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Abstract 

The design of a stratified simple random sample without replacement from a finite population deals with two main issues: 

the definition of a rule to partition the population into strata, and the allocation of sampling units in the selected strata. This 

article examines a tree-based strategy which plans to approach jointly these issues when the survey is multipurpose and 

multivariate information, quantitative or qualitative, is available. Strata are formed through a hierarchical divisive algorithm 

that selects finer and finer partitions by minimizing, at each step, the sample allocation required to achieve the precision 

levels set for each surveyed variable. In this way, large numbers of constraints can be satisfied without drastically increasing 

the sample size, and also without discarding variables selected for stratification or diminishing the number of their class 

intervals. Furthermore, the algorithm tends not to define empty or almost empty strata, thus avoiding the need for strata 

collapsing aggregations. The procedure was applied to redesign the Italian Farm Structure Survey. The results indicate that 

the gain in efficiency held using our strategy is nontrivial. For a given sample size, this procedure achieves the required 

precision by exploiting a number of strata which is usually a very small fraction of the number of strata available when 

combining all possible classes from any of the covariates. 
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1. Introduction 
 

Many business surveys employ stratified sampling 

procedures in which simple random sampling without 

replacement is executed within each stratum (see, e.g., 

Sigman and Monsour 1995, and, for farm surveys, Vogel 

1995). Usually the list frame from which units are selected 

is set up using administrative or census information, 

represented by a rich data base of auxiliary variables, each 

of which can be potentially exploited to form strata. 

Furthermore, such surveys are often also multipurpose, and 

given precision levels must be achieved in estimating 

multiple variables under study.  

The goal of satisfying such a large number of constraints 

without drastically increasing the sample size is commonly 

considered as strictly related to the choice of the number of 

stratifying variables and of their class intervals (Kish and 

Anderson 1978). This is due to the well known fact that 

finer partitions of the population introduce more information 

useful for the reduction of estimation variances, but, on the 

other hand, their application implies higher risks for units to 

become jumpers.  

Let us indicate as the atomised stratification that one 

obtained forming strata by combination of all possible 

classes from any of the covariates in use. If the 

corresponding number of such basic strata, or atoms, 

exceeds a given threshold imposed by practical restrictions, 

it seems unavoidable to redesign the survey selecting a 

smaller number of stratifying variables or creating fewer 

classes from each of them. Notwithstanding, it can be noted 

that another way of obviating such an unsatisfactory 

situation can be based on the following argument: the 

atomised stratification can really be interpreted as an 

extreme solution to the problem of strata formation, since, 

between the cases of no stratification and using the atomised 

stratification, there exists a full range of opportunities to 

select a stratification whose subpopulations can be obtained 

as unions of atoms.  

Our proposal is to accomplish this selection through the 

definition of a tree-based stratified design. We form strata 

by means of a hierarchical divisive algorithm that selects 

finer and finer partitions by minimizing, at each step, the 

sample allocation required to achieve the precision levels set 

for each surveyed variable. The procedure is sequential, and 

determines a path from the null stratification, i.e., that one 

whose single stratum matches the population, to the 

atomised one. At each step, we select which variable is to be 

used to define the new, more disaggregated partition: each 

stratum in the current partition is split on any covariate, 

using in turn all of its available classes, and the one that 

better decreases the global allocation size is selected.  

Bloch and Segal (1989) discussed the application of 

classification tree methods (see, e.g., Breiman, Friedman, 

Olshen and Stone 1984) to strata formation, but their focus 
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was mainly on strata interpretation about the relationships 

between the covariates and a unique outcome variable. 

Instead, our rules to partition the population are directly 

oriented to the optimal allocation of sampling units in the 

selected strata. The classical methods which deal with the 

univariate case (Dalenius and Hodges 1959; Singh 1971; 

Lavallée and Hidiroglou 1988; Hedlin 2000; Lu and Sitter 

2002; Gunning and Horgan 2004; for a review see Horgan 

2006) can’t be easily extended to cover the case where one 

seeks to exploit multiple covariates for stratification. The 

solutions proposed in this literature are, as a consequence, of 

poor practical value if the survey is multipurpose and 

information on multiple covariates is available. In such a 

context, methods to satisfy a large number of constraints on 

errors when minimizing the sample size were proposed by 

Bethel (1985, 1989) and Chromy (1987). Valliant and 

Gentle (1997) also approached the problem for two-stage 

sampling frameworks. For a given stratification, we choose 

to apply the Bethel’s allocation rule and henceforth the 

procedure selects subsequent partitions by minimizing the 

survey cost function corresponding to the stratifications 

consisting of the currently unsplit strata and of the available 

split substrata.  

