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Abstract 
This paper considers the optimum allocation in multivariate stratified sampling as a nonlinear matrix optimisation of 
integers. As a particular case, a nonlinear problem of the multi-objective optimisation of integers is studied. A full detailed 
example including some of proposed techniques is provided at the end of the work. 
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1. Introduction  
One of the areas of statistics that is most commonly used 

in all fields of scientific investigation is that of probabilistic 
sampling. An effective sampling technique within a popula-
tion represents an appropriate extraction of useful data 
which provides meaningful knowledge of the important 
aspects of the population. Stratified sampling is one of the 
classical methods for obtaining such information. This 
method considers the computation of the stratum sample 
size, which can be computed by various procedures, but 
optimum allocation has been found to be a useful approach. 
Optimum allocation is considered as a non-linear optimisa-
tion problem in which the objective function is the variance 
subject to a cost restriction, or vice versa. Traditionally, this 
problem has been solved by using the Cauchy-Schwarz 
(Stuart 1954) inequality, cited in Cochran (1977) or 
Lagrange’s multiplier method, see Sukhatme, Sukhatme, 
Sukhatme and Asok (1984).  

Classical sampling theory considers a single decision 
variable or parameter; for example, in our case, univariate 
stratified sampling studies one parameter, the sample size 
and its strata allocation, see Cochran (1977), Sukhatme et al. 
(1984) and Thompson (1997). Moreover, in the context of 
stratified sampling, some multivariate approaches have been 
proposed whereby the sample size and its allocation within 
strata take diverse characteristics into consideration, see 
Sukhatme et al. (1984) and Arthanari and Dodge (1981), 
among others.  

When the optimum allocation is performed, and the cost 
function is the objective function, subject to certain variance 
restrictions in the different characteristics, then the problem 
can be reduced to a question of classical mathematical 
programming, and for this purpose there are two well-
known approaches: Arthanari and Dodge (1981), from a 

deterministic point of view; and Prékopa (1978), from a 
stochastic position. In the latter case, the problem can be 
solved by using any of the techniques presented in Díaz-
García and Garay (2007).  

Alternatively, if we wish to minimise the variances 
subject to a cost function, or to a given sample size, then 
sereral approaches can be adopted to solve this, see 
Sukhatme et al. (1984). However, the above-mentioned 
approaches do not solve the over-sampling problem, i.e., 
when the sample size in one or more strata is larger than the 
stratum size; furthermore, the sample sizes obtained are not 
integers, and must be approximated. Moreover, as we shall 
see, all the previously published approaches in this area are 
particular cases of the multi-objective optimisation 
technique. If these problems could be overcome, then we 
would have a formal overview and a unified theory for 
resolving the problem of optimum allocation in multivariate 
stratified sampling, and would be able to consider all the 
literature (both theory and practice) on multi-objective 
optimisation and related questions.  

In this paper we study optimum allocation in multivariate 
stratified sampling as a nonlinear problem of matrix optimi-
sation of integers constrained by a cost function or by a 
given sample size. Making certain assumptions, we propose 
a way to solve the problem, through several particular 
techniques, see subsection 3.1. The second aim of the paper 
is related to the following fact: if we define a particular 
vectorial function of the objective function of the matrix 
optimisation problem, then in subsection 3.2 we show that 
the optimum allocation in multivariate stratified sampling 
also can be studied as a non-linear problem of the multi-
objective optimisation of integers. In subsections 3.2.1 and 
3.2.2 we propose different techniques for solving these 
problems. Finally, in section 4, some of the techniques 
described are applied to a numerical example from forestry. 
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2. Multivariate stratified sampling  
Consider a population of size N, divided into H sub-

populations (strata). We wish to find a representative sample 
of size n and an optimum allocation in the strata meeting the 
following requirements: i) to minimise the variance of the 
estimated mean subject, to a budgetary constraint; or ii) to 
minimise the cost subject to a constraint on the variances; 
this is the classical problem in optimum allocation in 
univariate stratified sampling, see Cochran (1977), 
Sukhatme et al. (1984) and Thompson (1997). However, if 
we consider more than one characteristic (variable) then the 
problem is known as optimum allocation in multivariate 
stratified sampling. For a formal expression of the problem 
of optimum allocation in stratified sampling, consider the 
following notation.  

