
Article

Component of Statistics Canada
Catalogue no. 12-001-X Business Survey Methods Division

Primary sampling unit (PSU) 
masking and variance 
estimation in complex surveys 
by Inho Park

December 2008



Survey Methodology, December 2008  183 
Vol. 34, No. 2, pp. 183-194 
Statistics Canada, Catalogue No. 12-001-X 

 

  
Inho Park 1 

Abstract 

The analysis of stratified multistage sample data requires the use of design information such as stratum and primary 
sampling unit (PSU) identifiers, or associated replicate weights, in variance estimation. In some public release data files, 
such design information is masked as an effort to avoid their disclosure risk and yet to allow the user to obtain valid variance 
estimation. For example, in area surveys with a limited number of PSUs, the original PSUs are split or/and recombined to 
construct pseudo-PSUs with swapped second or subsequent stage sampling units. Such PSU masking methods, however, 
obviously distort the clustering structure of the sample design, yielding biased variance estimates possibly with certain 
systematic patterns between two variance estimates from the unmasked and masked PSU identifiers. Some of the previous 
work observed patterns in the ratio of the masked and unmasked variance estimates when plotted against the unmasked 
design effect. This paper investigates the effect of PSU masking on variance estimates under cluster sampling regarding 
various aspects including the clustering structure and the degree of masking. Also, we seek a PSU masking strategy through 
swapping of subsequent stage sampling units that helps reduce the resulting biases of the variance estimates. For illustration, 
we used data from the National Health Interview Survey (NHIS) with some artificial modification. The proposed strategy 
performs very well in reducing the biases of variance estimates. Both theory and empirical results indicate that the effect of 
PSU masking on variance estimates is modest with minimal swapping of subsequent stage sampling units. The proposed 
masking strategy has been applied to the 2003-2004 National Health and Nutrition Examination Survey (NHANES) data 
release. 

                                                           
1. Inho Park, Statistician, Economic Statistics Department, The Bank of Korea, Namdaemun-Ro 106, Jung-Gu, Seoul 100-794, Korea.                                 

E-mail: ipark@bok.or.kr. 

  

Key Words: Disclosure control; Stratified multistage sampling; Subsequent stage sampling unit swapping; Design 

effect; Intracluster correlation coefficient (ICC); Sample mean. 
 
 

 

1. Introduction 
 

The analysis of stratified multistage sample data requires 

the use of design information such as stratum and primary 

sampling unit (PSU) identifiers, or associated replicate 

weights, in variance estimation. In large surveys, PSUs 

often consist of single or multiple counties. Some external 

sources that are publicly available such as Census data can 

provide extremely detailed PSU-level demographics. Even 

with their name suppressed, inclusion of PSU identifiers in 

public release data files alone can pose an identification risk 

by allowing their linkage to external sources. Thus, PSU 

identifiers are often masked as an effort (1) to reduce the 

risk of data disclosure and (2) yet to allow the user to obtain 

valid variance estimation. Mayda, Mohl and Tambay (1996) 

addressed the potential risk of data disclosure that is 

associated with the inclusion of the original PSU identifiers 

in the public release data files and considered the stratum-

collapsing method by Rust (1986) for balancing out the 

aforementioned two needs. Due to a potential inconsistency 

of the variance estimation under the stratum-collapsing 

method indicated by Valliant (1996), Yung (1997) 

suggested constructing a set of average bootstrap replicate 

weights. Lu (2004) demonstrated that supplying replicate 

weights and giving the stratum and PSU identifiers are 

practically equivalent in the viewpoint of confidentiality, 

since one can be easily obtained from the others. Shah 

(2001) discussed ways to create pseudo-strata and pseudo-

PSUs given a set of balanced repeated replication weights. 

Eltinge (1999) proposed a method similar to the stratum-

collapsing methods. Lu, Brick and Sitter (2006) also 

established conditions for the consistency of the variance 

estimator under the stratum-collapsing method and also 

proposed stratum-grouping algorithms yielding efficient and 

consistent stratum-collapsed variance estimators.  

With a limited number of PSUs in the sample, the 

stratum-collapsing method is not appealing due to 

insufficient degrees of freedom for variance estimation. 

Dohrmann, Curtin, Mohadjer, Montaquila and Le (2002), 

Dohrmann, Lu, Park, Sitter and Curtin (2005) dealt with 

such situations and considered two PSU masking methods. 

The first method splits each PSU into two pseudo-PSUs 

(sets of ultimate sampling units within the PSUs), arbitrarily 

doubling degrees of freedom for variance estimation. The 

second method constructs the pseudo-PSUs by swapping 

second-stage sampling units (SSUs) between the original 

PSUs, retaining the original degrees of freedom for variance 

estimation. That is, the PSU and stratum assignments of all 

ultimate sampling units in one SSU are switched to those in 

the matched SSU. This method can be generalized so that 

the original PSUs are divided into one or more splits and are 

recombined to construct pseudo-PSUs with swapped PSU 

splits. This approach is different from data swapping 

(Dalenius and Reiss 1982), which is often used for 
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protecting confidentiality in a way that values of sensitive 

survey variables are switched among individual records. 

Because of the resulting distortion in the clustering structure 

of the sample design, the two PSU masking methods can 

result in biased variance estimates possibly with certain 

systematic patterns between two variance estimates from the 

unmasked and masked PSU identifiers. Dohrmann et al. 

(2005) observed decreasing funnel-shape curvature patterns 

in the ratio of the masked and unmasked variance estimates 

of a sample mean when plotted against the design effect. 

They explained such patterns based on an approximate 

relationship of the variance estimate that is monotone in the 

intracluster correlation coefficient (ICC) of Kish’s design 

effect formula.  

This paper focuses on the issues related to the second 

PSU masking method that swaps subsequent stage sampling 

units among the original PSUs and discusses its effect on 

variance estimates. Section 2 deals with the effect of PSU 

masking on the variance regarding aspects of the clustering 

structure such as ICC and means and sizes of PSU-splits for 

swapping under a single-stage cluster sample design. 

Section 3 investigates how the degree of swapping in PSU 

masking is related to the bias in the variance utilizing a 

parametric model for cluster sampling. Section 4 considers a 

PSU masking strategy through SSU swapping that helps 

reduce the PSU masking effects on variance estimates and 

thus the resulting biases under complex surveys. Section 5 

briefly reviews the recent work by Dohrmann et al. (2002, 

2005) and also presents application results of the proposed 

masking strategy to data from the National Health Interview 

Survey (NHIS) with some artificial modification. Finally, 

Section 6 includes some discussions.  