According to what we have said before, our position in 

the grand picture of multivariate stratification follows the 

goal by Kish and Anderson (1978), namely bringing some 

results in the field of stratified sampling towards the needs 

of survey practice. Practitioners daily perform multivariate 

(several variables available for stratification) and multi-

purpose (several variables and many other statistics are the 

main objectives of survey efforts) surveys. Thus, the aim of 

our approach consists in giving the possibility of combining 

stratification and sample allocation. This means that we are 

concerned with the choice of the number of stratifying 

variables, of the number of class intervals for each variable 

and of the optimal Bethel’s allocation to strata. As of this 

choice, our methodology cannot be reduced to the standard 

solution of the multivariate stratification problem, i.e., the 

use of multivariate techniques such as cluster analysis and 

principal components (see, for example, Mulvey 1983, Pla 

1991 and Jarque 1981). As a matter of fact, this branch of 

literature does not use (or uses only indirectly) the variables 

of interest, but only the auxiliary variables, and the alloca-

tion issue is neglected. It would be even less justifiable to 

reduce our approach to the ones reviewed by Särndal, 

Swensson and Wretman (1992, section 12.6 and 12.7): the 

techniques presented in section 12.6 combine stratification 

and multivariate sample allocation, but are not multi-

purpose, whereas the methods of section 12.7 are multi-

purpose but are based on predetermined strata.  

The paper is organized as follows. Section 2 introduces 

the procedure we propose for the computation of 

stratification trees. We thoroughly describe the algorithm 

used to generate the sequence of stratifications, and we 

show how it can be represented as a classification tree. 

Stopping criteria are also discussed to determine how they 

can affect the optimal number of strata. In Section 3 we 

examine how a stratification tree can be exploited to design 

the European Community survey on the structure of 

agricultural holdings, also known as Farm Structure Survey 

(FSS). We illustrate our stratification technique identifying a 

tree-based set of strata and allocations using a basic set of 

atoms defined by means of multivariate information 

collected during the fifth Agricultural General Census held 

in Italy in the year 2000. Finally, Section 4 is devoted to 

some concluding remarks, focusing on issues regarding the 

practice of forming strata by trees and discussing how the 

procedure can be used to better manage multipurpose 

surveys based on stratified designs.  

 
2. A procedure to generate multivariate 

        stratification trees  
 

Consider a finite population P  of N  units, on which 

variables 1 g Gy … y … y, , , ,  are to be surveyed to estimate 

their totals using a stratification on ,P  i.e., a collection F of 

FH  nonempty subpopulations, called strata, partitioning .P  

Our problem is how to select F  in order to minimize the 

corresponding overall sample allocation Fn  in a way such 

that, for 1 ,g … G= , ,  the coefficient of variation (CV )g  

corresponding to the thg  variate of interest is not greater 

than the desired level of precision, say 0.gε >  

For a given ,F  such minimization is executed by com-

puting the Bethel’s (1985) sample allocation rule. More 

thoroughly, let us indicate by ,hn 1 ,Fh … H= , ,  the sample 

allocation in stratum .h  The global survey cost corre-

sponding to F  can thus be given as follows 

1 1
( ) F

F

H

H F h hh
f n … n c c n

=
, , = + ,∑  

where Fc  is a fixed cost independent from F =n  

1( ) ,
FHn … n ′, ,  and hc  represents the cost to sample one unit 

in stratum .h  Furthermore, let gY  be the total in P  of the 
thg  response variable, hN  the size of the thh  stratum of ,F  

and 2
h gS ,  the variance of gy  in stratum .h  Then the thg  

constraint on the required precision can be expressed as: 

2 2

2 2 2 2 2

1 1

2 2

1 2 2 2

1

(CV )

1

F F

F

F

H Hh h g

g g h h g g gh h
h

H h h g

Hh

g g h h g hh

N S
N S Y

n

N S

Y N S n

,
,= =

,
=  

 ,= 

≤ ε ≡ − ≤ ε

≡ ≤ ,
ε +

∑ ∑

∑
∑

 

so that, if we consider the following quantities, referred to as 

the standardized precision units,  
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the problem of optimal allocation for F  can be expressed 

as follows: 