 
2.1 Notation  

The subindex 1, 2, ,h H= …  denotes the stratum, 
1, 2, , hi N= …  the unit within stratum h and 1, 2, ,j G= …  

denotes the characteristic (variable). Moreover:   
hN  Total  number  of  units  within 

stratum  h 

hn  Number of units from the sample 
in stratum h 

j

hiy  
Value obtained for the thi  unit in 
stratum h of the thj  characteristic 

1( , , )Hn n ′=n …  Vector of the number of units in 
the sample 
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hc  Cost per sampling unit in stratum h  

 
Finally, let ST( ) ,G

u ∈ℜV y  such that � 1
ST ST( ) (Var( ),u y=V y  

�
ST, Var( )) ,Gy ′…  where if ,G ′∈ℜa a  denotes the transpose 

of a. 

 
3. A new approach for the problem of optimum 

       allocation in multivariate stratified sampling  
In this section we propose optimum allocation in 

multivariate stratified sampling as a matrix optimisation 
problem,   for   which  a  number  of  possible  solutions  are  
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studied. We observe that the multi-objective optimisation 
problem is a particular case of a matrix optimisation. In the 
same sense, we note that optimum allocation in multivariate 
stratified sampling can be seen as a multi-objective optimi-
sation problem. In each case, the respective solutions are 
straightforwardly derived.  
3.1 Matrix optimisation  

Formally, optimum allocation in stratified sampling can 
be studied by performing the following nonlinear matrix 
optimisation problem: 

�
ST

0

minCov( )

subject to

,c C′ + =

n
y

c n

 (1) 

where C is the total cost, 0c  is a fixed cost and 

1( , , ).Hc c′ =c …   
Note that the solutions proposed for problem (1) take real 

values, and thus the sample sizes hn  must be integers. We 
must also address the problem of over-sampling, that is, 
when h hn N≥  for at least some h, see Arvanitis and Afonja 
(1971). In order to overcome these two complications, we 
propose the following alternative approach to (1). 

�
ST

0

minCov( )

subject to

2 , 1, 2, ,

,

h h

n

c C

n N h H

n

′ + =

≤ ≤ =

∈

n
y

c n

…

ℕ

 (2) 

where ℕ  denotes the set of natural numbers.  
Obviously, the difficulty of expressing the problem in 

this way lies in defining the meaning of the minimum of a 
matrix function. The idea of minimising a matrix function, 
and in particular the matrix of variance-covariance, has been 
studied with respect to various areas of statistical theory. For 
example, when the regression estimators are determined for 
a multivariate general linear model, this is done by 
minimising the determinant or the trace of sums of squares 
and sums of products matrix of the erro, see Giri (1977). 
Similarly, the choice or comparison of some experimental 
design models is done by minimising a function of the 
variance-covariance matrix of treatment estimators, see 
Khuri and Cornell (1987) and Azaïs and Druilhet (1997).  

Fortunately, it is possible to reduce the nonlinear matrix 
minimisation problem (2) to a univariate nonlinear minimi-
sation problem by taking into account the following 
considerations (note that the prodecure described here is just 

one of various possible options, see Ríos, Ríos Insua and 
Ríos Insua (1989) and Miettinen (1999)). Observe that 
�

STCov( )y  is an explicit function of n, and so it must be 
denoted as as � �

ST STCov( ) Cov( ( )).≡y y n  Also, assume that 
�

STCov( ( ))y n  is a positive definite matrix for all n, 
�

STCov( ( )) > .y n 0  Now, let 1n  and 2n  be two possible 
values of the vector n and let �

ST 1Cov( ( ))= −B y n  
�

ST 2Cov( ( )).y n  We say that 

� �
ST 1 ST 2Cov( ( )) Cov( ( )) ,< ⇔ <y n y n B 0  (3) 

i.e., if the matrix B is a negative definite matrix. Moreover, 
note that � SSTT 1Cov( ( ))y n  and � SSTT 2Cov( ( )),y n  are diagonal-
izable. Then, let 

1
Dn  and 

2
Dn  be the diagonal matrixes 

associated with � SSTT 1Cov( ( ))y n  and � SSTT 2Cov( ( )),y n  respec-
tively, with 

1 1 1diag( , , ), > > >0G GD = α α α αn … ⋯  and 

2 1 1diag( , , ), > > >0,G GD = τ τ τ τn … ⋯  where jα  and jτ  
denote the eigenvalues of �

SSTT 1Cov( ( ))y n  and 
�

SSTT 2Cov( ( )),y n  respectively. Thus, expression (3) can 
alternatively be presented as: 

� �
1 2SSTT 1 SSTT 2Cov( ( )) Cov( ( )) ,D D< ⇔ − <n ny n y n 0  

i.e., 

� �
SSTT 1 SSTT 2

1, ,

Cov( ( )) Cov( ( )) 0j j

j G=

< ⇔ α − τ <y n y n
…

 
and (4) 

� �
SSTT 1 SSTT 2Cov( ( )) Cov( ( )),≠y n y n  

which defines a weak Pareto order, see Steuer (1986), Ríos 
et al. (1989) and Miettinen (1999). Then from Steuer 
(1986), Ríos et al. (1989) and Miettinen (1999), there exist a 
function : ,S →ℜf  such that 

� �

�( ) �( )
SSTT 1 SSTT 2

SSTT 1 SSTT 2

Cov( ( )) Cov( ( ))

Cov( ( )) Cov( ( )) .

<

⇔ <

y n y n

f y n f y n

 
(5)

 

where � ( 1) / 2
STCov( ( )) G GS +∈ ⊂ℜy n  and S is the set of 

positive definite matrixes. From (5), Steuer (1986), Ríos 
et al. (1989) and Miettinen (1999) proof that the non-linear 
matrix minimisation problem (2) is reduced in the following 
univariate non-linear minimisation problem 

�( )ST

0
1

min Cov( )

subject to

2 , 1, 2, ,

;

H

h h

h

h h

h

c n c C

n N h H

n

=

+ =

≤ ≤ =

∈

∑

n
f y

…

ℕ

 (6) 
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Unfortunately or fortunately the function ( )⋅f  is not 
unique. For example, in other statistical contexts we see the 
following commonly used functions ( ),⋅f  see Giri (1977):   
1. The trace of the matrix �

STCov( ( ));y n  
� �

ST ST(Cov( ( ))) tr (Cov( ( ))).=f y n y n   
2. The determinant of the matrix � STCov( ( ));y n  

� �
ST ST(Cov( ( ))) Cov( ( )) .=f y n y n   

3. The sum of all the elements of the matrix 
�

STCov( ( ));y n  

� �
ST ST ST

, 1

(Cov( ( ))) Cov( , ).
G

j k

j k

y y
=

= ∑f y n  

4. � �
ST max ST(Cov( ( ))) (Cov( ( ))),= λf y n y n  where maxλ  

is the maximum eigenvalue of the matrix 
�

STCov( ( )).y n   
5. � �

ST min ST(Cov( ( ))) (Cov( ( ))),= λf y n y n  where minλ  
is the minimum eigenvalue of the matrix 
�

STCov( ( )).y n   
6. � �

ST ST(Cov( ( ))) (Cov( ( ))),j= λf y n y n  where jλ  is 
the thj  eigenvalue of the matrix � STCov( ( )),y n  
among others.  