 
2. Effect of distortion in clustering structure on 

        variance of sample mean 
 

Cluster sampling, often used in surveys for its cost and 

logistic reasons, is a major source of the increase in the 

variance of an estimator compared with a simple random 

sample due to the similarity of sampling units within the 

clusters. Standard sampling texts such as Särndal, Swensson 

and Wretman (1992, Section 8.7) provide formulae for the 

variance of a sample mean in terms of the ICC, cluster sizes 

and means of a survey variable .y  It indicates that 

clustering in the sample design should reveal its impact on 

the variance through them. In this section, we examine how 

the distortion in the clustering structure of the sample design 

affects the variance of a sample mean when the PSUs are 

masked through swapping their splits between the two 

PSUs. For our discussion in this section, we consider a 

single-stage probability-proportional-to-size (PPS) sampling 

of PSUs. This sampling scheme is rather simple but still 

complex enough to reveal the effect of PSU masking on the 

variance in relation to these three components.  
 
2.1 Variance under single-stage PPS cluster 

sampling   
Suppose that a population U  of M  units is grouped into 

N  PSUs of iM  units each. A random sample of n  PSUs is 

drawn with probabilities ip 1( 1)N
i ip=∑ =  and every unit in a 

sampled PSU is included in the sample. For simplicity, we 

assume the selection of PSUs is with replacement. The 

weighted sample mean 1
1 11 1

ˆ ( )i iM Mn n
i ij jij ij ijY w w y

−
= == =∑ ∑ ∑ ∑=  

is an estimator of the population mean 1
1 1

iMN
i j ijY M y−
= =∑ ∑=  

of survey variable ,y  where  1( )ij iw np −=   and   ijy  denote 

the sampling weight and the value of y  for the thj  unit of 

PSU ,i  respectively. Let 1 ,n
i im M=∑= 2 1( 1)yS M −= −  

2
1 1( ) ,iMN

i j ijy Y= =∑ ∑ − 1
1
iM

i ji ijM yY
−

=∑=  denote the sample 

size, the population variance and the PSU means of ,y  

respectively. Assuming N  is large so that ( 1) 1,N N/ − ≐  

its approximate variance can be written as  

1 2

1 1 1

1

1 1 2 2

1

ˆ( ) [1 ( 1) ]
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where S  denotes the sample index set, 2 21yU yw yS Sρ = − /  is 

the ICC and 2 1 2
1 1( ) ( )iMN

i ijyw ijS M N y Y
−

= =∑ ∑= − −  is the 

within-PSU mean square deviation. The derivation of (1) is 

given in the Appendix.  

For a common special case of ,i ip M∝  that is, PPS 

sampling, (1) is simplified as  

1 2

1 2

1

ˆ( ) [1 ( 1) ]

( ) ( )

y yU

N

i i
i

V Y S m S M

mN M Y Y

−

−

=

| + − ρ

−∑

≐

≐  (2)
 

and the ICC is expressed as  

1 2

1

1 2

ˆ( )
( 1)

y

yU

y

V Y S m S
M

m S

−
−

−

 | −
 ρ − .
  

≐  (3) 

The second approximation in (2) indicates that PSUs with 

larger 2( )i iM Y Y−  contribute more to the variance. The 

ICC in (3) reveals the precision loss (in a rough sense) of 

per-cluster relative increase in the variance of 1 2 ,ym S−  the 

variance of the simple sample mean 1
( )ij S ijy m y−

∈∑=  that 

could have been obtained from the same sized with-

replacement simple random samples.  

A complex survey often involves the above single-stage 

PPS sampling or other (additional) complex design (e.g., 

stratification, multi-stage sampling and unequal selection 

probabilities) or estimation features (e.g., nonresponse 
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adjustments and calibration adjustments). For example, if 

ip  had been disproportional to size or further subsampling 

had been involved to induce unequal weights, then the 

corresponding complex feature might have come into the 

picture in variance estimation. The associated impact on 

variance estimation of complex samples will be discussed in 

detail in Section 4.  
 
2.2 Means and sizes of PSU-splits   

To mask the PSUs, consider that the first two PSUs in 

the sample are each split into two sets of units, 1U =  

11 12U U∪  and 2 21 22U U U= ∪  say, and the two pseudo-

PSUs, 1 11 22U U U∗ = ∪  and 2 21 12U U U∗ = ∪  are 

constructed by swapping 12U  and 22U  between the two 

PSUs. Let S  and S∗  denote the unmasked and masked 

sample index sets, respectively. Let ˆ( )V Y S∗|  denote the 

variance of Ŷ  associated with the pseudo-PSUs (also 

assuming the other non-sampled PSUs in U  remain the 

same). Also, let *,iY ,iY
∗

iM ∗  denote the mean and total of 

y  and the size of the thi  pseudo-PSU, respectively. 

Assuming 0Y =  without loss of generality, the difference 

between the masked and unmasked variances is written 

from (2) as  

( )( )

1 *2 2

1 2

1 * *

1 2

ˆ ˆ( ) ( )

( ) ( )

( )

i i i i
i

i i i i i i i i

i

V Y S V Y S

mN M Y M Y

mN M Y M Y M Y M Y

∗

− ∗

= ,

− ∗ ∗

= ,

| − |

− ,

+ − .

∑

∑

≐

≐ (4)

 

Expression (4) shows that the difference in variance due to 

PSU masking depends upon the changes in PSU quantities 

i iM Y ’s. If ilY  and ilM  denote the total and size of PSU 

split ,ilU  respectively, for 1 2,i l, = ,  then 1i iY Y= +  

2,iY 1 2,i i iY Y Y∗
′= + 1 2i i iM M M= +  and 1 2i i iM M M∗

′= +  for 

1 2.i i′≠ = ,  It is clear from (4) that the variance will not 

change under PSU masking if the following condition 

holds: 

* 1 2 1 2

1 2 1 2

or i i i i
i i i i

i i i i

Y Y Y Y
M Y M Y

M M M M

∗ ′

′

+ +
= = .

+ +
 (5) 

This result is a bit surprising since by naive intuition one 

may think that PSU-splits for swapping with *
i iY Y=  will 

preserve the variance. To better understand (5), consider the 

following three cases. If 12 22,M M=  then (5) implies 

12 22Y Y=  or 12 22,Y Y=  where il il ilY Y M= /  denotes the 

mean of .ilU  If 12 22,Y Y=  then (5) implies 12 22M M=  or 

12 22 .Y Y=  If 12 22,Y Y=  then (5) can be written as 

1 1 2 2 2( 1) ( ) 0i i i i i i i i iM Y M M Y M M M M∗ ∗
′/ − + / − =  for 

1, 2,i =  holding when 12 22.M M=  It is clearly 

demonstrated from all of the three cases that the variance 

will not change if the PSU-splits for swapping are formed 

equal in both size and mean.  
 
