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Determining the optimum strata boundary points  
using dynamic programming 

Mohammad G. Mostafa Khan, Niraj Nand and Nesar Ahmad 1 

Abstract 

Optimum stratification is the method of choosing the best boundaries that make strata internally homogeneous, given some 

sample allocation. In order to make the strata internally homogenous, the strata should be constructed in such a way that the 

strata variances for the characteristic under study be as small as possible. This could be achieved effectively by having the 

distribution of the main study variable known and create strata by cutting the range of the distribution at suitable points. If 

the frequency distribution of the study variable is unknown, it may be approximated from the past experience or some prior 

knowledge obtained at a recent study. In this paper the problem of finding Optimum Strata Boundaries (OSB) is considered 

as the problem of determining Optimum Strata Widths (OSW). The problem is formulated as a Mathematical Programming 

Problem (MPP), which minimizes the variance of the estimated population parameter under Neyman allocation subject to 

the restriction that sum of the widths of all the strata is equal to the total range of the distribution. The distributions of the 

study variable are considered as continuous with Triangular and Standard Normal density functions. The formulated MPPs, 

which turn out to be multistage decision problems, can then be solved using dynamic programming technique proposed by 

Bühler and Deutler (1975). Numerical examples are presented to illustrate the computational details. The results obtained 

are also compared with the method of Dalenius and Hodges (1959) with an example of normal distribution. 
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1. Introduction 
 

The basic consideration involved in the determination of 

optimum strata boundaries (OSB) is that the strata should be 

internally as homogenous as possible, that is, the stratum 

variances 2

hσ  should be as small as possible, given some 

sample allocation. When a single characteristic is under 

study and the distribution of the study variable is available, 

the OSB can be determined by cutting the range of this 

distribution at suitable points. This problem of determining 

the OSB was first discussed by Dalenius (1950), when the 

study variable itself is used as stratification variable. He 

presented a set of minimal equations that could be solved 

for finding OSB. Unfortunately these equations could not 

usually be solved because of their implicit nature. Hence 

attempts have been made by several authors to obtain the 

approximate strata boundaries using classical methods. 

Given the number of strata, Dalenius and Gurney (1951) 

suggested that the strata boundaries be determined when 

h hW σ  remain constant, where hW  is the weight of stratum 

.h  Mahalanobis (1952) and Hansen and Hurwitz (1953) 

have suggested that the strata boundaries can be determined 

when h hW µ  remain constant. Aoyama (1954) suggested an 

approximate rule and recommended to make strata of equal 

width 1,h hx x −−  where 1hx −  and hx  are the boundaries of 

stratum .h  Ekman (1959) determined the strata boundaries 

with the condition that 1( )h h hW x x −− = constant. Dalenius 

and Hodges (1959) recommended to construct the strata by 

taking equal intervals on the cumulative of ( ).f x  Sethi 

(1963) proposed a method to work out the boundaries given 

by the calculus equations 
2 2 2 2

1 1 1

1

( ) ( )h h h h h h

h h

x x + + +

+

− µ + σ − µ + σ
=

σ σ
 

for a standard continuous distribution resembling the study 

population.  

In a comparison on some of the classical approximate 

methods, the Ekman method and the Dalenius and Hodges 

method are proved to work consistently well (see Cochran 

1961, Hess, Sethi and Balakrishnan 1966, Murthy 1967) but 

the later is more convenient and easier to apply (see 

Nicoloni 2001).  

Unnithan (1978) suggested an iterative method using 

Shanno’s modified Newton method for determining the 

strata boundaries that leads to a local minimum of the 

variance for Neyman allocation, if a suitable initial solution 

is chosen. The procedure is proved to be faster than the 

Dalenius and Hodges iterative procedure. Later on Unnithan 

and Nair (1995) gave a method of selecting an appropriate 

starting point for modified Newton method that may lead to 

a global minimum of the variance.  

Lavallée and Hidiroglou (1988) proposed an algorithm to 

construct stratum boundaries for a power allocated stratified 

sample of non-certainty sample units. Hidiroglou and 
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Srinath (1993) presented a more general form of the 

algorithm, which by assigning different values to operating 

parameters yields a power allocation, a Neyman allocation, 

or a combination of these allocations. Sweet and Sigman 

(1995) and Rivest (2002) reviewed Lavallée and Hidiroglou 

algorithm and proposed their modified versions of the 

algorithm that incorporate the different relationships 

between the stratification and study variables. Detlefsen and 

Veum (1991) investigated the Lavallée and Hidiroglou 

algorithm for several strata and observed that the 

algorithm’s convergence was slow or non-existent. They 

also found that different starting points lead to different 

OSBs for the same population.  

Niemiro (1999) proposed a random search method in the 

stratification problem but the algorithm did not guarantee 

that it leads to global optimum. Furthermore, it would go 

wrong in a case of a large population, as it requires too 

many iteration steps (see Kozak 2004).  

Nicolini (2001) suggested a method, named Natural 

Class Method (NCM), to oppose the most utilized Dalenius 

and Hodges method but neither method was proved to be 

more efficient than other.  