In particular Dalenius (1957), studied the problem (6) when 
� �

ST ST(Cov( ( ))) Cov( ( )) ,=f y n y n  in other words, the 
minimisation of the generalised variance � STCov( ( )) ,y n  
see also Arvanitis and Afonja (1971).   
3.2 Multi-objectibve optimisation  

Let us now, consider the vectorial function : ,GS →ℜF  
such that �

ST ST(Cov( )) ( ).u=F y V y  An alternative way of 
establishing problem (2) is 

�

�

1
ST

ST

ST

0

Var( )

min ( ) min

Var( )

subject to

2 , 1, 2, ,

,

u

G

h h

h

y

y

c C

n N h H

n

 
 

=  
 
 

′ + =

≤ ≤ =

∈

n n
V y

c n

⋮

…

ℕ

 (7) 

which is a nonlinear problem of the multi-objective optimi-
sation of integers, see Steuer (1986), Ríos et al. (1989) and 
Miettinen (1999).  

In the sampling context, observe that in multi-objective 
optimisation problems, there rarely exists a point *n  which 
is considered as an optimum, i.e., few cases satisfy the 
requirement that � *

STVar( ( ))jy n  is minimum for all 
1, , .j G= …  This justifies the following notion of the 

Pareto point (which is more weakly defined than an 
optimum point):  

We say that *
ST( )uV y  is a Pareto point of  

ST( ),uV y  if there is no other point 1
ST( )uV y  

such that 1 *
ST ST( ) ( ),u u≤V y V y  i.e., for all j, 

� �1 *
ST STVar( ) Var( )j jy y≤  and 1

ST( )u ≠V y  
*

ST( ).uV y   
Existence criteria for Pareto points of a multi-objective 
optimisation problem are established in Ríos et al. (1989) 
and Miettinen (1999). In particular we have:   

Given ST( ): H G

u ℜ →ℜV y  and let us consider a 
non empty compact N H⊂ ℕ  such that N  is the 
set of all possible values of n determined by the 
restrictions in (7). If � STVar( )jy  is an upper semi-
continuous for each 1, , ,j G= …  then the 

problem (7) has a Pareto optimal solution.   
On the other hand, Steuer (1986), Ríos et al. (1989) and 
Miettinen (1999) studied the extension of scalar 
optimisation (Kuhn-Tucker’s conditions) to the vectorial 
case. In particular, they proposed necessary conditions for 
Pareto solutions, which become sufficient conditions if: N is 
convex; the functions � STVar( ), 1, ,j j G=y …  are convex; 
and the Lagrange generalised multipliers ,jδ  associated 
with each function � STVar( ),jy  are positive, > 0jδ  for all j. 
Note that the above results for the existence of a Pareto 
solution and for Kuhn-Tucker’s conditions are valid when 
the optimisation problem is continuous, i.e., when the 
variables hn  are continuous ones, for all 1, , .h H= …  
However, it should be recalled that in order to obtain the 
solution to an integer optimisation problem, it is normal to 
make the initial assumption that such a problem is one of 
continuous optimisation. First we derive the solution to the 
problem of continuous optimisation, and then, by means of 
heuristic or branch-and-bound methods, progress to solving 
that of integer optimisation. In this context, in the case of 
optimising integers, in a practical case, it is sufficient to see 
that the corresponding problem of continuous optimisation 
has an optimum Pareto solution, and to confirm that the set 
N  of all the possible values of n contains at least one ∈n N 
for which all the coordinates are integers.  

