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Abstract 

We propose a method for estimating the variance of estimators of changes over time, a method that takes account of all the 

components of these estimators: the sampling design, treatment of non-response, treatment of large companies, correlation 

of non-response from one wave to another, the effect of using a panel, robustification, and calibration using a ratio 

estimator. This method, which serves to determine the confidence intervals of changes over time, is then applied to the 

Swiss survey of value added. 
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1. Introduction 
 

In longitudinal surveys, the precision of changes over 

time depends directly on the rate of overlap of the samples. 

We begin by reviewing known results for disjoint simple 

designs (on this subject, see Kish 1965; Sen 1973; Wolter 

1985; Laniel 1988; Hidiroglou, Särndal and Binder (1995); 

Holmes and Skinner 2000; Nordberg 2000; Fuller and Rao 

2001; Berger 2004). Next, we calculate the variance of such 

changes for simple designs in which the samples overlap. 

When the sampling ratios are very low, most of these results 

are well known and are described, for example, in Caron 

and Ravalet (2000). Results that take account of finite 

population corrections can be seen in Tam (1984).  

We precisely calculated the variances of estimators for a 

larger class of sampling designs with a finite population. 

Finite population corrections can play a major role in 

business surveys, since large companies are sometimes 

selected with very high probabilities of inclusion. The 

calculations become much more complicated with a finite 

population for the following reason: if the size of the 

population is finite, two disjoint samples are not 

independent. If the population is infinite, two independent 

samples are disjoint. Several estimators are examined: the 

difference of the cross-sectional estimators; the difference 

estimated solely on the common portion; and relative 

changes. The calculations become even more complex 

when the population is dynamic (with births, deaths, 

changes of structure). The theory that we develop below is 

limited to the case in which the population does not change 

over time.  

In the first part, we describe the two-dimensional simple 

random sampling design (on this subject, see Goga 2003) 

and we give the corresponding Horvitz-Thompson 

estimators. We calculate the variance of the estimator of  

changes that is based on this sampling design. In a second 

part, we give the variance of other simple estimators: the 

relative change or the totals quotient, and the difference 

estimator based on the overlap of the samples. We then 

describe how these results adapt to the presence of ignorable 

non-response and the use of more complex estimators, 

which introduce weights modified to obtain calibrated 

estimators, or variables modified by a robustification 

procedure.  

These results for simple designs are easy to generalize to 

stratified designs, provided that companies do not change 

strata from one wave to the next. Lastly, we apply this 

method to the Swiss survey of value added, taking all 

components of the survey into account: stratification, the 

panel effect, non-response, correlation between non-

responses from one wave to the next, calibration using a 

ratio estimator, and robustification.  

 
2. Estimation of the difference 

      in simple designs 
 
 

Let there be a population {1, , , , }U k N= … …  of size N 

in which two samples are taken: 1s  and 2s  of respective 

sizes 1n  and 2 .n  These samples may have a common 

portion (see Figure 1).  

Assume that 1s  and 2s  are samples taken according to a 

simple design without replacement, and sizes 1n  and 2n  are 

therefore not random. Samples 1s  and 2s  can be broken 

down into three parts 1 2 2 1\ , \ ,A Bs s s s s s= =  and Cs =  

1 2 .Cs s s= ∩  Let 1| |, | |, | |,A A B B C C An s n s n s n n= = = = +  

2, .C B Cn n n n= +  The sizes of , ,A Bs s  and ,Cs  may be 

random. This design generalizes the following hypothetical 

cases:   
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– If samples 1s  and 2s  are selected independently, Cn  

is then a random variable;   
– If sample 1s  is selected first, and sample 2s  is 

selected in the complement of 1s  in U, then Cs  is 

empty and 0;Cn =   
– if sample 1s  is selected first, and sample 2s  consists 

of the union of a subsample of fixed size of 1s  and a 

sample of fixed size of the complement of 1s  in U, 

then Cn  is not random, and the situation is the same 

as in case A of Tam (1984). 