2.3 Change in ICC  

The effect of the clustering structure distortion on 

variance can also be investigated through the ratio of the 

masked and unmasked variances. Let yU
∗ρ  denote the 

masked ICC, that is, the ICC defined with the masked PSU 

identifiers. From (3), it is clear that the difference between 

the masked and unmasked ICCs is proportional to the 

difference between the corresponding variances, that is,  

1 2 1 ˆ ˆ[ ( 1) ] [ ( ) ( )]yU yU ym M S V Y S V Y S
∗ − − ∗ρ − ρ − | − | .≐  

The second approximation in (2) indicates that the 

change in ICC depends upon how the PSU-splits are formed 

for swapping, that is, the change in 2( ) .i iM Y Y−  From 

(2), the ratio of the masked and unmasked variances is given 

as  
1

1

( 1)ˆ( , )
( 1)

yU

yU

M
RV Y S S

M

∗ −
∗

−

ρ + −
| .

ρ + −
≐  (6) 

See, also, Dohrmann et al. (2005, equation 8). Under the 

relationship of yU y yUc∗ρ = ρ  for any given 0,yc >  (6) is 

monotone in .yUρ  Also, the ratio is very unstable when 

yUρ  or yU
∗ρ  is near 1( 1) ,M −− −  the lower bound of the 

ICC, because both numerator and denominator with their 

ICCs being near the lower bound are all close to zero. It 

indicates that any variable of such kind will be greatly 

influenced by PSU masking.  

In general, surveys collect more than one variable and 

thus PSU masking based on one variable may not preserve 

well the ICC and thus not the variance of other variables. To 

better understand such an aspect, consider situations where 

the PSU masking results in both fixed and random distortion 

of the ICC written as yU y yUc e∗ρ = ρ +  for 0 02 0 2,y− . <ρ < .  

where 0 7 1 0 1 3,yc = . , . , . 2(0 0 05 )e N , .∼  and m M= =  
2 100.yS =  The constant coefficient yc  and the error term e  

in the model, respectively, allow deterministic and random 

perturbation in the ICC of the corresponding variable due to 

masking. Figure 1 displays the resulting ratio of the masked 

and unmasked standard errors (square-root of variances) 

against the ICC of the sample design. Three scatter plots in 

Figure 1 are all similar in their funnel shape with a wide 

variation for very small .yUρ  However, their generic 

patterns depend on the magnitude of .yc  For example, 

1yc <  produces a decreasing pattern, 1yc >  an increasing 

pattern, and 1yc =  a non-monotonic pattern, respectively. 

As will be discussed in Section 3.2, the case of 1yc >  may 

rarely occur.  

The above discussion may not be extended straight-

forwardly to other complex survey situations, mainly be-

cause surveys often involve complex sample design features 



186 Park: PSU masking and variance estimation in complex surveys 

 

 
Statistics Canada, Catalogue No. 12-001-X 

such as stratification, three or higher-stage selection and 

unequal probability sampling. Under such circumstances, 

the ICC may not be easily defined and the variance may not 

be approximated well in the form of (2) (see, e.g., Park 

(2004) and references cited therein). Nonetheless, the 

discussion in this section is still helpful to understand the 

effect of PSU masking on variance estimates in general.  

 
3. Effect of degree of PSU masking on variance 

        of sample mean 
 

The more the clustering structure is distorted, the larger 

the bias in variance estimation. To study such a relationship, 

we consider a parametric model used for two-stage sam-

pling. Suppose that two-stage sampling selects n  PSUs and 

m  units within each sampled PSU. Following Valliant, 

Dorfman and Royall (2000, page 248), we assume a 

sampled value ijy  for the thj  unit of PSU i  is generated 

from the following model:  
2

2

if

( ) Cov ( ) if

0 otherwise,

yi

ij yi ij i j yi yi

i i j j

E y & y y i i j j′ ′ξ ξ

 ′ ′σ = , = ,
 ′ ′ξ: = µ , = σ ρ = , ≠ ,



 

where 2
yi yiµ , σ  and yiρ  are the mean, variance and correla-

tion of units within PSU ,i  respectively. The variance of a 

sample mean 1
1 12

( ) n m
i j ijst

nm yy
−

= =∑ ∑=  is written as 

1 2

2
( ) ( ) [1 ( 1) ]yu yust

V S nm my
−

ξ | = σ + − ρ ,  (7) 

where 2 1 2 2 2
1 1 1( )n n n

i i iyu yi yu yi yi yin−
= = =∑ ∑ ∑σ = σ , ρ = σ ρ / σ  and S  

denotes the sample index set. Note that yuρ  can be inter-

preted as the (pooled or 2
yiσ −weighted) ICC under the 

model .ξ  

Let β  denote the relative size of PSU splits to be 
swapped between the PSUs 1i  and 2 .i  For simplicity, we as-

sume mβ  to be an integer value, which is the number of 

units in each split for swapping. Let S∗  denote the masked 

sample index set. The variance of 
2sty  with S∗  can be 

written as  

1 1 2 2

2 2 2

2 2
( ) ( ) ( 1) ( )yi yi yi yist st

V S V S ny y
∗ −

ξ ξ| = | + γ − σ ρ +σ ρ , (8) 

for 2 2(1 ) .γ = β + −β  The proof of (8) is given in the 

Appendix. Note that 1 1 0− < γ − <  for 0 1.< β <  The ratio 

of the masked and unmasked variances is written as  

1 1 2 2

2 2

2 2

( )
( ) 1 ( 1)

[1 ( 1) ]

yi yi yi yi

st

yu yu

RV S S my
m

∗
ξ

σ ρ + σ ρ
| , = + γ − .

σ + − ρ
 (9) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Ratios of the masked and unmasked standard errors against original intracluster correlation coefficient 
with varying the effect of PSU masking under a model 

∗ρ = ρ +ρ = ρ +ρ = ρ +ρ = ρ +yU y yUc e  with . 2(0, 0 05 )e N∼∼∼∼  for 
0 7, 1 0, 1 3= . . .= . . .= . . .= . . .yc  and 

2
100= = == = == = == = =ym M S  
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The variance will not change if swapping is done such that 

1 1 2 2

2 2 0,yi yi yi yiσ ρ + σ ρ =  that is, the correlations within the 

corresponding PSU being opposite in their direction. 