Lednicki and Wieczorkowski (2003) presented a method 

of stratification using the simplex method of Nelder and 

Mead (1965). Later Kozak (2004) presented the modified 

random search algorithm as a method of the optimal 

stratification. The Kozak algorithm was quite faster and 

efficient as compared to Rivest, and Lednicki and 

Wieczorkowski but it could not guarantee that the algorithm 

leads to the global optimum.  

Bühler and Deutler (1975) formulated the problem of 

determining OSB as an optimization problem that can be 

solved by a dynamic programming technique. This 

approach is also used by Lavallée (1987, 1988) for 

determining the OSB which would divide the population 

domain of two stratification variables into distinct subsets 

such that the precision of the variables of interest is 

maximized.  

Khan, Khan and Ahsan (2002) considered the problem of 

finding OSB as an equivalent problem of determining 

Optimum Strata Width (OSW). The authors formulated the 

problem of OSW as a Mathematical Programming Problem 

(MPP). Following the Bühler and Deutler’s dynamic 

programming approach, they solve the MPP that gives exact 

solution, if the frequency distribution of the study variable is 

known and the number of strata is fixed in advance. Khan 

et al. (2002) applied their procedure to work out OSB to the 

population having uniform and right triangular distribution. 

Later Khan, Najmussehar and Ahsan (2005) extended this 

dynamic programming approach for determining the OSB 

for an exponential study variable also.  

In this paper the problem of determining OSB for the 

study variables with Triangular and Standard Normal 

distributions are discussed. Viewing the fact that these 

problems are equivalent to the problems of determining 

OSW, we formulate the problems as MPPs and solve them 

by following Bühler and Deutler’s dynamic programming 

approach. The formulated MPPs minimize the variance of 

the estimated population parameter under Neyman 

allocation subjected to a restriction that sum of the widths of 

all the strata is equal to the total range of the distribution of 

the study variable. In Section 2, a review of dynamic 

programming approach proposed by Bühler and Deutler 

(1975) is presented. In Section 3, the details of the 

formulation of the problems of OSW as MPPs are provided. 

The solution procedure using dynamic programming 

technique to solve the MPPs is discussed in Section 4. The 

computational details of the solution procedure is illustrated 

with numerical examples in Section 5. Finally, in Section 6, 

an investigation is carried out to compare the results 

obtained by the dynamic programming method and the cum 

f  method of Dalenius and Hodges (1959) with an 

example from a population of normal distribution. It reveals 

that the proposed dynamic programming method yields a 

gain in efficiency over the cum f  method. 

 
2. Determination of OSB using dynamic 

      programming techniques: A review of  

      Bühler and Deutler’s approach 
 

Let X  be a random study variable, discrete or contin-

uous, with probability density function ( ),f x .a x b≤ ≤  To 

estimate the population mean µ  by a stratified sample, X  

is partitioned into L  strata 1 1 2 1[ ] ( ] ( ]La x x x … x b−, , , , , ,  

such that 

0 1 2 1L La x x x x x b−= ≤ ≤ ≤, ..., ≤ ≤ = .  (1) 

Suppose that from stratum h ( 1 2 ),h … L= , , ,  which 

contains hN  units, a sample of size hn  with units hjy  

( 1 2 1 2 )hh … L j … n= , , , ; = , , ,  is selected. Then the 

stratified mean 1
L
hst h hx W x=∑=  is an unbiased estimate of 

µ  with variance  

2

1

1
( )

L
h

st h h
h h

W
V x W

n N=

 
= σ − , 

 
∑  (2) 

where ,h hW N N= / 11/ ,hn
jh h hjx n y=∑= 2 [1/ ( 1)]h hNσ = − ×  

2

1
( )hN

hj hj
y=∑ − µ  and 11/ .hN

jh h hjN y=∑µ =  

When the frequency function ( )f x  is known, the values 

of hW  and hσ  in (2) can be obtained by  

1

( )
h

h

x

h x
W f x dx

−

= ,∫  (3) 
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1

2 2 21
( )

h

h

x

h hx
h

x f x dx
W −

σ = − µ ,∫  (4) 

where 

1

1
( )

h

h

x

h x
h

x f x dx
W −

µ = ∫  (5) 

is the mean and 1( )h hx x− ,  are the boundaries of thh  

stratum.  

Then (2) reads as the function of strata boundary points 

and sample sizes, that is, 

1 1 1( ) ( )st st L LV x V x x … x n … n−= | , , , , , .
 

If hn  are fixed, the objective of the optimum 

stratification is to determine stratum boundary points 

1 1( )Lx … x −, ,  such that ( )stV x  is minimum. Further, if the 

sampling ratios h hn N/  are small or the sampling is with 

replacement, then the following optimization problems are 

obtained, depending on the type of allocation of total sample 

size 1( )L
h hn n=∑=  to strata.   