            

 

 

 

 

 

 

 

 
 

                Figure 1 Overlapping samples  
 

We make the additional hypothesis that conditional on 

, ,A Bn n  and ,Cn  samples , ,A Bs s  and ,Cs  are simple, 

without replacement and of fixed size. They come from the 

following sampling design:  
 
Definition 1. Two-dimensional simple fixed-size sampling 

design ( , , ):A B Cn n n  

simple 1 2( , | , , )

! ! !( )! if | |,

! | |, | |

0 otherwise,

A B C

A B C A B C A A

B B C C

p s s n n n

n n n N n n n n s

N n s n s

=

− − − =


= =



 

where 1 2 2 1\ , \A Bs s s s s s= =  and 1 2Cs s s= ∩  (on this 

subject, see Goga 2003).  
The law for drawing the pair 1 2( , ),s s  which we do not 

know in general, is thus assumed to be of the form 

1 2 simple 1 2 1 2( , ) ( , | , , )Pr (| | ).A B C Cp s s p s s n n n s s n= ∩ =  

Let there be two variables x and y whose values, taken on 

the units of U, are denoted respectively kx  and , .ky k U∈  

Variables x and y may represent the same variable measured 

at two different times. Also assume that x can be observed 

only for 1s  and y for 2 .s  The objective is to estimate the 

totals  

and ,k k

k U k U

X x Y y
∈ ∈

= =∑ ∑  

as well as the difference .Y X−  The Horvitz-Thompson 

estimators of X and Y are given by  

1 2

1 2

1 2

ˆ ˆand .k k
k s k s

N N
X x Y y

n n∈ ∈

= =∑ ∑  

2.1 Natural estimation of the difference  
2.1.1 Variance of the estimation of the difference  

A first approach for estimating Y X∆ = −  is to use the 

difference of the cross-sectional estimators 2 1
ˆ ˆ ˆ ,Y X∆ = −  

which is an unbiased estimator conditional on Cn  according 

to the following simple design:  

ˆ( | ) ,CE n Y X∆ = −  

and is therefore also unbiased under design p unconditional 

on .Cn    
Proposition 1: The variance of ∆̂  is:  

2 2 2 2

1 2

2

1 2

1 1 1 1ˆvar( )

( ) 1
2 ,

x y

C
xy

N S N S
n N n N

E n
N S

n n N

   ∆ = − + −   
   

 
− − 

 

 

(1)

 

where 

2 2 2 21 1
( ) , ( ) ,

1 1

1
( ) ( ).

1

x k y k
k U k U

xy k k

k U

S x X S y Y
N N

S x X y Y
N

∈ ∈

∈

= − = −
− −

= − −
−

∑ ∑

∑
 

The demonstration of (1) is appended.   
2.1.2 Specific cases and precision gain  

Result (1) can be used to deal directly with the following 

specific cases of co-ordination:   
– if the two samples form a  panel, 1 2,Cn n n= =  

then 

2 2 21 1ˆvar( ) ( 2 ) ;x y xy

C

N S S S
n N

 ∆ = − + − 
 

 

– if the samples are disjoint (also see Ardilly and 

Tillé 2003, pages 24-28), 0,Cn =  and  

2 2 2 2

1 2

1 1 1 1ˆvar( )

2 .

x y

xy

N S N S
n N n N

NS

   ∆ = − + −   
   

+

 

Surprisingly, the covariance does not depend on the 

sizes of the samples. It is negative if x and y are 

positively correlated, and it becomes negligible in 

relation to the variance terms when the size of the 

population is large;  
 

– if q is the set rate of overlap of the two samples and 

1 2 ,n n n= =  we are back to case A developed by 

Tam (1984). We then obtain ,Cn qn=  and  

   s1       s2 
 

       sA                                   sC                              sB 
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2 2 2 21 1 1ˆvar( ) ( ) 2 ;x y xy

q
N S S N S

n N n N

   ∆ = − + − −   
   

 

– if the two samples are independent, ( )CE n =  

1 2 / ,n n N  and we have 

2 2 2 2

IND

1 2

1 1 1 1ˆvar ( ) .x yN S N S
n N n N

   ∆ = − + −   
   

 

If the size of the population is large and if the variables x 

and y have dispersions that are close to one another, the gain 

(or loss) of precision due to co-ordination in relation to the 

selection of two samples independently is 

IND

ˆvar( )
1 ,

ˆvar ( )
G q

∆
= ≈ − ρ

∆
 (2) 

where ρ  is the coefficient of correlation between x and 
, /xy x yy S S Sρ =  and q is the overlap rate, q =  

1 22 ( ) /( ).CE n n n+  Expression (2) provides a simple multi-

plicative coefficient serving to take account of the effect of 

correlation and overlap.  
2.1.3 Estimation of the variance of ∆̂∆∆∆   

To estimate the variance, two cases must be considered:   
– if ( )CE n  is known, which may be the case (for 

example, when the two samples are known to be 

independent), then 

� 2 2 2 2

1 2

1 2

2

1 2

1 1 1 1ˆvar( )

( ) 1
2 .

x y

C
xyC

N s N s
n N n N

E n
N s

n n N

   ∆ = − + −   
   

 
− − 

 

 

(3)

 

where  

1 2

2 2 2 2

1 1 2 2

1 2

1 1
( ) , ( ) ,

1 1
x k y k

s s

s x x s y y
n n

= − = −
− −
∑ ∑  

 and 

1
( ) ( ).