Methods for solving a multi-objective optimisation 
problem are based on the information possessed about a 
particular problem. There are three possible scenarios; when 
the investigator possesses: complete, partial or null 
information, see Ríos et al. (1989), Miettinen (1999) and 
Steuer (1986) In a stratified sampling context, complete 
information means that, the investigator knows the popu-
lation in such a way that it is possible to propose a value 
function (Value function: This is a function : Hφ ℜ →ℜ  
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such that denoting ST ST( ) ( ( ))u u≡V y V y n  we have that 
* *

SSTT ST 1 SSTTmin ( ( )) min ( ( )) ( ( ( )))u u u< ⇔ φ <V y n V y n V y n  
*

ST 1 1( ( ( ))), .)uφ ≠V y n n n  reflecting the importance of each 
variance of the studied characteristics, this possibility, today, 
is very rarely encountered. In partial information, the 
investigator knows the main characteristic of the study very 
well and this is sufficient support for the research. Finally, 
under null information, which is the most common situation, 
the researcher only possesses information about the estima-
tors of the parameter of the experiment, and with this 
material an appropriate solution can be found.  

For reasons of space it is impossible to give an 
exhaustive explanation of all the techniques proposed for 
solving multi-objective optimisation problems (7), see Ríos 
et al. (1989), Miettinen (1999) and Steuer (1986) for a 
detailed description. Moreover, there are heuristic methods, 
instead of the classical methods, by which the problem may 
be addressed in an alternative way, see Jones et al. (2002). 
As an illustration, we present below a survey of two 
commonly used techniques; the first one studies the 
complete information stage (the value function, also termed 
the utility function) and the second one, the null information 
scenario (a method based on distances).  
3.2.1 Value function  

As mentioned above, this method belongs to the 
complete information case, in which the investigator is able 
to summarise the importance of all the studied 
characteristics in a real function, see the next paragraph (see 
also Ríos et al. (1989), Miettinen (1999) and Steuer (1986), 
among others).  

Under the value function technique, problem (7) is 
expressed as follows: 

ST

0
1

min ( ( )),

subject to

2 , 1, 2, ,

,

u

H

h h

h

h h

h

y

c n c C

n N h H

n

=

φ

+ =

≤ ≤ =

∈

∑

n
V

…

ℕ

 (8) 

where ( )φ ⋅  is a scalar function that summarises the 
importance of each of the variances of the G characteristics.  

Clearly, many of the approaches described in the litera-
ture on the question of optimum allocation in multivariate 
stratified sampling, such as compromise assignation, com-
promise assignation minimising total relative loss, and 
compromise assignation taking the mean of the optimum 

values, see Sakhatme et al. (1984), are particular cases of 
the above-mentioned method.  

Note that the value function ( )φ ⋅  may take an infinite 
number of forms, which represents a fundamental obstacle 
to defining it. However, some simple functions have given 
excellent results in the applications and they can be 
considered as promising approaches. One of these particular 
forms is the weighting method. Under this approach, 
problem (8) can be expressed as: 

�
ST

1

0
1

min Var( ),

subject to

2 , 1, 2, ,

,

G
j

j

j

H

h h

h

h h

h

w y

c n c C

n N h H

n

=

=

+ =

≤ ≤ =

∈

∑

∑

n

…

ℕ

 

such that 1 1, 0 1, 2, , ;G
j j jw w j G=∑ = ≥ ∀ = …  where jw  

weights the importance of each characteristic. 
Among the multi-objective techniques we find that the 

value function method is, in general, the most commonly 
applied, because its properties have been studied with most 
detail, see Ríos et al. (1989), Miettinen (1999), Steuer 
(1986), and the references therein.   
3.2.2 Distance-based method  

Sometimes, the researcher does not have sufficient 
previous information about the variables, or it is difficult to 
decide which are the most important characteristics of the 
experiment. In such cases, the method of this section is very 
useful, because it does not need many antecedents; more-
over, it only requires a vector of ideal goals, which is 
determined with the null information expressed in the 
problem, see Ríos et al. (1989) and Steuer (1986).  

Then, problem (7) is solved by obtaining the optimum 
values via the minimisation of the distance between the 
optimum and the vector of targets.  

Let jθ  be the ideal point or goal for the objective 
�

STVar( ), 1, , ,jy j G= …  i.e., the vector of targets ΘΘΘΘ  is given 
by 

1

.