1. Proportional allocation ( )h hn n W= ⋅   

2

1

0 1 2 1

Minimize

subject to

L

h h
h

L L

W

a x x x x x b

=

−

σ

= ≤ ≤ ≤, ...,≤ ≤ =

∑

 (6)

 

2. Equal allocation ( )hn n L= /  

2 2

1

0 1 2 1

Minimize

subject to

L

h h
h

L L

W

a x x x x x b

=

−

σ

= ≤ ≤ ≤, ..., ≤ ≤ =

∑

 (7)

 

3. Neyman allocation 1( )L
hh h h h hn n W W=∑= ⋅ σ / σ   

1

0 1 2 1

Minimize

subject to .

L

h h
h

L L

W

a x x x x x b

=

−

σ

= ≤ ≤ ≤, ..., ≤ ≤ =

∑

 (8)

 

 

The problems (6) to (8) have the following structure:  

1

1

0 1 2 1

Minimize ( )

subject to

L

h h h

h

L L

x x

a x x x x x b

−
=

−

φ , ,

= ≤ ≤ ≤, ..., ≤ ≤ = .

∑

 (9)

 

Bühler and Deutler (1975) have suggested a recursive 

optimization method for solving (9) using a dynamic 

programming technique as follows:  

Consider an optimization problem with the special 

structure:  

1
1

1

1

0

Minimize ( )

subject to ( )

( )

1 2 ,

m

h h h
h

h h h h

h h

h h h

u z y

z v z y

z Z

y S z

z z h m

−
=

−

−

, ,

= , ,

∈ ,

∈ ,

′= ; = , , ...,

∑

 (10)

 

where m = number of stages, hu = stage return functions, 

hv = stage transformation functions, hZ = state spaces, 

hS = decision spaces, and z′ = initial state. Then a dynamic 

programming procedure using Bellman’s principle of 

optimality (Bellman 1957) can be used to solve (10).  

If 0 1, , , [ ], [ ],L h h hm L z a z b Z a b Z a b y−= = = = , = , −  

1 1( ) [0 ]h h hS z b z− −= , −  with 1 1,h hz Z− −∈ 1( )h h hu z y− , =  

1 1( )h h h hz y z− −φ , +  with 1( ),h h hy S z −∈ 1( )h h hv z y− , =  

1,h hy z −+  then (10) is transformed to the following 

problem:  

1 1
1

1

1

0

Minimize ( )

subject to

[ ]

[0 ]

1 2

L

h h h h
h

h h h

h

h h

L

z y z

z y z

z a b

y b z

z a z b h L

− −
=

−

−

φ , + ,

= + ,

∈ , ,

∈ , − ,

= , = ; = , , ..., .

∑

 (11)

 

The problem (11) is an equivalent problem of (9) as they 

hold the following results:  
 
1. If 1 1( )Lx … x∗ ∗

−, ,  is an optimum solution of (9), then 

1,h h hy x x∗ ∗ ∗
−= − h hz x∗ ∗=  is an optimum of (11).   

2. If ( 1 ),hy h … L∗ = , , ( 1 1)hz h … L∗ = , , −  is an 

optimum solution of (11), then ( 1 1)h hx z h … L∗ ∗= = , , −  

is an optimum solution of (9).  
 

If 1( )h hz −Φ  is the optimum value of objective function at 

stage h  with the available state 1,hz −  then the backward 

recursive equation to solve (11) using a dynamic 

programming technique is given by  

1 1 1 1

1

( ) min[ ( ) ( )

]

h h h h h h h h

h h h

z z y z z

z y z

− − − +

−

Φ = φ , + + Φ |

= +  (12)
 

on 1( )h h hy S z −∈  with initially 1 0.L+Φ ≡  
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3. Formulation of the problem  

       of OSW as an MPP 
 

In this section the Bühler and Deutler’s approach 

discussed above is extended for a study variable with a 

continuous density function ( ).f x  The problem (11) is 

transformed into an equivalent problem of determining 

OSW by considering 1 1h h h h hy z z x x− −= − = −  as strata 

widths and then the objective function and the constraints 

are constructed as functions of .hy  The MPP is treated as a 

multistage decision problem in which at each stage the value 

of the OSW and hence the OSB for a stratum is worked out 

using dynamic programming technique with a forward 

recursive equation.  

Let ( )f x  be the frequency function and 0x  and Lx  are 

the smallest and largest values of .x  If the population mean 

is estimated under Neyman allocation, then the problem of 

determining the strata boundaries is to cut up the range,  

0Lx x d− = ,  (13) 

at intermediate points 1 2 1Lx x x −≤ ≤, ..., ≤  such that 

1
L
h h hW=∑ σ  in (8) is minimum.  

Consider that ( )f x  has n  piece-wise continuous linear 

or non-linear functions as follows:  

1 0 0 1

2 1 2

1

( )

( )
( )

( )n n n L

g x x a x a

g x a x a
f x

g x a x a x−

; = ≤ ≤ ,
 ; < ≤ ,

= 

 ; < ≤ = .