Otherwise, the change in variance will be at the rate of 

( 1) 0m γ − <  for 
1 1 2 2

2 2 0.yi yi yi yiσ ρ + σ ρ ≠  

In general, units tend to be more similar within a PSU 

than across PSUs with yiρ  being small and positive in many 

populations (e.g., Valliant et al. 2000, Section 8.2.3). Thus, 

it is more likely that 
1 1 2 2

2 2 0yi yi yi yiσ ρ +σ ρ >  unless 2 0yiσ ≐  for 

all 1 2i i i= ,  and the masked variance is prone to be smaller 

than the unmasked variance, that is, 
2

( ) 1.
st

RV S Sy
∗

ξ | , <  

Figure 2 depicts the change in standard error against the 

unmasked (or baseline) ICC yuρ  with varying the propor-

tion of units to be swapped between the two PSUs. Figure 2 

shows that the more units that are swapped, the more the 

variance is changed, indicating that minimal swapping (i.e., 

PSU masking) should be done in order to not induce serious 

bias in the variance. Also, Figure 2 exhibits the L-shape 

decreasing pattern of the standard error ratio in the ICC, that 

is, indicating overestimation for negative ICCs but under-

estimation for positive ICCs. Therefore, under PSU 

masking, we can expect patterns of either kind 0 7yc = .  

(decreasing but random) or 1 0yc = .  (pure random) in 

Figure 1, with the latter being the best results attainable with 

minimal masking. In Section 4, we propose a PSU masking 

strategy through SSU swapping that helps produce a pattern 

of the second kind in the resulting variance ratios. In Section 

5, we apply the proposed strategy to artificial survey data 

with varying proportions of swapping.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Ratios of the masked and unmasked stan-

dard errors 2( , )
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4. PSU masking strategy for limiting biases  

        in variance estimation 
 

Many large-scale surveys involve several stages of 

sampling with unequal selection probabilities. Under such 

circumstances, the second stage or subsequent stage 

sampling units can be a natural choice for swapping to 

create pseudo-PSUs for operational reasons. For example, in 

the recent data releases of the National Health and Nutrition 

Examination Survey (NHANES) (Dohrmann et al. 2005) 

are included the pseudo-PSU identifiers constructed by 

swapping SSUs between the original PSUs. In this section, 

we consider SSU swapping for the purpose of PSU masking 

under stratified multi-stage sampling and their effect on 

variance estimates. We suggest a SSU swapping strategy 

based on the contribution of SSUs to variance estimates.  
 
4.1 SSUs in variance estimation under stratified 

multistage sampling   
Suppose that a finite population U  of M  units is 

partitioned into N  PSUs and similar PSUs in a number of 

characteristics are grouped to form a total of H  strata. 

Suppose also that each stratum consists of hN  PSUs and 

each PSU contains hiN  SSUs with hijN  ultimate sampling 

units, where 1
H
h hN N=∑=  and 1 1 1 .h hiN NH

h i j hijM N= = =∑ ∑ ∑=  

Assume that the first stage sampling selects 2hn =  PSUs 

within each stratum independently across strata and the 

second stage and subsequent stage sampling select, in turn, 

hin  SSUs within each sampled PSU ( )hi  and hijn  ultimate 

units within each sampled SSU ( ),hij  where 1 ,h … H= , ,  

1 hi … n= , ,  and 1 .hij … n= , ,  Associated with the 

sampled ultimate unit ( )hijk S∈  is the observed value hijky  

of survey variable y  and the sample weight ,hijkw  where 

1 hijk … n= , ,  and S  denotes the sample index set. The 

population total 1 1 1 1
hijh hi

NN NH
h i j k hijkY y= = = =∑ ∑ ∑ ∑=  and size M  are 

estimated by ( )
ˆ

hijk S hijk hijkY w y∈∑=  and ( )
ˆ ,hijk S hijkM w∈∑=  

respectively. Also, the population mean Y Y M= /  is 

estimated by ˆ ˆ ˆY Y M= /  and its Taylor series variance 

estimator (e.g., Shao and Tu 1995) is given by  

2

1 2

1

ˆ( )
2

H
h h

h

z z
v Y S

=

− 
| = , 

 
∑  (10) 

where 1 1( ) 2hijhi
nn

j khi hi hijk hijkz z y w z= =∑ ∑= =  are the estimated 

stratum totals of 1 ˆˆ( ) ( )hijk hijk hijkz z y M y Y
−= = −  for 

PSU ( ).hi  

Writing hiz  in (10) in the units of SSUs, we can see 

SSUs’ contribution to the variance estimate, thus helping 

find better SSU swapping strategies to limit biases in the 

variance estimates. If hijw  and k hijw |  denote the SSU 

sampling weights and the conditional ultimate sampling unit 

weights, respectively, then .hijk hij k hijw w w |= ×  Let ˆ
hijN =  

1
hijn

k k hijw= |∑  and 1
1

ˆ ˆ hijn

khij hij k hij hijkY N w y
−

= |∑=  denote the estimated 
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size and sample mean of SSU ( ),hij  respectively. The 

quantities hiz  in (10) can now be written as  

1

2
hin

hi hij hij
j

z w z
=

= ,∑  (11) 

where  

1

1

ˆ ˆˆ ˆ ( )
hijn

hij k hij hijk hij hij

k

z w z M N Y Y
−

|
=

= = − .∑  

It is clear from (10) and (11) that the contribution of the 

sampled SSUs to the variance estimate is through three 

components ˆˆ{ }hij hij hijw N Y, ,  of SSU ( ).hij  In Section 4.2, 

we will examine closely the effect of PSU masking on 

variance estimates through SSU swapping.  
 
4.2 Effect of SSU swapping on variance estimates   

We now assume that two SSUs ( )a a ah i j  and ( )b b bh i j  

are to be swapped between two PSUs ( ) ( ).a a b bh i h i≠  

Then, the masked variance estimate can be written from 

(10) as  

2 2

1 2 1 2

{ }

ˆ( )

ˆ( )
2 2

a b

h h h h

h h h

v Y S

z z z z
v Y S

∗

∗ ∗

∈ ,

| =

  − −  | + − ,   
    

∑
 
(12)

 

where hiz∗  denotes the quantity hiz  in (11) with the sample 

index set S∗  altered due to swapping. Let ai′  and bi  denote 

the other PSUs in strata ah  and ,bh  respectively, and define 

( ) 2 2 .l jhi j hi hij hij hil hilz z w z w z≠∑= − =  Then, (12) can be 

written as  

0 0
ˆ ˆ( ) ( ) ( ) ( )v Y S v Y S e y g y∗| = | + ,  (13) 

where 0 ( ) 2( )
a a a a a a b b b b b bh i j h i j h i j h i je y w z w z= −  is the 

difference in the quantity 1 ˆ ˆˆ2 2 ( )hij hij hij hijw z w M Y Y
−= −  

of the two SSUs to be swapped and  

( ) ( )

0 1
( ) ( )

[ ] if
( )

2 [( ) ( )] if

a a a b b b

a a a a a b b b b b

h i j h i j a b

h i h i j h i h i j a b

z z h h
g y

z z z z h h−
′ ′

− = ,
= 

− − − ≠ ,
 

is a function of 2 hij hijw z  of the SSUs to be retained in the 

original PSUs. Note that, for 0a bh h r= ,  can also be 

expressed 1
0 ( ) ( ) ( ) ( )2 [( ) ( )]

b b b a a a a a a b b bh i j h i j h i j h i jg z z z z−= − − − .  
It shows that the effect of SSU swapping on the variance 

estimate will be negligible if the two SSUs for swapping are 

paired in such a way that the product of 0 ( )e y  and 0 ( )g y  is 

close to zero. In other words, the change in the variance 

estimate under SSU swapping can be controlled when a 

segment pair is formed taking into account all three compo-

nents ˆˆ{ }hij hij hijw N Y, ,  so as to minimize 0 0( ) ( )e y g y×  as 

similar to the case under single-stage PPS cluster sampling 

in Section 2.2. 