1
C

xyC k C k C
sC

s x x y y
n

= − −
−
∑  

 This estimator is unbiased, but it can sometimes 

take on negative values;  

– if ( )CE n  is not known, the only information 

concerning co-ordination is .Cn  

� 2 2 2 2

1 2

1 2

2

1 2

1 1 1 1ˆvar( )

1
2 .

x y

C
xyC

N s N s
n N n N

n
N s

n n N

   ∆ = − + −   
   

 
− − 

 

 

(4)

 

 

This estimator is unbiased conditional on Cn  and is 

therefore also unconditionally unbiased. It can also 

sometimes take on negative values. We will see 

further on that in some applications involving non-

response, ( )CE n  is not known.  
 

To use estimator (3), it is necessary to have at least two 

units in the overlap of the samples ( 2),Cn ≥  unless 

1 2( ) / .CE n n n N=  If 1 2( ) / ,CE n n n N=  which is the case 

where the two samples are independent, the third term of 

estimator (3) is nil. As to estimator (4), it is not defined 

when 1,Cn =  unless 1 2 .n n N=    
2.2 Estimation using the common portion  

The difference can also be estimated using only the 

common portion of the sample, which yields the estimator  

ˆ ( ),C C CN y x∆ = −  

with 1/
Ck sC C ky n y∈∑=  and 1/ .

Ck sC C kx n x∈∑=  This 

estimator is unbiased unconditionally and conditionally on 

.Cn   
2.2.1 Estimation of the variance of ˆ

C
∆∆∆∆   

The conditional variance of ˆ C∆  is equal to  

2 2 21 1ˆvar( | ) ( 2 ).C C y x xy

C

n N S S S
n N

 ∆ = − + − 
 

 

The unconditional variance is equal to  

2 2 21 1ˆvar( ) ( 2 ).C y x xy

C

N E S S S
n N

  ∆ = − + −  
  

 

This unconditional variance may be difficult to calculate 

when Cn  is random.   
2.2.2 Comparison of the variances of ∆̂∆∆∆  and ˆ

C
∆∆∆∆    

If we want to compare the two estimators of the 

difference, we can calculate  

2 2

1

2 2 2

2 1 2

1 1ˆ ˆvar( ) var( )

( )1 1 1
2 .

C y

C

C
x xy

C C

N E S
n n

E n
N E S N E S

n n n n n

  ∆ − ∆ = −  
  

      + − − −      
      

 

If 2 2 2
1 2 , ,x yn n n S S S= = = =  and (1/ ) 1/ ( ),C CE n E n≈  

then we obtain 

2 2 2 2 2

2 2

ˆ ˆvar( ) var( )

1 1
[ 1] 2 2 [ 1]

2
(1 ) [ (1 ) 1],

C

q N S q N S
qn qn

N S
q q

qn

∆ − ∆

≈ − − − ρ

= − ρ + −
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where 1 22 ( ) /( )Cq E n n n= +  is the overlap rate. The 

estimator ˆ C∆  is therefore more precise than ∆̂  if  

1
.

1 q
ρ ≥

+
 

For example, if 0.7,q =  it is preferable to use only the 

common portion once 1/(1 0.7) 0.588ρ ≥ + ≈  (on this 

subject, see Caron and Ravalet 2000, page 346). In cases 

where the overlap is sizable and the correlation is high, the 

estimator based on the difference of the cross-sectional 

estimators is therefore not very relevant.  