1

min ( )

subject to / 1 1

1/ 0 1
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h F
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Bethel (1989) derived the solution to such problem, say hn
∗,  

1 ,Fh … H= , ,  as follows: 

1 11 1

1/

if 0

otherwise
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h
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h l g l g g h gg h g g gg l

n

c c

∗
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where 1/ ,G
gg g g

∗
=∑α = λ λ  and gλ  is the Lagrangian 

multiplier of the constraint on the maximum error allowed 

estimating the thg  surveyed variable, and indicates whether 

the thg  constraint is “active” in the allocation problem 

solution (namely, if 0,g
∗α =  then the constraint is not 

active). The corresponding global optimal allocation is thus 

given by setting 1 .FH
hF hn n∗=∑=  

Let us now assume that total estimates and their 

variances are available for any of a given set of 1M >  

basic strata 1 ,m MA … A … A, , , ,  so that we can rely on two 

M G×  matrices, respectively of totals ( )m gY ,=T  and 

estimation variances 2( ),m gS ,=V  and the sizes ,mN  

1 .m … M= , ,  The definition of such strata, which in the 

sequel will be referred to as atoms, is based on a set of 

covariates 1 k KX … X … X, , , ,  as follows. Let i kx ,  be the 

value of kX  measured on unit ,i P∈  and consider the set 

of distinct values observed for kX  in ,P kΞ =  
{ }.i kx i P x x ,∈ : ∃ ∈ : =ℝ  We build 1| |K

k kM =∏= Ξ  

atoms, one for every vector 1( )m m Ka … a, ,, ,  in the Cartesian 

product 1 ,K

k k=Ξ = ⊗ Ξ  by setting for 1m … M= , ,  

1

K

m m kk
A A ,=
= ,∩  

where { }.m k i k m kA i P x a, , ,= ∈ : =  In the case where the 

covariates kX  are continuous, the set kΞ  will contain N  

not empty atoms. As the algorithm is hierarchical divisive, 

the number of final atoms does not affect at all the steps of 

the algorithm. Only the initial phase of construction of the 

aggregate statistics and, at most, the memory allocation are 

impacted. Our empirical experience suggests that the 

computing times do not change much if the size of the 

atoms is equal to 1. On the contrary, continuous or ordered 

variables speed up the algorithm, as the number of possible 

binary partitions is, if the number of values is the same, 

much smaller with respect to the case of categorical 

variables. One verifies that this construction does yield a 

stratification: each unit of the population appears in one 

atom, and in one only. To illustrate our definitions, let us 

refer to the data shown in Table 1, where a simple example 

is described in which a set of 9M =  atoms (obtained 

exploiting 2K =  covariates both having 3 distinct values, 

namely 1, 2, and 3) is assumed to constitute the basic 

stratification to survey 2G =  variables, whose totals and 

estimation variances are also reported, together with atom 

sizes. In this context, we have 1 2 {1 2 3},Ξ = Ξ = , ,  and, 

for example, 8A  is the subpopulation whose elements i  are 

such that 1 8 1 3ix a, ,= ≡  and 2 8 2 2.ix a, ,= ≡   
Table 1 

Example data for 9 atoms and 2 surveyed variates 
 

Atoms  Surveyed Variates 

Id Definition Sizes  Totals Variances 

m  1m
a ,,,,  2m

a ,,,,  
m

N   1m
Y ,,,,  2m

Y ,,,,  2
1m

S ,,,,  2
2m

S ,,,,  

1 1 1 1,000  10 10 16 25 

2 1 2 1,000  10 10 16 4 

3 1 3 1,000  10 10 16 4 

4 2 1 1,000  10 10 16 25 

5 2 2 1,000  10 10 16 4 

6 2 3 1,000  10 10 16 4 

7 3 1 1,000  10 10 4 25 

8 3 2 1,000  10 10 4 16 

9 3 3 1,000  10 10 4 16 

 
The procedure we propose generates a sequence of 

stratifications which can be represented as a classification 

tree. Define the level l  of a given node ν  in the tree as the 
number of arcs in the (unique) chain connecting node ν  to 
the root node, and let us indicate with lr  the number of 

nodes sharing the same level .l  Since only one node will be 

split at each level, we have 1lr l= +  for every .l  At each 

level 0l ≥  the procedure determines a class lF  of lr  

nonempty subpopulations in which P  can be partitioned, 

putting them in a one-to-one correspondence with the nodes 

of level .l  The strata in lF  are all candidates for being split 

on any given covariate ,kX  and, following Bethel (1989), 

the sample allocation is computed which optimally 

minimizes the survey cost function for the stratification 

consisting of the unsplit strata in lF  and the two substrata 

which define the current split. The best split at level l  is 

identified as the most favorable in terms of decreasing 

sample allocation, with respect to that characterizing ,lF  

than any other possible split on any of the covariates in use. 