⋮
 (14) 

Also assume that out of L  strata, il  be the number of 

strata to be formed under the density function ( )ig x ;  
1 2 .i n= , , ..,  and 1 .n

i il L=∑ =  

If ( )f x  in (14) is integrable, using the expressions (3), 

(4) and (5), ,hW 2

hσ  and hµ  are obtained as a function of the 

boundary points hx  and 1.hx −  Thus the objective function in 

(8) could be expressed as a function of boundary points hx  

and 1hx −  only. Let  

1( ) .h h h h hx x W−φ , = σ  

Note that the above function has different values for 

different density functions in (14).  

Thus, the problem (8) can be treated as an optimization 

problem to find 1 2 1, , ..., Lx x x −  as stated in (9).  

Let 1 0h h hy x x −= − ≥  denote the width of the thh  

( 1 2 )h L= , , ...,  stratum.  

With the above definition of ,hy  the range of the 

distribution given in (13) is expressed as the function of the 

stratum widths as:  

1 0
1 1

( )
L L

h h h L
h h

y x x x x d−
= =

= − = − = .∑ ∑  (15) 

The thk  stratification point ; 1 2 1kx k L= , , ..., −  is then 

expressed as:  

0 1 2

1

k k

k k

x x y y y

x y−

= + + + ... +

= + ,
 

which is a function of thk  stratum width and th( 1)k −  

stratum boundary.  

Considering k kz x=  and adding (15) as a constraint, the 

problem (11) can be rewritten as an equivalent problem of 

determining OSW as:  

1
1

1

Minimize ( )

subject to

and 0 1 2

L

h h h
h

L

h
h

h

y x

y d

y h L

−
=

=

φ , ,

= ,

≥ ; = , , ..., .

∑

∑

 (16)

 

Initially, 0x  is known. Therefore, the first term, that is, 

1 1 0( )y xφ ,  in the objective function of the MPP (16) is a 

function of 1y  alone. Once 1y  is known, the next 

stratification point 1x = 0 1x y+  will be known and the 

second term in the objective function 2 2 1( )y xφ ,  will 

become a function of 2y  alone.  

Therefore, stating the objective function as a function of 

hy  alone the MPP (16) is expressed as:  

1

1

Minimize ( )

subject to

and 0 1 2

L

h h
h

L

h
h

h

y

y d

y h L

=

=

φ ,

= ,

≥ ; = , , ..., .

∑

∑

 (17)

 

The Sections 3.1 and 3.2 illustrate the formulation of the 

problem of determining OSW as an MPP for Triangular and 

Standard Normal study variables respectively.  
 
3.1 MPP for triangular distribution  

Let the study variable x  be following the Triangular 

distribution on the interval [a, b] with the probability density 

function:  

2( )

( ) ( )
( )

2( )

( ) ( )

x a
a x c

b a c a
f x

b x
c x b

b a b c

− ; ≤ ≤ − −
= 

− ; < ≤ , − −

 (18) 

where a  is a location parameter, b  is a scale parameter and 

c  is the shape parameter.  

It has two piece-wise functions.  

When ,a x c≤ ≤  from (18) and using (3), (5) and (4), 

, ,h hW µ  and 2

hσ  are obtained as:  
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( 2 )

( ) ( )

h h h
h

y y a
W

b a c a

+
= ,

− −
 (19) 

2

1 1

2
2 2

3

2

h h h h h h

h

h h

y y x ay a x

y a

− −+ − +
µ = ,

+
 

and 

2 2 2
2

2

[ 6 6 ]
,

18( 2 )

h h h h h
h

h h

y y a y a

y a

+ +
σ =

+
 (20) 

where 1,h h hy x x −= − 1h ha x a−= −  and 1 .h ha x x c−≤ ≤ ≤  

Thus from (19) and (20),  

2 2 26 6

3 2( ) ( )

h h h h h

h h

y y a y a
W

b a c a

+ +
σ = .

− −
 (21) 

Similarly, when ,c x b< ≤  from (18) and using (3), (5) 

and (4), it can be demonstrated that  

(2 )

( ) ( )

h h h
h

y b y
W

b a b c

−
= ,

− −
 (22) 

2

1 13 3 6 2

3(2 )

h h h h h h h
h

h h

b y y x b x y

b y

− −− + −
µ = ,

−
 

and 
2 2 2

2

2

(6 6 )
,

18(2 )

h h h h h
h

h h

y b b y y

b y

− +
σ =

−
 (23) 

where 1,h h hy x x −= − 1h hb b x −= −  and 1 .h hc x x b−< ≤ ≤  

Thus, from (22) and (23),  

2 2 26 6

3 2( ) ( )

h h h h h

h h

y b b y y
W

b a b c

− +
σ = .

− −
 (24) 

Let 1λ  and 2λ  be the last and the first stratum formed 

under the first and second piece-wise function of (18) 

respectively. If any stratum (say, )l  falls under both 

functions, then 1λ  and 2λ  are not considered to be two 

different strata but the fractions of the same thl  stratum. 