 
3. Taking unit non-response into account 

 
Non-response is considered to be independent of the 

selection design. According to the model, each unit decides 

randomly whether or not to respond, and the probabilities of 

response are equal between units. This is the most 

elementary model. However, if a unit does not respond in 

the first wave, it is highly probable that it will also not 

respond in the second wave. The model takes this 

dependency into account by considering separately four 

cases:   
– the unit responds in both the first wave and the 

second;  

– the unit responds in the first wave but not in the 

second;  

– the unit does not respond in the first wave but it 

responds in the second;  

– the unit responds in neither the first wave nor the 

second.   
Non-response is commonly modelled by a multivariate 

Bernoullian design, which means that the probability of 

responding is the same for all statistical units and also that 

one unit decides to respond independently of the response of 

the other units. The non-response design is as follows:  

cardcard card card
( , , , ) ,CA B Drr r r

A B C D A B C Dq r r r r = φ φ φ φ  

where , , , ,A B C Dr r r r U⊂  and , , ,A B C Dr r r r  are mutually 

exclusive, and where  
– 

card Ar

Aφ  is the probability of responding in wave 1 

but not in wave 2;  

– 
card Br

Bφ  is the probability of responding in wave 2 

but not in wave 1;  

– 
card Cr

Cφ  is the probability of responding in both 

wave 1 and wave 2;  

– 
card Dr

Dφ  is the probability of responding in neither 

wave 1 nor wave 2.  
 

The modelled non-response phase thus consists in 

selecting four disjoint samples according to Bernoullian 

designs with different intensities. Since it is assumed to be 

independent of the sampling design, conditional on the 

sample sizes observed, the design resulting from the 

selection and the non-response is a simple multivariate 

design. If inference is conducted conditional on the sample 

sizes, the estimation of probabilities , , ,A B C Dφ φ φ φ  is not 

necessary and an unbiased inference can be conducted, as if 

dealing with a simple design. The theory of the preceding 

section therefore applies directly to the respondents, and all 

the information on the overlap of the two samples is found 

in | |,Cs  regardless of whether this overlap is due to the 

design or to the link that exists between non-responses in the 

two waves. Note that even if the model is fairly simple, it 

takes account of the fact that if a unit has not responded in 

one wave, it will probably be less likely to respond in the 

following wave. Also, this model will be applied in 

relatively small, homogeneous strata.  

 
4. Other measures of changes over time 

 
The measurement of change over time is not always 

expressed in terms of differences. Such change is often 

measured in the form of a quotient or a relative difference. 

We therefore consider the following three measures:  
 

– the difference 2 1
ˆ ˆ ˆ ;Y X∆ = −    

– the relative change 2 1 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ( ) / / 1;R Y X X Y X∆ = − = −   

– the quotient 2 1
ˆ ˆ ˆ/ .Q Y X=   

 
The variance of ∆̂  may be expressed simply as a 

function of the estimators of variance of 2Ŷ  and 1X̂  and the 

estimator of their covariance (see expression 4). The 

variance of ˆ R∆  is equal to the variance of ˆ.Q  They may be 

approached and then estimated using a residuals technique 

(on this subject, see Woodruff 1971; Binder and Patak 1994; 

Deville and Särndal 1992; Deville 1999), 

� �

� � � � � � �2
2 1 1 2

2

1

ˆˆvar( ) var( )

1 ˆ ˆvar( ) var( ) 2 cov( , ) .
ˆ

R Q

Y Q X Q X Y
X

∆ =

 = + − 
 

This variance can thus be simply estimated once we have 

estimators of 2 1
ˆ ˆvar( ), var( )Y X  and 1 2

ˆ ˆcov( , ).X Y  

 
5. Ratio estimation and robustification  

Two techniques are commonly used for estimating the 

results of sample surveys: the use of a ratio estimator to 
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calibrate on the total of a dummy variable, and robustifi-

cation of the estimators. These techniques must be taken 

into account in determining the precision of the final results.   
5.1 Calibration  

If an estimator is calibrated on known totals, the variance 

may be estimated simply by a residuals technique (see 

Woodruff 1971; Binder and Patak 1994; Deville and 

Särndal 1992; Deville 1999). For example, if 1kz  and 2kz  

are column vectors of dummy variables on which the 

estimators 1CalX̂  and 2CalŶ  are calibrated in waves 1 and 2, 

then the variances can be estimated by a residuals technique: 

1Cal 1
ˆ ˆvar( ) var( )X E≈  and 2Cal 2

ˆ ˆvar( ) var( ),Y E≈  where 1Ê  

et 2Ê  are Horvitz-Thompson estimators of the totals of the 

residuals, with the latter being given for a simple design and 

for the generalized regression estimator by:  

1 1 1

2 2 2

ˆ ,

ˆ ,

k k k

k k k

e x

e y

′= −

′= −

z B

z B
 

with  

( )
( )

1 1

2 2

1

1 1 1 1 1 1 1

1

2 2 2 2 2 2 2

ˆ ,

ˆ ,

k k k k k k
k s k s

k k k k k k

k s k s

q q x

q q y

−

∈ ∈

−

∈ ∈

′=

′=

∑ ∑

∑ ∑

B z z z

B z z z

 

where , 1, 2,kjq j =  is a coefficient that serves to take 

account of possible heteroscedasticity.  