G

θ 
 =  
 θ 

⋮ΘΘΘΘ  

Note that the vector of targets ΘΘΘΘ  can be calculated 
without additional information, which is a great advantage 
of  this  method.  In  fact, it is computed by minimising each  
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objective � STVar( ), 1, ,jy j G= …  separately, such that the 
vector ΘΘΘΘ  is defined as the vector of its individual minima, 
and this is achieved by solving the following G non-linear 
minimisation problems of integers, see Rao (1979): 

�
ST

0
1

min Var( ),

subject to

2

1, 2, ,

,

j

H

h h

h

h n

h

y

c n c C

n N

h H

n

=

+ =

≤ ≤

=

∈

∑

n

…

ℕ

 

for 1, , .j G= …  
Once the vector ΘΘΘΘ  has been computed, we study the 

optimisation problem with the new objective function, 
namely 

ST

0
1

min ( ( ), )

subject to

2 , 1, 2, ,

,

u

H

h h

h

h h

h

d

c n c C

n N h H

n

=

+ =

≤ ≤ =

∈

∑

n
V y

…

ℕ

ΘΘΘΘ

 (9) 

where ( , )d ⋅ ⋅  denotes a general distance function. In 
particular, when the program (9) is applied to the Euclidean 
distance, we have 

�
2

ST
1

0
1

min Var( )

subject to

2 , 1, 2, ,

.

G
j

j

j

H

h h

h

h h

h

y

c n c C

n N h H

n

=

=

 − θ 

+ =

≤ ≤ =

∈

∑

∑

n

…

ℕ

 

Alternatively, another distance has been proposed by Khuri 
and Cornell (1987):  
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Remarks:    
1. Note that we have used the cost restriction 

1 0
H
h h hc n c C=∑ + =  in every optimisation method. 

However, in some situations, we do not restrict the 
costs but we have restrictions for the availability of 
man-hours for carrying out a survey, or restrictions 
on the total available time for performing the survey, 
etc. These limitations can be described by using the 
following expression, see Arthanari and Dodge 
(1981):  

1

.
H

h
h

n n
=

=∑  

2. Note that the multi-objective optimisation methods 
proposed here are general and they need to be 
adjusted in some particular problems; for instance, 
we do not consider the unit (magnitude) of each 
variance in the respective sums for the value 
function. We suggest a solution, namely to replace 
the variance of each characteristic by its 
corresponding coefficient of variation 

�
ST STVar( ) / , 1. , ;j jy y j G= …  

then, the use of Khuri and Cornell’s distance is more 
recommendable than is the use of the Euclidean 
distance.    

3. It is desirable to consider estimators other than a 
mean estimator, for example the national mean 
estimator, or the comparison of regional means, etc. 
In particular, the associated editor recommended 
estimators of the following type:  

�

1

H
G

h h
h

w
=

= ∈ℜ∑T y  (10) 

where several weights hw  could even be used for the 
same variable. For instance, if one of the weights hw   
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is 1, another is -1, and the others are 0, then we can 
compute the difference between two means of two 
different strata. In general, we can optimise problem 
(2) substituting the objective function � STCov( ),y  by 
any function of interest. For example, we could use 
the estimated variance-covariance matrix � ˆCov( )T  of 
the estimator (10), among many other options.  

 
4. A numerical example  

The input information was taken from Arvanitis and 
Afonja (1971) which is a forest survey conducted in 
Humbolt County, California. The population was sub-
divided into nine strata on the basis of the timber volume 
per unit area, as determined from aerial photographs. The 
two variables included in this example are the basal area 
(BA) (In forestry terminology, ‘Basal area’ is the area of a 
plant perpendicular to the longitudinal axis of a tree at 4.5 
feet above ground) in square feet, and the net volume in 
cubic feet (Vol.), both expressed on a per acre basis. The 
variances, covariances and the number of units within 
stratum h are listed in Table 1.   

