0.28(0.31) 

(0.2, 0.4) 0.54(0.46) 0.37(0.34) 0.68(0.68) 0.42(0.24) 0.44(0.57) 

(0.2, 0.6) 0.51(0.19) 0.69(0.94) 0.65(0.55) 0.47(0.10) 0.69(0.88) 

(0.2, 0.8) 0.63(0.35) 1.39(2.08) 0.71(0.34) 0.62(0.47) 1.11(1.52) 

(0.4, 0.4) 0.49(0.35) 0.54(0.64) 0.65(0.64) 0.42(0.17) 0.57(0.76) 

(0.4, 0.6) 0.48(0.17) 0.98(1.24) 0.62(0.51) 0.45(0.17) 0.85(1.04) 

(0.4, 0.8) 0.62(0.44) 1.81(2.33) 0.67(0.35) 0.61(0.55) 1.35(1.81) 

(0.6, 0.6) 0.55(0.42) 1.70(1.90) 0.63(0.41) 0.54(0.40) 1.28(1.51) 

(0.6, 0.8) 0.78(0.92) 2.91(3.43) 0.69(0.14) 0.75(0.92) 1.96(2.64) 

For 

12 21{ ij ijm m+ + 22 , , = 1, 2}ijm i j  

(0.8, 0.8) 1.13(1.96) 4.63(5.72) 0.75(0.33) 1.02(1.77) 2.86(4.24) 
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Table 6 

Ratios of mean MSEs and mean absolute biases of Bayesian estimates relative to the ML estimate when no boundary solution 
occurs under a 20% missing percentage (the ratios for absolute biases are in parentheses) 
 

 ,11 11

1 1 2 2
(β β )X R X R

 
12
BE

NON  
22
BE

NON  
32
BE

NON  
42
BE

NON  
52
BE

NON  

(0.2, 0.2) 0.99(3.37) 1.05(7.00) 0.94(2.51) 0.93(4.89) 1.06(8.96) 

(0.2, 0.4) 0.98(2.57) 1.21(5.13) 0.97(1.89) 1.00(3.26) 1.24(5.56) 

(0.2, 0.6) 1.04(2.18) 1.52(3.84) 0.95(1.67) 1.06(2.38) 1.43(3.71) 

(0.2, 0.8) 1.12(2.04) 1.75(3.53) 1.00(1.48) 1.13(2.14) 1.52(3.21) 

(0.4, 0.4) 1.03(2.40) 1.49(4.66) 0.97(1.69) 1.05(2.74) 1.39(4.46) 

(0.4, 0.6) 1.20(2.17)  2.11(3.85)  1.00(1.52)  1.22(2.24)  1.78(3.42) 

(0.4, 0.8) 1.28(2.09)  2.36(3.67)  1.05(1.45)  1.26(2.09)  1.86(3.12)  

(0.6, 0.6) 1.22(2.16)  2.49(3.90)  0.96(1.48)  1.21(2.15)  1.90(3.32)  

(0.6, 0.8) 1.52(1.99)  3.19(3.39)  1.11(1.38)  1.45(1.91)  2.29(2.77)  

For 

11 12 21{ ij ij ijm m m+ + 22, , = 1, 2}ijm i j+  

(0.8, 0.8) 1.66(1.96)  3.64(3.27)  1.14(1.36)  1.52(1.83)  2.43(2.59)  

(0.2, 0.2) 0.88(2.59)  0.89(5.66)  0.87(2.26)  0.89(4.55)  1.21(8.69)  

(0.2, 0.4) 0.93(2.40)  1.27(4.86)  0.93(1.78)  1.00(3.08)  1.50(5.29)  

(0.2, 0.6) 1.09(2.11)  1.93(3.97)  0.98(1.40)  1.15(2.29)  1.85(3.61)  

(0.2, 0.8) 1.24(2.13)  2.36(3.90)  1.02(1.48)  1.27(2.18)  2.06(3.19)  

(0.4, 0.4) 1.03(2.18)  1.81(4.30)  0.96(1.60)  1.12(2.62)  1.85(4.39)  

(0.4, 0.6) 1.23(2.28)  2.62(4.28)  0.99(1.48)  1.29(2.42)  2.28(3.80)  