In addition, by writing 

1 2 0

0 0 1
1 2 1 2 0

( ) if
( )

2 ( ) ( ) if

a a

a a b b

h h a b

h h h h a b

z z e h h
g g e

z z z z e h h−  
  

− − = ,
= = 

− − − − ≠ ,
 

(13) can be expressed as a quadratic function of 0 ( )e y  for 

given { : { , }, 1, 2}.hi a bz h h h i= =  For ,a bh h=  we can 

show that *ˆ ˆ( ) ( )v Y S v Y S| > |  only for 0e  in between zero 

and 1 2( ).
a bh hz z−  When   1 2 0,

a bh hz z− ≐  it may be more 

likely that *ˆ ˆ( ) ( ).v Y S v Y S| = |  Similar arguments can be 

made for .a bh h≠  
 
4.3 Sequential SSU swapping with multiple 

matching characteristics  
Suppose that there are a total of Jn  SSUs in the sample 

and only R  of them are chosen to form pairs for swapping, 

where 1 1
hnH

h iJ hin n= =∑ ∑=  and 1 .JR n≤ <  Assume that a 

fixed number of R  SSUs is chosen in accordance with a 

certain data risk-utility tradeoff consideration. See, for 

example, Gomatam, Karr and Sanil (2005) for some related 

discussion concerning data swapping. In addition, assume 

that their sequential order for the matching process is given 

as 1 2 Rj j … j, , ,  say. For example, at first, all possible pairs 

are formed for each of the R  SSUs and the best pair is 

picked based on a certain distance measure such as (12). 

The order of the R  SSUs for the (main) matching process is 

then determined according to the ascending order of the 

distances of the R  best pairs.  

Let 1rS −  denote the altered sample index set after the 
th( 1)r −  SSU pair has been formed and swapped, where 

1r … R= , ,  and 0 .S S≡  Let 1
( )
r
jS −  denote the sample index 

set with SSUs rj  and j  being swapped for 1.rS −  Then, the 

change in the variance estimate caused by swapping the thr  

SSU rj  and any other SSU that was not involved in the 

( 1)r −  previous match(es) can be written as  

1 1
( )

1 1

ˆ ˆ( ) ( ) ( )

( ) ( )

r r

r j

r r

y j v Y S v Y S

e y r g y r

− −

− −

δ , = | − |

= , , ,  (14)
 

where 1( )re y r− ,  and 1( )rg y r− ,  are defined similarly as in 

(13) but with 1rS −  and 1
( ) .
r
jS −  Clearly, the choice of the best 

match for the thr  SSU depends on the ( 1)r −  previous 

match(es) and thus the matching process should be viewed 

as a sequential process. Note that those SSUs that were 

matched and swapped in the previous match(es) should be 

excluded in the current search.  

In addition, more than one characteristic can be 

considered for matching, with the hope that they will be 

related to many other survey variables so as to minimize the 

bias in the associated variance estimate. Suppose that q  
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matching characteristics are chosen with care, say =x  

1 2( )qx x … x ′, , ,  (e.g., Dohrmann et al. 2005, for some 

related discussion). To measure the distance between SSUs 

rj  and ,j  any distance measure of the form  

1 1
( )

1

ˆ ˆ( ) [ ] [ ]
q

r r

r l l j l
l

D j c v X S v X S− −

=

| = | − |∑x  (15) 

or  

1
( )

1

ˆ ˆ( ) [ ] [ ]
q

r

r l l j l
l

j c v X S v X S−

=

∆ | = | − |∑x  (16) 

can be considered with any reasonable choice of positive 

coefficients .lc  For example, 1lc ≡  simply considers the 

absolute difference in the variance estimates of ˆ ,lX lc =  
1ˆ( )lv X S −|  the absolute difference in variance estimates 

relative to the original variance estimates, 1
l lc X −=  the 

absolute difference in relative variance estimates. The first 

distance measure (15) considers the change in the variance 

estimate due to swapping segments of the thr  pair. The 

second distance measure (16) takes into account the 

cumulative swapping effect of all the r  segment pairs.  

Matching constraints can be set, for example, to prohibit 

the pairing of SSUs from the same PSU and to apply a 

threshold of the proportion of SSUs from each PSU to be 

swapped (Lu 2004). Let 1{ }A RJ j … j= , ,  denote the index 

set of R  SSUs that are considered for forming swapping 

pairs and let BJ  denote all possible SSUs that can be 

matched satisfying a given set of matching constraints. For 

simplicity, consider that the pairing of SSUs is not allowed 

within ,AJ  that is, .A BJ J∩ =∅  If ( )rD j∗ | x  denotes the 

chosen distance measure for SSUs rj  and ,j  then a 

sequential SSU swapping algorithm for limiting the biases 

of variance estimates can be given as follows:   
Step 1. Set 1,r = r

A AJ J=  and ;r

B BJ J=   
Step 2. For each of the ( 1)R r− +  SSUs in ,rAJ  compute 

( )rD∗ ⋅ | x  for all SSUs in ;rBJ   
Step 3. Choose the best match with the smallest ( ),rD∗ ⋅ | x  

that is, find rj′  such that ( )r rD j∗ ′ | =x  

( );min r
Bj J rD j∗

∈ | x   
Step 4. Set 1,r r= +  and drop the chosen pair from the 

searching pool, that is, set 1 \ { }r r

A A rJ J j−=  and 

update r

BJ  accordingly, where 1 \{ };r r

B B rJ J j− ′⊆   
Step 5. If 1,r R= +  then stop; otherwise repeat Steps 2-4. 
 

This SSU matching (or swapping) approach basically 

searches for the pair at the thr  matching that is best in a 

sense of minimizing the change in variance estimates due to 

the corresponding SSU swapping. With a large number of 

SSUs, this method will lead to a scatter plot similar to that 

of 1 0yc = .  in Figure 1 (i.e., a random perturbation with a 

funnel-shape pattern).  