The optimal allocation corresponding to the stratification 

defined by such best split, indicated by 1,b ln , +  is taken as 

the optimal sample size at level 1,l +  and is considered as 

an upper bound value constraining allocations in the 

successive level of classification. At initialization, we set 

0 { },F P=  whose single stratum is thus equivalent to the 

entire population, and the best sample size 0bn ,  is computed 
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as the maximum among those optimal sizes obtained taking 

into account, separately, every single precision level gε  set 

about the thg  surveyed variate: 

2 2

0 2 2 2
1

max
g

b
g … G

g g g

N S
n

Y N S
,

= , ,
= ,

ε +
 

where gY  is the total estimate for gy  on P  and 2
gS  is the 

corresponding variance (see, for the optimum allocation 

with only one item, Cochran 1977, pages 97-106, and 

Särndal et al. 1992, pages 104-109).  

When 0,l >  the set of strata 1,lF −  optimal at step 1,l −  

is analyzed. The best sample allocation at step , ,b ll n ,  is 

initially set equal to 1,b ln , −  and, for each stratum 1lU F −∈  

and every auxiliary variable ,kX  the following algorithm is 

executed. Let UA  be the set of atoms contained in the 

current stratum ,U  so that UU A= ∪  holds true, and let 

( )m A  be a function returning the index assigned to any 

atom 0( ( )A m A m=  if and only if 
0
),mA A=  then we can 

express the set of values taken on by kX  for units contained 

in any atom of UA  as follows: 

( ){ }k U m A kQ q A A q a ,= ∈ : ∃ ∈ : = .ℝ  

If kX  is an ordered variate, for every q  in kQ  other than 

max( )kQ  the stratum U  is partitioned into sets 1 1qU U ,=  

and 2 2qU U ,=  as follows: 

1 ( ){ }q U m A kU A A a q, ,= ∈ : ≤ ,∪  

and 2qU ,  is the relative complement of 1qU ,  in ,U  i.e., the 

set of all i U∈  which are not in 1:qU ,  

2 1q qU U \ U, ,= .  

In our example, for a stratum U  defined as 1 2 8A A A∪ ∪  

we have 1 2 8{ },UA A A A= , , 1 {1 3}Q = ,  and 2 {1 2}Q = ,  

(see Table 1), so that our algorithm would try to split U  in 

1 1 2U A A= ∪  and 2 8U A=  using 1,X  and in 1 1U A=  

and 2 2 8U A A= ∪  using 2.X  If, on the contrary, kX  is 

unordered, U  is instead partitioned in sets 1U  and 2U  for 

every proper subset 1U  of ,U  with 2 1.U U \ U=  

We thus have a corresponding candidate stratification, 

namely 

1 1 2( { }) { } { }lF \ U U U−= ∪ ∪ ,C  

which includes all the strata in 1lF −  other than ,U  and, in 

addition, 1U  and 2.U  For every stratum C  in the collection 

,C  the total estimates of ,gY 1 ,g … G= , ,  

( )C g m A gA A
Y Y, ,∈

= ,∑
C

 

and their corresponding variances 

(

)

2 1 2

( )

1 1 2

( )

( 1) ( 1)

( ) ,

C g C A m A gA A

A A m A g C C gA A

S N N S

N N Y N Y

−
, ,∈

− −
, ,∈

= − −

+ −

∑

∑

C

C

 

are computed, and the sample allocation nC  is thus obtained 

applying the Bethel’s rule. If ,b ln n ,<C  then the split 

1 2( )U U,  becomes the current best one, the best 

stratification candidate ∗C  becomes C  and b ln ,  is updated 

to .nC  In this way, the divisive procedure which achieves 

the best result, i.e., the smallest sample size, is selected to 

generate the next optimal strata: 

lF
∗= .C  

In the framework of our example, for precision levels 

1 2ε = ε = 0.1, let us describe the optimal split at level 
1,l =  i.e., that one splitting the entire population in two 

strata. Using the data described in Table 1, the algorithm 

indicates that the best split of U P=  is based on variable 

2,X  and is obtained by setting  

1 ( )