Then, using (21) and (24) the MPP (17) could be expressed 

as the problem of determining the OSW for the study 

variable with Triangular frequency function as:  

1

2

2 2 2

1

2 2 2

1

6 6
Minimize

3 2( ) ( )

6 6
,

3 2( )( )

subject to

and 0 1 2 ,

h h h h h

h

L
h h h h h

h

L

h
h

h

y y a y a

b a c a

y b b y y

b a b c

y d

y h L

λ

=

=λ

=

 + +


− −

− + 
+ 

− − 

= ,

≥ ; = , , ...,

∑

∑

∑

 (25)

 

where .d b a= −  
 

3.2 MPP for normal distribution  
The study variable x is said to have a Standard Normal 

distribution if its probability density function is given by  

21
( ) exp

2 2

x
f x x

 
= − ; − ∞ < < ∞. 

π  
 

As in section 3.1, using the definition (3), (5) and (4), it 

can be seen that  

1 1

2 2

2

h h h

h

y x x
erf erf

W

− −+   −   
   = ,  (26) 

2 2

1 1

1 1

( )
2 exp exp

2 2

2 2

h h h

h

h h h

x y x

y x x
erf erf

− −

− −

    +
− − −    

     µ = ,
 +    

π −    
    

 

and 

2
2 1 1

1

2

1 1
1

2

1 1
1

2

1 1
1

2

1

2 exp
2 2

( )
( )exp

2 2

exp
2 2

( )
( )exp

2 2

2

h h h
h h

h h h h
h h

h h
h

h h h
h h

h h

x y x
x erf

y x y x
y x erf

x x
x erf

y x x
y x erf

y x
erf

− −
−

− −
−

− −
−

− −
−

−

    + 
σ = π −    

    

 + + 
− + −   

  

   
− −   

  

 +  
+ + −   

  

+
+ π 


1

2
2 2

1 1

2

1 1

2

( )
2 exp exp

2 2

2 2

h

h h h

h h h

x
erf

x y x

y x x
erf erf

−

− −

− −

   
−   

   

     +
− − − −     

       

 +    
÷ π −    

    
 (27)

 

where 1,h h hy x x −= − 1( ) ( ) (2 )h herf x erf x −− = π ×  

1

2exp( )h

h

x

x
u du

−
∫ −  and 1 2 .h L= , , ...,  

Therefore, using the values in (26) and (27) the MPP (17) 

can be expressed as  
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2

1 1
1

1

2

1 1
1

2

1 1
1

2

1 1
1

1
Minimize Sqrt exp

2 2 2 2

( )
( )exp

2 2

exp
2 2

( )
( )exp

2 2

1

L
h h h

h
h

h h h h
h h

h h
h

h h h
h h

x y x
x erf

y x y x
y x erf

x x
x erf

y x x
y x erf

− −
−

=

− −
−

− −
−

− −
−

    + 
−    π     

 + + 
− + −   

  

   
− −   

  

 +  
+ + −   

  

+

∑

2

1 1

2
2 2

1 1

4 2 2

( )1
exp exp

2 2 2

h h h

h h h

y x x
erf erf

x y x

− −

− −

 +    
−    

    

     +
− − − −     

π        
 

1

subject to

and 0 1 2

L

h

h

h

y d

y h L

=

=

≥ ; = , , ..., .

∑

 (28)

 

 
4. The solution procedure using dynamic 

      programming technique 
 

The MPP (17) is a multistage decision problem in which 

the objective function and the constraints are separable of 

,hy  which allow us to use a dynamic programming 

technique as illustrated by Bühler and Deutler (1975) for the 

problem (11).  

Consider the following subproblem of (17) for first 

( )k L<  strata:  

1

1

Minimize ( )

subject to

and 0 1 2 ,

k

h h
h

k

h k
h

h

y

y d

y h k

=

=

φ ,

= ,

≥ ; = , , ...,

∑

∑

 (29)

 

where kd d<  is the total width available for division into 

k  strata or the state value at stage .k  Note that kd d=  for 

.k L=  

The transformation functions are given by  

1 2

1 1 2 1

2 1 2 2 1 1

2 1 2 3 3

1 1 2 2

k k

k k k k

k k k k

d y y y

d y y y d y

d y y y d y

d y y d y

d y d y

− −

− − − −

= + + ... + ,

= + + ... + = − ,

= + + ... + = − ,

= + = − ,

= = − .

⋮ ⋮

 

Let ( )k kdΦ  denote the minimum value of the objective 

function of (29), that is,  

]

1 1

( ) min ( )

and 0 1 2 , .

k k

k k h h h k
h h

h

d y y d

y h k

= =


Φ = φ = ,



≥ ; = , , ...∑

∑ ∑
 

With the above definition of ( ),k kdΦ  the MPP (17) is 

equivalent to finding ( )L dΦ  recursively by finding 

( )k kdΦ  for 1 2k L= , , ...,  and 0 kd d≤ ≤ .   
We can write:  

1 1

1 1

( ) min ( ) ( )

and 0 1 2 , 1.

k k

k k k k h h h k k

h h

h

d y y y d y

y h k

− −

= =


Φ = φ + φ = − ,




≥ ; = , , ... − 


∑

∑

∑
 

For a fixed value of ;ky 0 ,k ky d≤ ≤  

1 1

1 1

( ) ( )

min ( )

and 0 1 2 , 1 .

k k k k

k k

h h h k k
h h

h

d y

y y d y

y h k

− −

= =

Φ = φ


+ φ = − ,




≥ ; = , , ... − 


∑ ∑

∑

 

Using the Bellman’s principle of optimality, we write a 

forward recursive equation, instead of backward recursive 

equation as suggested by Bühler and Deutler in (12), for 

using dynamic programming technique as:  

[ ]1
0

( ) min ( ) ( ) 2
k k

k k k k k k k
y d

d y d y k−
≤ ≤

Φ = φ +Φ − , ≥ .  (30) 

For the first stage, that is, for 1:k =  

1 1 1 1 1 1( ) ( )d d y d∗Φ = φ ⇒ = ,  (31) 

where 1 1y d∗ =  is the optimum width of the first stratum. 