A choice of more sophisticated optimality criterion 

applied to { 1 }lc l … q: = , ,  may help improve the above 

method to reduce the magnitude of such random pertur-

bation in variance estimates. Also, if one uses multivariate 

techniques such as principal component analysis to develop 

some kind of scores (e.g., one or more principal component 

axes) from a larger number of continuous characteristics, the 

magnitude of such random perturbations in the variance 

estimates may be further reduced. In Section 5, we give 

examples regarding SSU swapping. 

 
5. Examples  

5.1 Previous work  
For a sample design with no stratification but a small 

number of PSUs, Dohrmann et al. (2002) considered 

various methods of splitting PSUs into pseudo-PSUs in 

order to use the delete-one jackknife variance estimation 

method. Their basic idea is to double the number of masked 

PSUs by keeping the split PSUs as separate masked PSUs, 

thus hoping to reduce data disclosure risk as a result of the 

broken linkage between the true and masked PSUs. In their 

empirical study, noticeable underestimation patterns were 

present for the resulting variance estimates for variables 

with large design effects, which resemble the plot of 

0 7yc = .  in Figure 1. Let S  and †S  denote the unmasked 

and masked sample index sets respectively. Let ijw  denote 

the sample weight and let ijy  denote the observed value of 

y  for the thj  sampled unit in PSU .i  To explain the 

observed underestimation patterns, Dohrmann et al. (2005) 

derived the following relationship  

† 2
1 2

1

1 1ˆ ˆ( ) ( ) ( )
2 1 (2 1)

n

i i
i

n
v Y S v Y S z z

n n n
, ,

=

−
| = | + − ,

− −
∑  

where 2
g ij Sg i ij ijz w z
,∈, ∑=  are the PSU-split totals of 

1( ) ( )ij ij ijij ij ij ij ij ijz w y w y w−∑ ∑ ∑= − /  and u iS ,  are the 

index sets of the 
thu  split of PSU i  for 1i … n= , ,  and 

1 2.u = ,  It indicates that the resulting variance estimate is 

about a half of the unmasked one plus a positive value 

reflecting the between PSU-split totals of ijz  within the 

PSUs. If u iS ,  are formed such that 1 2 ,i iz z, ,≐  this PSU-

splitting method leads to about a half of the unmasked 

variance estimate and thus the masked variance estimate 

could be doubled to get close to the unmasked value.  

For the two-PSU-per-stratum design, Dohrmann et al. 

(2005) considered an alternative approach under which the 

pseudo-PSUs are constructed by swapping SSUs between 

the PSUs. As discussed in Section 1, this approach can be 

viewed as dividing the PSUs into one or more splits and 

recombining them to construct pseudo-PSUs with swapped 

PSU splits. For simplicity, we assume that each PSU is 

divided into two splits 1 hiS ,  and 2 .hiS ,  If it is done so with 
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†
1 1 1 1 2h h hS S S, ,= ∪  and †

2 2 1 2 2 ,h h hS S S, ,= ∪  then the 

masked variance estimate can be written as  

†

1

ˆ ˆ( ) ( ) ( ) ( )
H

h h
h

v Y S v Y S e y g y
=

| = | + ,∑  (17) 

where 1 2 2 1( )h h he y z z, ,= −  is the difference between the 

PSU-split totals of 1 2hS ,  and 2 1hS ,  to be swapped and 

1 1 2 2( )h h hg y z z, ,= −  is the difference between the PSU-split 

totals of 1 1hS ,  and 2 2hS ,  to be retained in the original PSUs. 

The proof of (17) is given in the Appendix. Equation (17) 

indicates that a similar strategy for splitting PSUs would 

help preserve the magnitude of the original variance 

estimate. Dohrmann et al. (2005) adopted a probability-

based record linkage technique (Fellegi and Sunter 1969) to 

form pairs of SSUs for swapping that are similar in their 

means ˆhijY  for several characteristics, with the hope that the 

terms he  in (17) are all close to zero. Dohrmann et al. 

(2005) demonstrated that the PSU-recombination method 

can help reduce the biases of variance estimates and the 

resulting underestimation patterns to some degree as 

compared to the PSU-split method used in Dohrmann et al. 

(2002). To increase speed and flexibility, Lu (2004) 

developed SSU-swapping algorithms based on sequentially 

evaluating distance measures between SSU means without 

directly considering the impact of successive swapping on 

the bias of the variance estimate. As discussed in Section 

4.2, the effect of SSU swapping on variance estimates can 

be further reduced by direct consideration of SSU’s 

contribution to the variance estimates. In the next section, 

we apply both strategies, one by Dohrmann et al. (2005) and 

the other proposed in Section 4.2, to artificial data from a 

complex survey.  

 
5.2 Data example   

To illustrate the effect of PSU masking on variance 

estimates of sample means, we used real survey data from 

the 1993 National Health Interview Survey (NHIS) Year 

2000 Health objectives Public Use Data File (PUF) with 

some artificial modification. The NHIS is an annual 

household health interview survey of the civilian non-

institutionalized population of the United States. The NHIS 

involves a typical multistage, stratified sample design, with 

the first stage PSUs consisting of counties or metropolitan 

areas and the second stage SSUs consisting of segments 

(that is, a small number of households in a small geographic 

area) within sampled PSUs. This specific Year 2000 topic 

questionnaire was administered to one adult sample person 

per family only in the last half of 1993. The NHIS data used 

here and its documentation are available from National 

Center for Health Statistics (1994) or the United States 

Centers for Disease Control National Center for Health 

Statistics website (http://www.cdc.gov/nchs/about/major/ 

nhis/quest_data_related_doc.htm).  

This PUF contains the stratum and PSU identifiers, and 

sample person’s final weights for the purpose of variance 

estimation. For our example, we used only ten strata but 

limited their number of PSUs to two per stratum. Two of the 

selected strata, 110 and 520, were restricted to their two 

largest PSUs, (181,410) and (048,233), respectively, and the 

other eight strata, 102, 142, 192, 211, 261, 300, 561 and 571 

contain only two PSUs. The PUF also includes the SSU 

identifiers but not their sample weights. To generate SSU 

sample weights ,hijw  we employed a two-way nested 

random effects model to fit log log loghijk hij k hijw w w |= +  

such that ( )log hij hi j hiw = µ + α +β  and ( )log ,k hij k hijw | = ε  

where µ  is a common value, hiα  is the random effect of 

PSU ( ),hi ( )j hiβ  is the random effect of SSU j  nested 

within PSU ( )hi  and ( )k hijε  is the random effect of sampled 

person k  within SSU ( ).hij  We restricted our study to 

include only those SSUs with five or more sampled persons, 

giving a total of 293 SSUs in the analysis. The resulting 

weight decomposition ( )hij k hijw w |,  may involve possible 

model misspecification but it suffices our need for the 

illustration, since both hijw  and k hijw |  are all positive under 

the model. To obtain SSU pairs for swapping, we used six 

socio-demographic variables, denoted as 1 2 6 .x x … x, , ,  

They are listed in Table 1 with their description, definition, 

overall sample mean and squared root of design effect (i.e., 

design factor or deft  in short). The sample means of these 

variables range from 0.05 to 0.63 and the design factors 

from 1.285 to 8.511.   
Table 1 

Variables used for matching  
 

Variable  Description  Definition  Sample 

mean  

Design 

factor  

1x   Male  SEX=1  0.49  1.285  

2x   Hispanicity  HISPANIC  0.14  8.511  

  = 00, 01, ..., 08  0.14  8.511  

3x   Married couple  MARSTAT = 1,2  0.63  3.209  

4x   College or  
higher education 

EDUCR = 4, 5, 6  0.45  2.902  

5x   High family 
income of  
$50k or higher 

INCFAMR = 8  0.23  3.558  

6x   Has household  
air been tested  
for Radon? 