1 2 4 5 7 8

{ 2}P m A kU A A a

A A A A A A

,= ∈ : ≤

= ∪ ∪ ∪ ∪ ∪ ,

∪
 

and correspondingly 2 1 3 6 9.U P \ U A A A= = ∪ ∪  Such 

optimal division is represented in Figure 1, where, for every 

stratum, its size, its definition in terms of included atoms, 

the current allocation, and the estimation statistics are 

thoroughly reported.  

Issues concerning the optimal number of strata are taken 

into account by defining the stopping criteria of the tree 

generating procedure. We decide to stop the algorithm if the 

relative difference between the optimal sample size at the 

current level and the optimal one at the previous level is 

smaller than a given parameter 0:δ >  

1 1( )b l b l b ln n n, − , , −δ > − / .  (1) 

Since the Bethel’s algorithm converges to a vector whose 

range is ( ) 1
,0

l +, +∞  its entries must be rounded to the 

corresponding nearest integers towards infinity; as a 

consequence, especially in presence of many small strata, a 

given allocation is likely to yield a sample size greater than 

the previous one. Also, in this case, we decided to stop our 

procedure. To avoid too small and henceforth statistically 

unstable strata, additional rules can be set to avoid further 

disaggregations of current strata if the corresponding 

substrata have cardinalities smaller than a predefined 

minimum stratum size. Complexities in survey management 

can also be easily mitigated by imposing a maximum 

number of strata.  
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Figure 1 The first optimal split for the example data 

 

 

This approach, performing an exhaustive search in each 

single split, guarantees that the corresponding stratification 

and allocation are optimal, but only conditionally to the 

splits previously executed. We know that monotonicity of 

solutions and conditional optimality of each sub-tree 

obtained by splitting recursively each node are necessary 

but not sufficient conditions for a binary tree to be optimal. 

In order to guarantee the overall optimality, to these 

conditions we should add the requirement that an optimal 

stratification in, say, H  strata, can only be obtained by 

partitioning one of the nodes of the optimal stratification in 

1H −  strata. In other words, we should assume that an 

optimal partition in H  strata is a subspace of the optimal 

partition in 1H −  strata, which implies that partitioning a 

given stratum will not modify the objective function - i.e., 

the allocation - in the remaining 1H −  strata. However, 

this assumption is rarely true in practical survey 

applications, since splitting a stratum usually induces a 

modification of the optimal allocations in all the remaining 

unsplit strata.  

The proposed algorithm, inspired by the sequential and 

recursive nature of binary trees, can be considered as an 

heuristic approach to the problem of multivariate strati-

fication, which enables us to detect good, nearly-optimal, 

strata at the cost of a reasonable computational burden. As a 

result, this technique is effective in partitioning populations 

making use of large sets of both continuous and qualitative 

auxiliary stratifying variables. In addition, the simple 

structure of binary trees implies a great flexibility in the 

introduction of any number of additional constraints, such as 

lower limits on the number of units in each stratum.  

 
3. Forming strata for the Italian  

        Farm Structure Survey 
 

For the requirements of European Community 

agricultural policies, the Farm Structure Survey (FSS) is 

executed, every two years, as a census update (Council 

Regulation (EEC) No 70/66), collecting data on techno-

economic variables characterizing EU farms. It represents 

the primary source of information for the EUROFARM 

project (Council Regulation (EEC) No 571/88), a set of data 

banks to be used for processing Community surveys on the 

structure of agricultural holdings. Member States are 

responsible for taking all appropriate steps to carry out the 

FSS in their territories, and they are also free to select a 

sampling criterion, but the questionnaire and the precision 

required, at a national level, for the estimates of the study 

variables are fixed by Community regulations (see EC 

Regulations No 837/90 and No 959/93, and subsequent 

Commission Decisions 1998/377/EC and 2000/115/EC).  