The relations (30) and (31) are solved recursively for each 

1 2k L= , , ...,  and 0 ,kd d≤ ≤  and ( )L dΦ  is obtained. 

From ( )L dΦ  the optimum width of thL  stratum, ,Ly
∗  is 

obtained. From 1( )L Ld y∗−Φ −  the optimum width of 
th( 1)L −  stratum, 1,Ly

∗
−  is obtained and so on until 1y

∗  is 

obtained. 

Note that depending upon the piece-wise function(s) in 

(14) under which the stratum is formed, ( )k kyφ  in (30) will 

take different value for each ky  as follows:  
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1 0 for some ( 1 2 )k k k iy x x a a i i n−= − ≤ − , = , , ...,  

and, 

1[ ] for some ( 1 2 )k i ix a a i i n−∈ , , = , , ..., .  

 
5. Numerical illustrations  

In this section the computational details of the solution 

procedure discussed in section 4 for the MPPs (25) and (28) 

are presented.   
5.1 Triangular distribution  

Let us assume that 0 0,a x= = 1c =  and 2.Lb x= =  

This implies that 0 2Ld x x= − =  and the MPP (25) is 

expressed as:  

1

2

2 2 2

1

2 2 2

1

6 6
Minimize

6 2

6 6

6 2

subject to 2

and 0 1 2 ,

h h h h h

h

L
h h h h h

h

L

h
h

h

y y a y a

y b b y y

y

y h L

λ

=

=λ

=

 + +



− + 
+ ,



= ,

≥ ; = , , ...,

∑

∑

∑

 (32)

 

where 1h ha x −=  and 12 .h hb x −= −  

Using (30) and (31), the recursive equations for solving 

MPP (32) can be stated as:  

For the first stage ( 1)k =  

3

1
1 1 1 1( ) at

6 2

d
d y dΦ = = ,  (33) 

and for the stages ( 2)k ≥  

2 2 2

1

2 2 2

1

( )

6 6
min ( )

6 2

if 0 1,

6 6
min ( )

6 2

if 1 2,

k k

k k k k k

k k k

k

k k k k k

k k k

k

d

y y a y a
d y

d

y b b y y
d y

d

−

−

Φ =

  + +
 +Φ − 
   
 ≤ ≤

  − +
 +Φ − 
   
 < ≤

 
(34)

 

where the min function is on 0 ,k ky d≤ ≤ 1k ka x −= =  

k kd y−  and 12 2 .k k k kb x d y−= − = − +  

 

 

 

 

Substituting this values of ka  and ,kb  (34) becomes  

2 2

1

2 2

1

( )

6( )
min ( )

6 2

if 0 1

6(2 )(2 )
min ( )

6 2

if 1 2,

k k

k k k k k

k k k

k

k k k k k

k k k

k

d

y y d y d
d y

d

y y d y d
d y

d

−

−

Φ =

  + −
 +Φ − 
   
 ≤ ≤ ,

  + − + −
 +Φ − 
   
 < ≤

 
(35)

 

where the min function is on 0 .k ky d≤ ≤  

Then solving the recursive equations (33) and (35) by 

executing a computer program developed for the solution 

procedure given in section 4, the OSWs are obtained. The 

results of optimum strata widths hy
∗  and hence the optimum 

strata boundaries hx
∗  along with the values of the objective 

function 1 ( )L
h h hy=∑ φ  for 2 3 4 5L = , , ,  and 6  are 

presented in Table 1.  

 
Table 1 

Optimum strata widths and boundaries of triangular 
distribution 
 

No. of 

strata  

L   

Optimum Strata 

Widths (OSW)  

( )hy
∗∗∗∗  

Optimum Strata  

Boundaries  

(OSB)  

1( )h h hx x y∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗
−−−−= += += += +  