Table 1 
Variances, covariances and the number of units within 
each stratum 

 

 Variance  

Stratum hN  BA Vol. Covariance 

1 11,131 1,557 554,830 28,980 
2 65,857 3,575 1,430,600 61,591 
3 106,936 3,163 1,997,100 72,369 
4 72,872 6,095 5,587,900 166,120 
5 78,260 10,470 10,603,000 293,960 
6 51,401 8,406 15,828,000 357,300 
7 24,050 20,115 26,643,000 663,300 
8 46,113 9,718 13,603,000 346,810 
9 102,985 2,478 1,061,800 39,872  

For this example, the matrix optimisation problem under 
approach (2) is 

� �

� �

1 1 2
ST ST ST
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ST ST ST
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ℕ

 (11) 

Table 2 shows the optimisation solutions obtained by 
some of the methods described in Sections 2 and 3; 
specifically, we present the solutions via the trace, the 
determinant, the value function, the Euclidean distance and 
the Khuri and Cornell distance. We also include the 
optimum allocation for each characteristic, BA and Vol. (the 
first two rows in Table 2). The last two columns show the 
minimum values of the individual variances for the 
respective optimum allocations identified by each method. 
The results were computed using the commercial software 
Hyper LINGO/PC, release 6.0, see Winston (1995). The 
default optimisation methods used by LINGO to solve the 
nonlinear integer optimisation programs are Generalised 
Reduced Gradient (GRG) and branch-and-bound methods, 
see Bazaraa et al. (2006). Some technical details of the 
computations are the following: the maximum number of 
iterations of the methods presented in Table 2 was 1,193 
(determinant problem) and the mean execution time for all 
the programs was 1 second. Finally, note that the greatest 
discrepancy found by the different methods among the sizes 
of the strata occurred when minimising the generalised 
variance � STCov| ( )|.y  Beyond doubt, this is because it is the 
only method presented in Table 2 that takes into account the 
covariance between the two characteristics studied.    

Table 2 
Sample sizes and estimator of variances for the different allocations calculated 

 

Allocation 1n  2n  3n  4n  5n  6n  7n  8n  9n  � 1
STVar y( )( )( )( )  � 2

STVar y( )( )( )( )  

BA 10 94 144 136 191 113 81 109 122 5.591 5,441.105 

Vol. 7 62 119 136 200 161 98 134 83 5.953 5,139.531 

�( )STtr Cov( )y  7 62 119 135 200 161 98 134 84 5.591 5,139.531 

�
STCov( )y  9 93 128 129 193 123 86 106 133 5.616 5,403.876 

Value Function a 7 62 119 135 200 161 98 134 84 5.591 5,139.531 
b

Ed  7 62 119 136 200 160 98 134 84 5.944 5,139.557 
c

KCd  10 86 137 135 192 126 86 115 113 5.613 5,308.11 
 a  1 2 0.50w w= =  
 b  Euclidean distances 
 c  

Khuri and Cornell distance 
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5. Conclusions  
It is difficult to suggest rules for choosing a method in 

matrix optimisation (2) when there are important numerical 
differences between two of them. For example, Table 2 
shows opposing results in the optimum allocations and the 
minimum variances for the trace and the determinant 
techniques. A similar situation occurs in the criterion 
selection for testing hypotheses in the MANOVA problem, 
see Giri (1977). In fact, the existence of general criteria 
based on power tests is not sufficient for an objective 
decision to be made and the final choice depends on the skill 
of the investigator.  

However, when the problem of optimum allocation in 
multivariate stratified sampling is considered as a nonlinear 
problem of the multi-objective optimisation of integers, we 
can give some general suggestions to reduce the number of 
appropriate methods in accordance with each situation. First 
we need to recognise the research context of the problem 
(i.e., total information, partial information or null infor-
mation). Then, we can decide the technique according to the 
available information. It is important to note that the 
solution for an allocation problem should be achieved by the 
implementation of a single method. For this reason, the 
results obtained for any example are comparable only within 
the context in which the example was established. 
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