To illustrate our stratification technique, we execute the 

algorithm described in Section 2 to design the italian FSS 

and identify a tree-based set of strata and allocations using 

multivariate information. All the algorithms have been 

implemented by one of the authors in MATLAB language; 

a Win32 console application has also been developed in 

C++ to enable software execution in batch mode.The design 

  

 

2X ≤ 2 2 2X<  Optimal split 
 

 Variate: 2X  

 Code: 2 

Stratum Id: 3 
 

  Atoms: 3, 6, 9 

  Size: 3,000 

  Allocation: 2,710 
 

  Variates: 1Y  2Y  

  Totals: 30 30 

  Variances: 11.99 7.99 

Stratum Id: 2 
 

  Atoms: 1, 2, 4, 5, 7, 8 

  Size: 6,000 

  Allocation: 6,000 
 

  Variates: 1Y  2Y  

  Totals: 60 60 

  Variances: 11.99 16.48 

Stratum Id: 1 
 

  Atoms: 1, …, 9 

  Size: 9,000 

  Allocation: 8,995 
 

  Variates: 1Y  2Y  

  Totals: 90 90 

  Variances: 11.99 13.65 
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exploits the frame of farms listed during the fifth 

Agricultural General Census held in Italy in the fall of 2000. 

ISTAT, the Italian national statistical institute, is responsible 

for updates of such frame based on integration of 

administrative records, but were not available at the moment 

of this writing. For the procedure to be initialised, we need a 

set of atoms into which the population of the italian 

agricultural holdings must be partitioned. This set of basic 

strata is obtained by aggregation of farms sharing the same 

classes of seven covariates. We select four variables related 

to land use and livestocks, namely utilised agricultural area 

(UAA), number of bovine animals (NBA), number of pigs 

(NP), and number of sheep and goats (NSG). To take into 

account the geographical characteristics of the holdings, we 

also added, as a stratification variable, the altitude of the 

farm (ALT). Finally, we collected information about 

holding administration and organization by means of two 

variables referred to as legal personality of the holder (LP), 

and type of tenure of the holding (TT).  

Ranges of the covariates concerning the farming 

structure are divided into four classes for number of bovine 

animals (NBA= 0, 1≤ NBA< 10, 10≤ NBA< 50, 50≤  
NBA), number of pigs (NP = 0, 1≤ NP< 500, 500≤  NP<  
1,000, 1,000≤ NP), and number of sheep and goats (NSG=  
0, 1≤ NSG< 250, 250≤ NSG< 500, 500≤  NSG), and into 
seven classes for utilised agricultural area (UAA= 0, 
0< UAA< 1, 1≤ UAA< 5, 5≤ UAA< 10, 10≤ UAA< 50, 
50≤ UAA< 100, UAA≥ 100 ha). The range of altitude 
values is divided into five classes: inland mountains, coastal 

mountains, inland hills, coastal hills, and flat lands. Classes 

for the legal personality of the holder are defined in order to 

discriminate among sole holders, legal persons (companies) 

and groups of physical persons (partnership) in a group 

holding, cooperative enterprises, associations of holders, 

public institutions, and, finally, legal personalities other than 

the previous ones (e.g., consortia), which will be referred to 

as the residual ones. Holdings are also stratified taking into 

account their type of tenure, by discerning among owner-

farmed (with further subclasses based on farm labour force 

categories: family labour, prevalent family labour, prevalent 

non-family labour), tenant-farmed, shared-farmed agri-

cultural areas, and modes of tenure other than the previous 

ones. Combining all possible classes from any of the 

selected covariates leads to 2,964 nonempty atoms, the 

starting point of the procedure.  