Optimum values of  

the objective function  

∑ ∑
1 1

( )
L L

h h h h
h h

y W
= == == == =

φ = σφ = σφ = σφ = σ  

1y
∗ = 1.000000 1x

∗ = 1.000000 

2 
2y
∗ = 1.000000  0.2357022604 

1y
∗ = 0.838081 1x

∗ = 0.838081 

2y
∗ = 0.411608 2x

∗ = 1.249689 3 

3y
∗ = 0.750311  

0.1655523797 

1y
∗ = 0.645751 1x

∗ = 0.645751 

2y
∗ = 0.354249 2x

∗ = 1.000000 

3y
∗ = 0.354249 3x

∗ = 1.354249 4 

4y
∗ = 0.645751  

0.1226262641 

1y
∗ = 0.582819 1x

∗ = 0.582819 

2y
∗ = 0.319725 2x

∗ = 0.902544 

3y
∗ = 0.252176 3x

∗ = 1.154720 

4y
∗ = 0.299439 4x

∗ = 1.454159 
5 

5y
∗ = 0.545841  

0.0998893913 

1y
∗ = 0.497369 1x

∗ = 0.497369 

2y
∗ = 0.272849 2x

∗ = 0.770218 

3y
∗ = 0.229782 3x

∗ = 1.000000 

4y
∗ = 0.229782 4x

∗ = 1.229782 

5y
∗ = 0.272849 5x

∗ = 1.502631 

6 

6y
∗ = 0.497369  

0.0829362498 
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5.2 Normal distribution  
Let x  follow the Standard Normal distribution in the 

interval 0( ).Lx x,  For the purpose of illustration, we assume 

that 0 4x = −  and 4.Lx =  Then 8,d =  which gives MPP 

(28) as:  

1

2

1 1
1

2

1 1
1

2

1 1
1

2

1 1
1

1
Minimize Sqrt

2 2

exp
2 2

( )
( )exp

2 2

exp
2 2

( )
( )exp

2 2

L

h

h h h
h

h h h h
h h

h h
h

h h h
h h

x y x
x erf

y x y x
y x erf

x x
x erf

y x x
y x erf

=

− −
−

− −
−

− −
−

− −
−

  
  ×
  π

   + 
−    

   

 + + 
− + −   

  

   
− −   

  

  +
+ + −  

  

∑

2

1 1

2
2 2

1 1

1

4 2 2

( )1
exp exp ,

2 2 2

h h h

h h h

y x x
erf erf

x y x

− −

− −


  

 +    
+ −    

    

     +
 − − − −    

π        

 

1

subject to 8

and 0 1 2

L

h

h

h

y

y h L

=

= ,

≥ ; = , , ..., .

∑

 (36)

 

We have  

1 0 1 2 1

1 2 1

1

4

4

4

k k

k

k

k k

x x y y y

y y y

d

d y

− −

−

−

= + + + ... +

= − + + + ... +

= −

= − − .

 

Substituting this value of 1kx −  in (36) and using (30) and 

(31), the recursive equations for solving MPP (36) are 

obtained as:  

For first stage ( 1):k =  

1
1 1

2

1 1
1

2

1
1

2

1

( 4)1 1
( ) Sqrt exp

2 2 2 2

( 4) ( 4)
( 4)exp

2 2

1 1
exp

2 2

( 4) 1
( 4)exp

2 2

( 4)1 1

4 2 2

d
d erf

d d
d erf

erf

d
d erf

d
erf erf

    −   Φ = − −       π     

 − − 
− − −   

  

   + − −   
   

  −  + − − −       

−   + − − 
  

2
2

1( 4)1 1
exp exp

2 2 2

d

 
 

 

    −  − − − −    π         
 (37)

 

at 1 1,y d=  

and for the stages 2:k ≥  

0

2

2

2

2

1
( ) min Sqrt

2 2

( 4) 4
( 4)exp

2 2

( 4) 4
( 4)exp

2 2

( 4) ( 4)
( 4)exp

2 2

( 4) (
( 4)exp

2

k k

k k
y d

k k k
k k

k k
k

k k k k
k k

k k
k

d

d y d
d y erf

d d
d erf

d y d y
d y erf

d d
d erf

≤ ≤

 Φ = × 
π

  − − − 
− − −    

   

 − − 
− − −   

  

 − − − − 
− − − −   

  

 −
+ − − 

 

2

2
2 2

1

4)

2

4 ( 4)1

4 2 2

( 4) ( 4)1
exp exp

2 2 2

( )

k

k k k

k k k

k k k

y

d d y
erf erf

d y d

d y−

 − − 
    

 − − −    
+ −    

    

     − − −
− − − −     

π        


+ Φ − .


 (38)

 

Solving the recursive equations (37) and (38), the 

optimum strata widths hy
∗  and hence the optimum strata 

boundaries hx
∗  are obtained. Table 2 shows these results 

along with the values of the objective function 1 ( )L
h h hy=∑ φ  

for 2 3 4 5L = , , ,  and 6.  
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Table 2 

Optimum strata widths and boundaries of standard normal 
distribution 
 

No. of 

strata 

L  

Optimum Strata 

Widths (OSW)  

( )hy
∗∗∗∗  

Optimum Strata 

Boundaries  

(OSB)  

1( )h h hx x y∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗
−−−−= += += += +  