TESTRDN = 1  0.05  2.191  

 
We applied the two SSU matching strategies discussed in 

Section 4 and Section 5.1, respectively. The first strategy 

employs a distance measure (15) for any SSU pair ( )a br r,  

with 1lc ≡  for all 1 6.l …= , ,  Let 1rS −  and rS  denote the 

two sample index sets after the th( 1)r −  and thr  swapping, 

respectively. Then the distance of the thr  matching pair of 

the first strategy (variance-matching) is written as  
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6
1

1

ˆ ˆ( ) ( ) ( )r r

r l l
l

D v v X S v X S −

=

| = | − | ,∑x  

where ˆ( )rlv X S|  and 1ˆ( )r

lv X S −|  represent the variance 

estimates of ˆ
lX  for the thl  matching characteristic with rS  

and 1rS −  respectively. The smaller the distance is, the 

smaller the biases of variance estimates arises from 

swapping the thr  matching pair. The second strategy by 

Dohrmann et al. (2005) is to pair SSUs that are similar in 

their sample means of the six matching characteristics. This 

strategy (mean-matching) defines the distance of the thr  

matching pair as:  
6

1

ˆ ˆ( )
a br l r l r

l

d X X, ,
=

µ | = − ,∑x  

where ˆ
il rX ,  represents the SSU sample mean of SSU ir  

( )i a b= ,  for matching characteristic .lx  

Table 2 lists standard error ratios of the six matching 

characteristics at each matching in the sequential order for 

each strategy with 18 swapping pairs (representing about 

12% of the SSUs in the study). The first strategy, shown in 

the left panel of the table, gave a moderate but slightly 

increasing range of variations in standard error ratios over 

the sequence of the 18 swapping pairs. The second strategy, 

shown in the right panel of the table, produced a rather 

wider range of variation in standard error ratios over the 

sequence with its dramatic changes from the thirteenth and 

higher pairs in the swapping sequence. Although both 

strategies tend to lose their control over the biases in the 

variance estimates for higher orders of the swapping se-

quence, the first strategy was quite successful in controlling 

the biases of the variance estimates for a relatively large 

number of swapping pairs.  

Figure 3 plots the standard error ratios against the design 

factors for the two strategies varying the number of SSUs 

swapped. These three sets included 6 (4%), 12 (8%) and 18 

(12%) SSU pairs (percentage of SSUs involved in 

swapping), respectively. Each plot includes two sets of 

characteristics, 6 matching characteristics marked with the 

corresponding numbers as listed in Table 1 and 92 

characteristics marked with ×  that are not used in matching. 
For the scenario with only 4% of the SSUs swapped, the 

difference between the two strategies is negligible for both 

sets of characteristics. However, as the percentage of SSUs 

swapped increases, the perturbation in the variance 

estimates becomes greater for both strategies and both sets 

of characteristics. This result indicates that a small 

percentage of swapping should occur, reinforcing the 

findings of Section 3. In addition, the standard error ratios 

are clustered more closely to the line of one (i.e., small 

biases of the masked variance estimates) with the first 

strategy than with the second strategy. The second strategy 

produced a rather steeply decreasing pattern over the design 

factor even for the six matching characteristics. That is, the 

mean-matching strategy is seen more poignant for the 

variables used for matching.  
 

   
Table 2 

Standard error ratios by swapping sequence: Comparison of the two matching criteria with 12% (18 pairs) SSU swapping 
 

 Variance-matching    Mean-matching 

Swapping Sequence 1x   2x   3x   4x   5x   6x       1x   2x   3x   4x   5x   6x   

1  0.999  1.000  1.000  0.998  1.000  0.998  0.998  1.000  1.000  1.002  1.002  1.001   

2  1.002  1.000  1.000  1.000  1.000  0.996  0.999  1.000  1.000  1.002  1.001  1.001   

3  1.004  1.000  1.000  1.001  1.000  0.996  0.998  1.000  0.999  0.997  0.994  1.001   

4  1.012  1.001  0.999  1.000  1.000  0.989  1.025  1.000  0.999  1.001  0.994  1.016   

5  1.009  1.001  1.000  0.998  1.001  0.988  1.021  1.004  0.964  0.968  0.951  1.013   

6  1.007  1.000  1.000  1.000  1.003  0.988  1.020  1.004  0.964  0.968  0.955  1.015   

7  1.011  1.000  1.000  1.002  1.003  1.008  1.020  1.004  0.964  0.970  0.954  1.017   

8  1.016  1.000  0.997  1.002  1.003  1.026  1.022  0.998  0.957  0.963  0.964  1.005   

9  1.009  0.998  1.000  1.002  1.003  1.020  1.021  0.997  0.955  0.965  0.982  1.034   

10  1.007  0.996  1.001  1.010  1.006  1.014  1.019  0.997  0.931  0.960  0.972  1.033   

11  1.014  0.994  1.005  1.010  1.001  1.012  1.020  0.995  0.946  0.953  0.989  1.034   

12  1.029  0.995  1.003  1.013  1.011  1.036  1.021  0.991  0.946  0.953  0.987  1.035   

13  1.064  0.992  1.003  1.001  1.008  1.047  1.035  0.990  0.946  0.932  0.967  1.114   

14  1.008  0.991  1.000  1.007  1.022  1.044  1.031  0.955  0.946  0.929  0.952  1.103   

15  1.042  0.988  0.984  1.017  1.015  1.044  1.052  0.955  0.946  0.922  0.952  1.124   

16  1.012  0.982  0.986  1.024  1.041  1.042  1.107  0.939  0.936  0.920  0.942  1.128   

17  0.987  0.978  1.000  1.016  1.009  1.021  1.107  0.878  0.936  0.927  0.935  1.123   

18  1.029  0.943  1.000  0.970  0.947  1.042  1.014  0.538  0.946  0.841  0.945  1.106   

See Table 1 for the description of the six matching characteristics ( 1 6x … x, , ).  
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Figure 3 Ratio of Standard Errors vs. Baseline Design Factors. Six numbers represent the points of the 

corresponding matching characteristics and ××××  marks represent those of 92 characteristics not used 
in matching 

 
 

6. Discussion 
 

In this paper, we investigated the effect of PSU masking 

on variance estimates in complex surveys. Obviously, PSU 

masking distorts the clustering structure of the original 

sample design, possibly yielding systematic biases in the 

analysis of the resulting data as seen in Sections 2, 3 and 

5.2. The proposed PSU masking strategy in Section 4 can 

help reduce such biases but still leave a random perturbation 

in the variance estimation and thus a loss of inferential 

efficiency. Research on the effect of PSU masking would be 

interesting on other types of complex data analyses such as 

regression and multivariate analyses. Although PSU 

masking can provide disclosure control, the degree of 

masking should be minimal to limit the resulting biases of 

variance estimates as discussed in Sections 3 and 5.2.  