(0.4, 0.8) 1.42(2.05)  3.26(3.70)  1.07(1.42)  1.44(2.07)  2.53(3.09)  

(0.6, 0.6) 1.33(2.07)  3.22(3.95)  0.99(1.36)  1.36(2.14)  2.54(3.43)  

(0.6, 0.8) 1.65(2.09)  4.14(3.74)  1.13(1.43)  1.61(2.07)  2.98(3.13)  

For 

12 21{ ij ijm m+ + 22 , , = 1, 2}ijm i j  

 

(0.8, 0.8) 1.91(2.02)  4.48(3.50)  1.16(1.39)  1.66(1.93)  3.03(2.83)  

 

Park and Brown (1994) used 22BENON  to estimate 

expected cell counts in an incomplete one-way table under a 

nonignorable nonresponse mechanism. They showed by 

simulation studies that 22BENON  has a smaller MSE than 

the ML estimate although it is biased more than the ML. 

However, larger values than 1 for 22BENON  in Table 5 and 

Table 6 indicate that this is not true in an incomplete two-

way table regardless of the boundary solution and that 

Bayesian methods are not always better than the ML even 

when a boundary solution occurs. A reason that our 

simulation results differ from those of Park and Brown 

(1994) when a boundary solution occurs is attributed to the 

choice of 11 11

1 1 2 2
( , )X R X Rβ β  where Park and Brown performed 

their simulation only for 11 11

1 1 2 2
= = 0.34.X R X Rβ β  As shown 

in Table 5, 22BENON  is  better than the ML when 
11

1 1
0.4X Rβ ≤  and 11

2 2
0.4,X Rβ ≤  whereas 22BENON  is worse 

than the ML when the response pattern between respondents 

and nonrespondents is much different (i.e., 11

1 1
0.6X Rβ ≥  or 

11

2 2
0.6).X Rβ ≥  

 

Table 7 provides the mean of the standard deviations and 

the 95% coverage probabilities for 11

1 1
.X Rβ  Here, we used the 

variance formula given in (9) to calculate the standard 

deviations and the 95% coverage probabilities are the 

coverage rates for nominal 95% confidence intervals. When 

a boundary solution occurs, although the coverage 

probability of the ML estimate is closest to the 95% nominal 

coverage level, the ML estimate has too large a standard 

deviation to use in practice. Such large standard deviations 

are due to the boundary problem of the ML estimate. The 

coverage probabilities of 32BENON  are the closest to the 

95% nominal coverage level among the Bayesian estimates, 

while those of the other Bayesian estimates are generally 

smaller than the 95% nominal coverage level. This implies 

that the Bayesian estimates other than 32BENON  under-

estimate their standard deviations. 
 

When no boundary solution occurs (the second table in 

Table 7), the standard deviations of the ML estimate are 

much more stable, compared to those for the boundary 

solution case. The coverage probability decreases as 11

1 1
X Rβ  

and 11

2 2
X Rβ  increase. In particular, the coverage probabilities 

of  1 2, ,BE BENON NON  and 5

BENON  are seriously smaller 

than the 95% nominal coverage level when the response 

pattern between the respondents and undecided voters is 

much different (i.e., 11

1 1
0.6X Rβ ≥  and 11

2 2
0.6).X Rβ ≥  
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Table 7 
Mean of standard deviations and 95% coverage probabilities (in parentheses) for 11

1 1
ββββX R  

 

 ,11 11

1 1 2 2
(β β )X R X R

 2MLNON  
12
BE

NON  
22
BE

NON  
32
BE

NON  
42
BE

NON  
52
BE

NON  

(0.2, 0.2) 89.5(0.974)  0.082(0.978)  0.064(0.978)  0.093(0.973)  0.071(0.972)  0.060(0.957)  

(0.2, 0.4) 158.3(0.959)  0.072(0.963)  0.096(0.963)  0.079(0.958)  0.066(0.958)  0.058(0.940)  

(0.2, 0.6) 135.3(0.940)  0.065(0.941)  0.057(0.941)  0.071(0.941)  0.062(0.939)  0.056(0.922)  

(0.2, 0.8) 57.4(0.930)  0.070(0.938)  0.061(0.935)  0.076(0.928)  0.066(0.928) 0.060(0.908) 