Optimum values of  

the objective function  

∑ ∑
1 1

( )
L L

h h h h
h h

y W
= == == == =

φ = σφ = σφ = σφ = σ  

1y
∗ = 4.000000  1x

∗ = 0.000000  

2 
2y
∗ = 4.000000   0.6021710931 

1y
∗ = 3.450300  1x

∗ = -0.549700  

2y
∗ = 1.099400  2x

∗ = 0.549700  3 

3y
∗ = 3.450300   

0.4265717619 

1y
∗ = 3.124570  1x

∗ = -0.875430  

2y
∗ = 0.875430 2x

∗ = 0.000000  

3y
∗ = 0.875430  3x

∗ = 0.875430  4 

4y
∗ = 3.124570   

0.3297899642 

1y
∗ = 2.896360  1x

∗ = -1.103640  

2y
∗ = 0.767900  2x

∗ = -0.335740  

3y
∗ = 0.671480  3x

∗ = 0.335740  

4y
∗ = 0.767900  4x

∗ = 1.103640  
5 

5y
∗ = 2.896360   

0.2686646379 

1y
∗ = 2.722440  1x

∗ = -1.277560 

2y
∗ = 0.702200  2x

∗ = -0.575360 

3y
∗ = 0.575360  3x

∗ = 0.000000 

4y
∗ = 0.575360  4x

∗ = 0.575360 

5y
∗ = 0.702200  5x

∗ = 1.277560 

6 

6y
∗ = 2.722440  6x

∗ = 4.000000 

0.2265979522 

 
 

 
Table 3 
Frequency distribution of x  and cum ( )f x  
 

Class Frequency ( )f x  Cum ( )f x  

(-3.98)-(-3.58) 2  1.4  

(-3.58)-(-3.18) 6  3.8  

(-3.18)-(-2.78) 23  8.6  

(-2.78)-(-2.38) 59  16.3  

(-2.38)-(-1.98) 155  28.7  

(-1.98)-(-1.58) 296  45.9  

(-1.58)-(-1.18) 630  71.0  

(-1.18)-(-0.783) 1,015  102.9  

(-0.783)-(-0.383) 1,361  139.8  

(-0.383)-0.017 1,551  179.2  

0.017-0.417 1,495  217.9  

0.417-0.817 1,315  254.2  

0.817-1.22 1,003  285.9  

1.22-1.62 613  310.7  

1.62-2.02 285  327.6  

2.02-2.42 128  338.9  

2.42-2.82 38  345.1  

2.82-3.22 18  349.3  

3.22-3.62 7  351.9  

 
 

 

6. Discussion 
 

In this section we will undertake a numerical 

investigation into the effectiveness of the dynamic 

programming method to the Dalenius and Hodges’ cum 

f  method, which is the most frequently used and better 

known method. For this purpose, we have generated data of 

size N = 10,000 for a population with standard normal 

density function 2( ) (1 2 )exp( 2),f x x= / π − /  which have 

been grouped into 19 equal classes. In Table 3 the class 

frequencies are given in column 2 while their cumulative 

roots are given in column 3.  

For this example the smallest and the largest values of x  

are 0x = -3.98 and Lx = 3.62 respectively. Therefore, the 
range of the distribution d = 7.60. 

The OSB are determined for this distribution by using 

cum f  method and also dynamic programming method. 

For each L = 2, 3, 4, 5 and 6 the variance 1
L
h h hW=∑ σ  is 

calculated, which is used for the efficiency of the two 

methods of stratification. The results of this investigation are 

given in Table 4. From the last column of table it can be 

seen that the OSB obtained by dynamic programming 

method are more efficient for all L = 1, 2, ..., 6. Although, 
the efficiency of cum f  method depends on the initial 

choice of the number of classes but there is no theory which 

gives the best number of classes (see Hedlin 2000).  
 
Table 4 

Relative efficiency of dynamic programming method 
 

L  (Cum f  method) Dynamic programming 

method 

Relative 

efficiency  

 OSB ∑ 1
L

h hh
W==== σσσσ  OSB ∑ 1

L
h hh

W==== σσσσ   

2 -0.017  0.60131  -0.00034  0.60126  100.00832  

3 -0.783  0.43177  -0.55015  0.42576  101.41159  
 0.417   0.54884   

4 -0.783  0.33067  -0.87593  0.32905  100.49233  

 -0.017   -0.00081   
 0.817   0.87395   

5 -1.18  0.27066  -1.10418  0.26799  100.99631  

 -3.83   -0.33656   
 0.417   0.33452   

 1.22   1.10147   
6 -1.18  0.24242  -1.27813  0.22598  107.27498  

 -0.783   -0.57619   

 -0.017   -0.00115   
 0.417   0.57369   

 1.22   1.27462   

 
Finally, the other methods available in the literature such 

as Aoyama (1954), Ekman (1959), Sethi (1963), etc. are 

mostly classical methods to obtain approximate strata 

boundaries. Many authors such as Unithan (1978), Lavallée 

and Hidiroglou (1988), Sweet and Sigman (1995), Rivest 

(2002), etc. suggested iterative procedures. These iterative 

procedure require initial approximate solutions. Also there is 

no guarantee that an iterative procedure will give the global 

minimum in the absence of a suitable approximate initial 
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solution and the variance function have more than one local 

minimum. The advantage of the dynamic programming 

method is that it gives the global minimum of the objective 

function and it does not require any initial approximate 

solutions.  
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