In addition, the reduction of the identification risk 

incurred by SSU masking may be better understood by 

writing the distance between the masked sample PSU mean 

and the PSU mean in the population as follows:  
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† †

ˆ ˆ ˆ ˆ( ) ( )
hi U hi S hi S hi Uhi S hi S

Y Y Y Y Y Y| | | || |
− = − + − ,  (18) 

where †

ˆ
hi S

Y
|

 and ˆ
hi SY |  denote the masked and unmasked 

PSU means in the sample, respectively, and hi UY |  denote the 

PSU mean in the population that may be available to an 

intruder (i.e., a malicious data user) from external sources 

such as Census data. One can show easily that the first term 

in the right-hand side of (18) is not equal to zero, in general, 

with PSU masking. †

ˆ
hi S

Y
|

 and ,hiUY |  together with non-

neglible sample variation of the second term in the right-

hand side of (18), are never equal except by rare chance. 

Dohrmann et al. (2005) compare †

ˆ{ }
hi S

Y
|

 of the sample to 

{ }hi UY |  of the population by a stylish stem-and-leaf diagram 

to demonstrate how hard it would be for an intruder to 

identify a sampled PSU in the public release data files in 

association with two aspects: 1) few pairs of †

ˆ( )
hi Uhi S

Y Y ||
,  

being close to each other; and 2) many unsampled PSU’s 

with population values similar to †

ˆ{ }
hi S

Y
|

 or { }hi UY |  of the 

sampled PSUs. Some forms of probabilistic measurements 

may be interesting to evaluate identification risk reduction 

(e.g., Eltinge 1999) but are beyond the scope of this paper. 

The proposed masking strategy has been applied to the 

2003-2004 National Health and Nutrition Examination 

Survey (NHANES) release (Park, Dohrmann, Montaquila, 

Mohadjer and Curtin 2006).  

 
Appendix 

 
Proofs  

Proof of equation (1)  
From Park and Lee (2004, Section 4.2),  

2 2

2

2

1

2

1

2

1

2
2

1

1ˆ ˆ( ) Deft ( )

1
[1 ( 1) ]

1
( )

1
( )

( 1)

1
( )

1
( )

y

y yU

N i i

i ii
i i

N

i ii

N i i

i ii
i

N i

i
i

V Y S S Y S
m

S M
m

M M
p Y Y

mN p p

M Y Y
m N

M M
p Y Y

mN p M

M
Y Y

mMN p

=

=

 
 
 

=  
 

=

| = × |

+ − ρ

 
+ − − 

 

−
−

+ − − ,

− ,

∑

∑

∑

∑

≐

≐

≐

 

where 2 ˆDeft ( )Y S|  represents the design effect of Ŷ  for a 

given ,S  the second and the last approximations follow 

from ( 1) 1N N− / ≐  and the third equation from 

2 1 2
1[1 ( 1) ] ( 1) ( ) ,N

iy yU i iS M N M Y Y−
=∑+ − ρ − −≐  which 

completes the proof.  
 
Proof of equation (8)  

By definition, the variance of the sample PSU total 

ji ijy y∑=  is 2 2( ) ( 1)i yi yi yiV y S m m mξ | = σ + − σ ρ  for 

1 .i … n= , ,  Suppose that { ( 1) 1 }ijy j m … n: = β − + , ,  for 

the two PSUs i a=  and b  are to be switched between the 

PSUs. Then these two PSUs have their variance changed to 
2 2( ) (1 ) (1 )[ (1 ) 1]

a a a a
V y S m m m∗

ξ | = − β σ + −β − β − σ ρ +  
2 2( 1)b b bm m mβσ + β β − σ ρ  and to ( )bV y S∗

ξ |  being the 

same with switching the indices a  and .b  Since 

(1 ) [ (1 ) 1] ( 1) ( 1),m m m m m m−β −β − + β β − = γ −  the 

proof is completed from observing  
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Proof of equation (13)   

Suppose that two PSUs ( 1)h  and ( 1)k  from two 

different strata h k≠  are to be reconstructed by swapping 

each of their SSUs, ( 1 )
a

h j  and ( 1 ).
b

k j  Let 
hk
e =  

1 1 1 12( )
a a b bh j h j k j k jw y w y−  denote the difference between the 

contributions of the two SSUs to 
hi
z  in (11). Let 1( )ah jz =  

1 12
aj j h j h jw z≠∑  and 1( ) 1 12

bb
j jk j k j k jz w z≠∑=  denote, respec-

tively, 
hi
z  excluding the contributions from the SSUs to be 

swapped. By noting that 1 1 ,
h h hk
z z e∗ = − 2 2,h h

z z∗ = 1kz
∗ =  

1 ,
k hk
z e+  it follows from (12) that  

2 2

1 2 1 2
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and thus, (13) holds with 1

2 1( )2 {[ ]
ahk h h jg z z−= − −  

2 1( )[ ]}.
bk k jz z−  The proofs for the other three cases are 

similar. When ,h k=  we have 1 12(
a ahh h j h je w z= −  

1 1 ),
b bh j h jw z 1 1h h hh

z z e∗ = −  and 2 2 .
h h hh
z z e∗ = −  The proof is 

completed by letting 1

2( ) 1( ) 1( )2 {[ ] [
b a ahh h j h j h jg z z z−= − − −  

2( ) 1( ) 2( )]} .
b b bh j h j h jz z z= −  

 
Proof of equation (17)   

By definition, we have 1 2hi hi hiz z z, ,= +  and †

yi i hiz z ,= +   

i hiz ,  for any h  and .i  Thus, observing † †

1 2 1h h h
z z z− = −  

2 12 1 22( )
hh h zz z
,, −+  and 1 2 1 2 2 1 1 1h h h h hz z z z z, , ,− + − = −  

2 2 ,hz ,  we have  
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which completes the proof.  
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