(0.4, 0.4) 153.4(0.961)  0.079(0.920)  0.061(0.913)  0.096(0.956)  0.072(0.949)  0.060(0.911)  

(0.4, 0.6) 82.2(0.955)  0.072(0.893)  0.059(0.883)  0.086(0.951)  0.069(0.940)  0.058(0.874) 

(0.4, 0.8) 51.2(0.933)  0.071(0.862)  0.059(0.849)  0.084(0.926)  0.068(0.917)  0.059(0.846)  

(0.6, 0.6) 175.5(0.946)  0.077(0.820)  0.060(0.781)  0.101(0.943)  0.074(0.921)  0.061(0.823) 

(0.6, 0.8) 159.6(0.924)  0.071(0.728)  0.057(0.657)  0.089(0.913)  0.069(0.880)  0.058(0.737) 

boundary 

(0.8, 0.8) 72.8(0.920)  0.070(0.572)  0.056(0.330)  0.093(0.900)  0.070(0.842)  0.058(0.607) 

(0.2, 0.2) 0.068(0.949)  0.060(0.959)  0.056(0.959)  0.062(0.937)  0.058(0.935)  0.055(0.922) 

(0.2, 0.4) 0.066(0.960)  0.060(0.970)  0.056(0.970)  0.061(0.935)  0.058(0.931)  0.055(0.951) 

(0.2, 0.6) 0.064(0.940)  0.058(0.945)  0.055(0.945)  0.059(0.959)  0.057(0.919)  0.054(0.909) 

(0.2, 0.8) 0.069(0.933)  0.063(0.944)  0.059(0.941)  0.065(0.926)  0.062(0.925)  0.058(0.920) 

(0.4, 0.4) 0.074(0.910)  0.061(0.836)  0.055(0.828)  0.064(0.899)  0.059(0.884)  0.055(0.824) 

(0.4, 0.6) 0.074(0.915)  0.060(0.815)  0.055(0.806)  0.064(0.922)  0.059(0.879)  0.055(0.792) 

(0.4, 0.8) 0.073(0.891)  0.061(0.786)  0.056(0.771)  0.064(0.873)  0.060(0.852)  0.056(0.763) 

(0.6, 0.6) 0.078(0.859)  0.061(0.567)  0.055(0.470)  0.067(0.853)  0.061(0.795)  0.056(0.572) 

(0.6, 0.8) 0.076(0.843)  0.060(0.515)  0.054(0.402)  0.065(0.817)  0.060(0.767)  0.055(0.556) 

no-boundary 

(0.8, 0.8) 0.080(0.755)  0.059(0.110)  0.053(0.017)  0.065(0.728)  0.059(0.607)  0.055(0.158) 

 

 

5. Concluding remarks 
 

We investigated the Bayesian analysis for incomplete 

two-way contingency tables with nonignorable non-

response. In this situation, the ML estimates often fall on the 

boundary solution. These boundary solutions can yield 
2 > 0G  even for a saturated model (Baker et al. 1992; Park 

and Brown 1994). This means that the 2G  may not be 

appropriate as a statistic for model specification. To avoid 

the boundary solution problem and to obtain a statistic such 

as a Bayes factor for model specification regardless of a 

boundary solution, we proposed Bayesian estimation 

methods using five different priors. Two of them are new 

and the remaining three have been previously used for 

analyzing an incomplete one-way table. These two new 

priors accommodate different response patterns between 

respondents and nonrespondents. 

Data analysis shows that these new two priors are more 

reasonable in the sense that they accommodate the 

nonignorable nonresponse mechanism better and produce 

estimates close to the actual results. Moreover, with the 

previous three priors, our simulation study shows that the 

Bayesian estimates can have larger MSEs than those of the 

ML estimates for a contingency table with no boundary 

solution and a boundary solution as well, contrary to the 

previous studies. However, when a boundary solution 

occurs, the two new priors perform better than the previous 

three priors and the ML estimates in the sense that they have 

generally smaller MSEs, smaller biases, and coverage 

probabilities closer to the nominal coverage level. 

We have briefly discussed the weighting issues at Section 

2.2. However, these issues need much more rigorous 

discussion than we did in that section. Our discussion can be 

further extended to include not only different weights but 

also response biases and other sources of biases and 

variations. These problems can be carefully developed on an 

extended paper at a later time. 
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