We put under study 12 land use variables, whose list is 

reported in Table 2. For every surveyed variable, totals and 

variances in each atom are computed elaborating the 

available Census data, enabling us to execute the Bethel’s 

algorithm at each step of our procedure. Additional 

parameters needed to identify our stopping criteria are set as 

follows. The maximum number of strata is defined as 300, 

and we decide to disallow strata having a size smaller than 

10. A tolerance about the relative difference between 

optimal sample sizes at subsequent levels is introduced 

setting 0δ =  in equation (1), so the algorithm is stopped if 

1b l b ln n, − ,<  for some level 0.l ≥     
Table 2 

Surveyed variables in the Italian farm structure survey and 

their precision levels 
 

 Required CV 

Surveyed variable Requested  

by FSS 

   Achieved by 

   Atomised  

stratification 

Stratification 

tree 

Cereals 1.00  0.98 0.98 

Vineyards 3.00  1.38 1.38 

Olive plants 3.00  1.11 1.11 

Fodder roots and brassicas 3.00  2.39 2.40 

Industrial plants 3.00  2.22 2.23 

Forage plants 3.00  1.37 1.39 

Vegetables 3.00  3.03 3.03 

Fallow land 3.00  2.69 2.78 

Number of Bovine Animals 1.00  0.99 1.00 

Number of Pigs 2.00  0.80 0.82 

Number of Sheep 2.00  1.99 2.01 

Number of Goats 2.00  1.92 1.98 
   

Convergence was achieved since the maximum number 

of strata was reached and no other stopping rule was 

activated for 300.l <  Figure 2 shows the optimal 

allocations b ln ,  plotted as a function of the number of strata 

,lr 1 300l …= , ,  on a logarithmic scale, i.e., against 

log ( ).b ln ,  It can be noted that the relative difference 

between subsequent allocations rapidly decreases, with the 

first ten splits being the more important with respect to such 

behaviour: in fact, by setting δ = 10% the procedure would 

reach convergence at step 7.l =  

Figure 3 displays a diagram of the stratification tree 

generated up to level 7. In order to optimize the global 

allocation, our splitting criterion recursively created smaller 

and smaller strata. The first split is on the legal personality 

of the holder, LP, and atoms have been included in the left 

daughter stratum if the class of variable LP they assume was 

sole holder, public institution, or a residual one. Such split is 

the optimal split at level 1, since it corresponds to a partition 

of the entire population, the only stratum available at level 

0, that best decreases the sample allocation. This mainly 

indicates that farms organized by sole holders behave 

differently from those managed by more complex legal 

persons, such as companies, partnerships, associations, or 

cooperative enterprises. The second split is on the number 

of bovine animals, NBA. It creates two new substrata of 

stratum 2 (see the bottom side of Figure 3), namely strata 4 

and 5, as follows: the new stratum 4 is defined as the union 

of such atoms in stratum 2 for which condition NBA 10>  
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holds true, while stratum 5 is the relative complement of 

stratum 4 in stratum 2. In this way, the algorithm detects the 

best decrement of the overall sample size (passing from 

1,570,313 to 689,404 sampled units, see the right side of 

Figure 3) by recognizing that farms characterized by 

medium or large bovine livestocks need to be treated 

separately for sole held farms. The third split is instead on 

the utilized agricultural area, UUA. Here, stratum 4 is 

partitioned between atoms for which variable UUA is less 

than 100 ha (stratum 6) and remaining ones (stratum 7). 

Both these new strata are also divided, in successive steps, 

namely steps 4 to 7 (see the left side of Figure 3), on 

variables NP and NSG: more thoroughly, the procedure 

suggests to distinguish farms having no sheep or goat 

livestocks (NSG 0),=  or characterized by large livestocks 

of pigs (NP 500).≥  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Step by Step Sample Sizes. The optimal 

allocations 
b l
n ,,,,  are shown as a function of the 

number of strata 
l
r  exploited by the tree-

based sampling design at steps 0 299.l …= , ,= , ,= , ,= , ,  

A logarithmic scale is applied to the 
horizontal axis, so that 

b l
n ,,,,  is plotted against 

log( ).
l
r  As the number of strata increases, 

the tree-based stratification design attains its 
goals using a rapidly decreasing global 
sample size, since the procedure greatly 

improves the sampling efficiency in its first 
ten steps of execution 

 

To evaluate the efficiency of the tree-based sampling 

design, we calculate the best allocation corresponding to the 

atomised stratification, which determined a sample of 

89,522 units. By inspecting the stratification tree, it can be 

noted that a very similar overall allocation corresponds to 

the best stratification obtained at level 102:l =  in fact, for 

such partition of 103 strata the sample size is equal to 

89,509. This means that, for the same sample size, our 

algorithm achieves the precision requested for the survey by 

exploiting a number of strata, 103, which is a very small 

fraction of 2,964, the number of available atoms, henceforth 

enabling an easier organization of the survey. Another 

noticeable advantage of our procedure consists in avoiding 

unstable strata: it is worth noting that 1,618 of the 2,964 

atoms have a size equal to or less than 5, while the 

minimum size of any of the optimal strata at level 102 is 16, 

so that, as a consequence, there is no need to introduce any 

strata collapsing procedure. Further comparisons can be 

obtained contrasting the levels of precision achieved 

implementing, respectively, the atomised stratification and 

the stratification tree at step 102. Such levels, as reported in 

Table 2, can be considered very similar for the two designs. 