In the case of a sampling design with unequal 

probabilities, e.g., a stratified sampling design such as in the 

Swiss survey of value added, the residuals are obtained by 

using a weighted regression. It is sufficient to replace 1B̂  

and 2B̂  respectively by  

1 1

1

1 1 1 1 1 1
1

1 1

ˆ , andk k k k k k

k s k sk k

q q x
−

∈ ∈

′ 
=  π π 
∑ ∑

z z z
B  (5) 

2 2

1

2 2 2 2 2 2
2

2 2

ˆ ,k k k k k k

k s k sk k

q q y
−

∈ ∈

′ 
=  π π 
∑ ∑

z z z
B  (6) 

where kjπ  is the probability of inclusion of unit k in the 

sample for wave , 1, 2.j j =   
5.2 Robustification  

It is often useful to apply a robustification technique 

which offers a way to treat outliers. Simply consider that 

outliers have been detected and the weights of the 

individuals whose values are considered outliers have been 

modified by a factor ( )kju s  in wave j. This factor is 

included between 0 and 1 and is equal to 1 for units that 

have values considered normal. The variance of the 

robustified estimator can be approached by advancing the 

classical hypothesis that weights ( )kju s  depend only 

slightly on the sample s that was drawn (see Hulliger 1999). 

All that is needed, then, is to replace the variables kx  and 

ky  observed by 1k ku x  and 2k ku y  in the variance 

estimators.  

By bringing together all the components of the mean 

square error of a change over time so as to take account of 

all components of that variance - namely the design, the 

panel effect, non-response, calibration and robustification -

we obtain, for the relative change in a stratum,  

� �

� � � � � � �2
1 1 1 2

1

ˆˆMSE( ) MSE( )

1 ˆ ˆvar( ) var( ) 2 cov( , ) ,
ˆ

R Q

EU Q EU Q EU EU
X

∆ = =

 + −   (7)
 

where  

1 2

2
1 2

1 2 1

ˆ
ˆˆ ˆ, , ,

ˆk k
R R

YN N
X x Y y Q

m m X
= = =∑ ∑  

1 1 1 1 1

2 2 2 2 2

ˆ ,

ˆ ,

k k k k k

k k k k k

eu u x u

eu u y u

′= −

′= −

z B

z B
 

�
�

, , 1, 2,
j

j
jj kj

Rj

EUN
EU eu EU j

m N
= = =∑  

1 1

2 2

1
2 2

1 1 1 1 1 1 1
1

1 1

1
2 2

2 2 2 2 2 2 2
2

2 2

ˆ ,

ˆ .

k k k k k k k k

k D k Dk k

k k k k k k k k

k D k Dk k

q u q u x

q u q u y

−

∈ ∈

−

∈ ∈

 ′
=   π π 

 ′
=   π π 

∑ ∑

∑ ∑

z z z
B

z z z
B

 

� �

2 2

var( )

1 1 1
( ) , 1, 2,

1
j

j

jkj
Rj j

EU

N eu EU j
m N m

=

 − − =  − 
∑

 

� ��
1 2

2

1 1

1 2

2 2

cov( , )

1 1
( )

1

( ).

C

C
k

RC

k

EU EU

m
N eu EU

m m N m

eu EU

=

 
− −  − 

× −

∑  

 
1R  and 2R  designate the set of respondents in the first and 

the second waves in the stratum, 1 1| |,m R= 2m = 2| |,R  

1 2| CR R R= ∩  and 1 2| |.Cm R R= ∩ 1D  and 2D  are the sets 

of respondents in the two waves in the domain in which the 

calibration was carried out.  
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6. The Swiss survey of value added 
 
6.1 Description of survey  

The Swiss survey of value added is a survey of 

companies, conducted annually. Its purpose is to provide 

estimators of the main parameters of output in Switzerland: 

the value of gross output, the amount of intermediate 

consumption, the value added created by companies, and 

the cost of labour. The sampling design used is a stratified 

sampling of companies. In 1999, a sample of 11,210 

companies (employing at least two persons) was selected 

and surveyed. This sample was run again in 2000 and 2001. 