In fact, we observed that, for the atomised stratification, the 

Bethel’s allocation was actively constrained on the precision 

regarding three surveyed variates, namely Cereals, 

Vegetables and Number of Sheep. With respect to the strata 

corresponding to level 102 of the tree, the previous 

constraints also happened to be active, even if another 

constraint, that on variable Number of Goats, also resulted 

tight for the optimization, with achieved precision levels 

increased from 1.92% to 1.98%. Such findings suggest that, 

with respect to the atomised partition, the tree can be used to 

detect a more compact stratification of the population, still 

preserving the achieved precision levels and the overall 

sample size.  

 
4. Concluding remarks 

 
The tree-based strategy for multipurpose surveys 

examined in this article is planned to jointly define a rule to 

partition the population and to allocate sampling units in 

strata formed exploiting multivariate information, 

quantitative or qualitative. A hierarchical divisive algorithm 

selects finer partitions by minimizing, at each step, the 

sample allocation needed to achieve the required precision 

levels. In this way, large numbers of constraints can be 

satisfied without drastically increasing the number of strata. 

In addition, variables selected for stratification are not 

discarded merely on the basis of practical considerations, 

nor the number of their class intervals is diminished. 

Furthermore, the algorithm avoids creating empty or almost 

empty strata, thus excluding the need for ex post strata 

aggregations aimed at a better evaluation of in stratum 

estimation variances.  

Notwithstanding, some points of criticism can be raised 

about our proposal. Theoretically, our procedure cannot be 

considered as a multiresponse generalization of the well 

known classification regression tree method, where the aim 

is that of exploiting the relationships between the covariates 

and a unique outcome variable. In fact, even if we deal with 
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multipurpose surveys, our approach consists in partitioning 

the available information so as to optimise only one 

variable, namely the sampling allocation in strata. 

Furthermore, the sampling strategy obtained through our 

methodology does not necessarily represent a global 

optimum: in fact, the procedure constitutes a forward strata 

selection algorithm, and, as a consequence, the search for 

optimality at a given step is conditioned on the stratification 

currently in use, i.e., that one based upon the splits 

previously executed: there is no guarantee that the 

stratification selected by the procedure at a certain step l  

will be the optimal one, even solely among all the possible 

partitions in 1l +  subsets of the population. In some 

situations, the use of other methods such as dynamic 

programming can be used for conducting an efficient 

exhaustive search for the globally optimal stratification (see 

Bühler and Deutler 1975, and Lavallée 1988).  

The procedure was applied to redesign the Italian Farm 

Structure Survey. The results indicate gains in efficiency 

held using our strategy: for a given sample size, our 

procedure achieves the requested precision by exploiting a 

number of strata which is usually a very small fraction of 

the number of strata available when combining all possible 

classes from any of the covariates. In addition, allowing for 

more strata, the algorithm detects further sampling strategies 

for which the constraints are satisfied with sample sizes 

smaller than the one corresponding to the atomised strati-

fication. The final sampling choice obviously depends upon 

the survey overall cost function. For this purpose, strati-

fication trees can be applied to take into consideration the 

fact that an increasing number of strata usually implies 

larger costs due to survey organization issues, but also 

corresponds to smaller sample sizes, which lead to 

decreasing unitary costs. Forming strata by trees can thus be 

useful to manage the survey in an easier way, as a tool to 

assist the selection of the stratified sampling design which is 

suited to collect information about the multivariate 

phenomenon under study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 3 Stratification Tree Diagram. The bottom side of the horizontal axis is labeled with the stratum identifier, a 

number that uniquely represents the corresponding subpopulation inside the stratification procedure. Sizes of 
such strata are reported on the top side. The left side of the vertical axis displays the sequence of steps from 0 to 
7, while the right side accounts for the global optimal allocations corresponding to such steps. Double bordered 

blocks represent split strata. Daughter strata are linked to their parents through elbow lines, and, when not 
further split in subsequent steps, they are shown as single bordered blocks. For left daughter strata, the covariate 
on which the split happened and the condition it satisfied when defining the left substratum are reported above 

the corresponding elbow line. The number inside a given block is the sample allocation the procedure assigns, to 
the corresponding stratum, during the step at which the block is positioned. Since a stratum can remain unsplit in 
steps successive to that in which it is created, but its sample allocation can vary from one step to the other, dashed 

blocks are used to report modifications of stratum sample sizes  
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