Over that period, then, this is a panel survey. In the absence 

of a business register making it possible to identify births 

and deaths, the population of companies was considered 

constant during this period. The only adjustment to the 

annual data is made using a ratio estimation on the total of 

full-time equivalents (FTEs) per activity domain, available 

from an external source.  

Stratification is based on the first two digits of the  

Nomenclature Générale des Activités économiques (general 

classification of economic activities) (NOGA2) and the size 

of the company (see Renfer 2000). In each activity stratum, 

three size strata are created: small companies employing 2-

19 persons in FTE, medium-size companies, from 20 to M 

FTE, and large companies of more than M FTE. The 

stratum containing large companies is a take-all stratum, 

while small and medium-size companies are selected 

randomly with different sampling rates. The boundary  M is 

chosen differently in each activity stratum in order to obtain 

optimum precision. In these three waves, approximately 

6,000 establishments responded. The response rate for large 

companies, which all had to be surveyed, was close to 71% 

and was higher than the rate for small and medium-size 

companies. It was decided after the fact to treat some very 

large companies separately according to the “surprise” 

stratum methodology of Hidiroglou and Srinath (1981), 

considering that the response rate for the largest companies 

may well be better because they have an administrative 

structure better suited to responding to the survey questions. 

If they were assigned a weight equal to that of other large 

companies, this would introduce a bias as well as excessive 

variability. The “surprise” poststrata contain the 5% largest 

companies in the survey file. The latter were then 

considered as having, in effect, all been surveyed, and they 

received a weight of 1. No other treatment (calibration, 

robustification) was applied to them. The take-some strata 

consisting of small, medium-size and large companies were 

updated and some strata (size classes) containing few 

companies were later collapsed. If we accept the hypothesis 

that the very large companies were all taken, then the 

resulting estimator is unbiased and the variance related to 

very large companies is nil. We can therefore calculate only 

the variance in the other, updated strata.  

During the survey, companies were again asked their 

category of economic activity. The estimates are based on 

these reported NOGA2s not on the NOGA2s in the sample 

frame. A calibration on the number of full-time equivalents 

(FTEs) provided by the business register is then conducted 

using a quotient estimator for the “reported” NOGA2 

domains.  

Finally, a robustification technique was used to lop the 

distribution of certain variables in the sample of small, 

medium-size and large companies (see Hulliger 1999; 

Peters, Renfer and Hulliger 2001). The weights of 

establishments whose values are considered outliers were 

modified by a factor ( )kju s  included between 0 and 1. This 

factor is equal to 1 for companies that have values that are 

considered normal.   
6.2 Variance of the change in value added  

The objective is to estimate correctly the variance of 

estimators of change in value added (see Renfer 2000; 

Peters et al. 2001). In computing variances according to the 

hypothesis of independence of the samples, we largely 

overestimate the variance of changes, because the “value 

added” variables in times 1t  and 2t  are positively 

correlated. Correctly taking account of all aspects of the 

sampling design and the adjustment should provide better 

variance estimates. The study focuses on the 1999, 2000 and 

2001 waves of the survey. Between these three dates, the 

raw sample was not modified. The fact that the sample 

remained fixed should make it possible to reliably estimate 

changes, but a response rate hovering around 50% may 

cause us to lose the benefit of the panel, if the number of 

respondents common to successive waves is low. The case 

of change between two survey waves where the sample has 

been updated, and where there are therefore two different 

raw samples and reference populations, is an entirely 

different problem.  

In the present case, the fact that low variances were 

obtained can be attributed to the combined effect of several 

factors:  
 

1. Optimal design: The sampling design was 

optimized. According to the optimal stratification, 

large companies have higher probabilities of 

inclusion. The stratum of companies contributing 

the most to value added is a take-all stratum. For 

this reason, the cross-sectional estimators have a 

low variance.   
2. High response fraction: In the take-all stratum of 

large companies, the response rate approaches 

70%. The finite population correction ( ) /N n N−  
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can therefore divide the variance by 3 compared to 

the case of an infinite population.   
3. Panel effect: The sample is a panel, which is the 

best strategy for estimating changes over time.   
4. Correlation of non-response: The non-response in 

one wave is strongly related to the previous wave 

and therefore does not greatly degrade the panel.   
5. Correlation of variables between waves: The value 

added variables in times t and 1t +  are highly 

correlated, since they are the same variable 

estimated at two different points in time.   
6. Calibration: The estimators are calibrated in the 

strata on a variable related to the variable of 

interest; the variance of the estimators can then be 

written as a residual variance.   
Of the 11,210 companies selected in 1999, 

approximately 5,200 responded in 1999 and 2000, and 

5,300 responded in the 2000 and 2001 waves. Thus the size 

of the panel is relatively modest, and the treatment of non-

response will therefore have a major impact on the results. 

To make variance estimates, we have assumed that non-

response is ignorable (missing completely at random) within 

the take-some strata.  

In each wave, estimates are made in the reported 

NOGA2 domains. This implies the possibility of a change 

of domain on the part of companies, and it is necessary to 

try to factor this into longitudinal estimates. We decided to 

ignore the impact of these changes initially, and to consider 

for the estimation of covariance that the domains are fixed 

and given by the value reported in the first of the two 

consecutive waves. This simplification is not inappropriate, 

since only 30 companies changed domain between 1999 

and 2000, and only 25 did so between 2000 and 2001, 

representing respectively less than 0.5% and 0.2% of the 

FTEs in the sample. Calibration is carried out each year, and 

it can be taken into account using a residuals technique. As 

with estimating the variance of the cross-sectional esti-

mators, robustification is taken into account by reweighting 

the survey variables.  

With realistic assumptions, all components of the 

variance may be taken into account by means of the general 

expression (7). This expression is applied within each 

stratum and it covers all the components of the survey of 

value added: the panel effect, non-response, stratification, 

calibration and robustification. The estimators for the survey 

of value added are ratio estimators, and in this case the 

calculation of residuals is simplified. This is because in the 

case of the ratio, the regression coefficients given in (5) and 

(6) are calculated having only one dummy variable, and 

therefore kj kjz=z  is scalar. Also, we take  1/ ,kj kjq z=  for 

1, 2,j =  and with robustification taken into account, we 

thus obtain: 

1 1 1 1 1

2 2 2 2 2

ˆ ,

ˆ ,

k k k k k

k k k k k

eu u x B u z

eu u y B u z

= −

= −
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6.3 Variance estimation of changes   

We made estimates of the standard deviations of changes 

in gross output values and value added figures calculated by 

the Swiss Federal Statistical Office. These estimates take 

into consideration all the aspects described above. We 

compared them with the estimated standard deviations that 

would have been obtained under the assumption that the 

draws for the different waves are independent. Over the 

various activity strata, the standard deviations that take 

account of the correlation between the survey waves are 

41% lower than those based on the assumption of inde-

pendence. This makes it possible to have much smaller 

confidence intervals than those calculated before this study, 

which were more quickly obtained but less precise. 

However, the gain is not the same in all activity strata. The 

following tables show standard deviations (SDs), calculated 

for the five largest activity strata (NOGA), of changes over 

time in the value of gross output ( OV∆ ) and of value added 

( VA∆ ) between 1999 and 2000. The standard deviation that 

would have been obtained by ignoring the correlation 

between samples ( indSD ) is also included in the tables, 

along with the “gain” in precision realized by taking this 

correlation into account.  
Table 1 
Change in gross output value between 1999 and 2000 and 
standard deviations (in billions of Swiss francs) 
 

Stratum ∆∆∆∆OV  indSD  SD Gain (%) 

1 3.31 2.35 0.87 63 
2 -0.77 4.38 1.98 55 
3 3.07 2.11 0.94 56 
4 4.33 1.10 1.00 09 
5 -0.09 0.81 0.53 35  

Table 2 
Change in value added between 1999 and 2000 standard 
deviations (in billions of Swiss francs) 
 

Stratum ∆∆∆∆VΑ  indSD  SD Gain (%) 

1 1.96 0.91 0.32 65 
2 0.68 2.99 1.04 65 
3 1.90 1.47 0.72 51 
4 0.36 0.47 0.45 05 
5 -0.36 0.59 0.43 27 
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Appendix 

 

Demonstration of proposition 1 
 

It is well known that  

2 2

1

1

1 1ˆvar( ) xX N S
n N

 = − 
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and 

2 2

2

2
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It is thus sufficient to calculate 1 2
ˆ ˆcov( , ).X Y  We note  
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and therefore 1 1X̂ N x=  and 2 2
ˆ .Y N y=  We must still 

calculate  

[ ]
1 2 1 2

1 2
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cov ( ) ( )

A B C

A B C A B C

x y E x y n n n
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Since 1x  and 2y  are unbiased conditional on , ,A Bn n  and 

,Cn  

[ ]1 2cov ( | , , ), ( | , , ) cov( , ) 0.A B C A B CE x n n n E y n n n X Y= =  

We therefore obtain 

1 2 1 2cov( , ) cov( , | , , ).A B Cx y E x y n n n=  

Conditional on , ,A Bn n  and ,Cn  we are in case A of Tam 

(1984, theorem 1). The conditional variance is equal to 

1 2

1 2

1
cov( , | , , ) C

A B C xy

n
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and therefore  
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Now, 

2

1 2 1 2
ˆ ˆcov( , ) cov( , ),X Y N x y=  

enabling us to obtain the  result (1).  

 
References 

 
Ardilly, P., and Tillé, Y. (2003). Exercices corrigés de méthodes de 

sondage. Paris: Ellipses.   
Berger, Y.G. (2004). Variance estimation for measures of change in 

probability sampling. Canadian Journal of Statistics, 32, 4, 451-
467.   

Binder, D.A., and Patak, Z. (1994). Use of estimating functions for 
estimation from complex surveys. Journal of the American 
Statistical Association, 89, 1035-1043.   

Caron, N., and Ravalet, P. (2000). Estimation dans les enquêtes 
répétées : application à l’enquête Emploi en continu. Technical 
report, 0005. Méthodologie Statistique, INSEE, Paris.   

Deville, J.-C. (1999). Variance estimation for complex statistics and 
estimators: Linearization and residual techniques. Survey 
Methodology, 25, 193-203.   

Deville, J.-C., and Särndal, C.-E. (1992). Calibration estimators in 
survey sampling. Journal of the American Statistical Association, 
87, 376-382.   

Fuller, W.A., and Rao, J.N.K. (2001). A regression composite 
estimator with application to the Canadian Labour Force Survey. 
Survey Methodology, 27, 45-51.   

Goga, C. (2003). Estimation de la variance dans les sondages à 
plusieurs échantillons et prise en compte de l’information 
auxiliaire par des modèles nonparamétriques. Ph.D. Dissertation, 
Université de Rennes II, Haute Bretagne, France.   

Hidiroglou, M., Särndal, C.-E. and Binder, D. (1995). Weighting and 
Estimation in Business Surveys. Business Survey Methods, (Eds. 
B.G. Cox, D.A. Binder, B.N. Chinnappa, A. Christianson, 
M. Colledge and P.S. Kott), New York: John Wiley & Sons, Inc., 
477-502.  

Hidiroglou, M.A., and Srinath, K.P. (1981). Some estimators of a 
population total from simple random samples containing large 
units. Journal of the American Statistical Association, 76, 690-
695.   

Holmes, D.J., and Skinner, C.J. (2000). Variance Estimation for 
Labour Force Survey Estimates of Level and Change. Technical 
report, Government Statistical Service Methodology Series, 21, 
London, England.   

Hulliger, B. (1999). Simple and robust estimators for sampling. 
Proceedings of the Section on Survey Research Methods, 
American Statistical Association, 54-63.   

Kish, L. (1965). Survey Sampling. New York: John Wiley & Sons, 
Inc.   

Laniel, N. 1988. (1988). Variances for a rotating sample from a 
changing population. Proceedings of the Business and Economic 
Statistics Section, American Statistical Association, 246-250.   

Nordberg, L. (2000). On variance estimation for measure of change 
when samples are coordinated by the use of permanent random 
numbers. Journal of Official Statistics, 16, 363-378.   

Peters, R., Renfer, J.-P. and Hulliger, B. (2001). Statistique de la 
valeur ajoutée : procédure d’extrapolation des données. Technical 
report, Swiss Federal Statistical Office.  



Survey Methodology, December 2008 181 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Renfer, J.-P. (2000). Enquête sur la production et la valeur ajoutée : 
échantillonnage complémentaire. Technical report, Swiss Federal 
Statistical Office.   

Sen, A.R. (1973). Theory and application of sampling on repeated 
occasions with several auxiliary variables. Biometrics, 29, 381-
385.   

Tam, S.M. (1984). On covariances from overlapping samples. The 
American Statistician, 38, (4), 288-289.   

Wolter, K.M. (1985). Introduction to Variance Estimation. New 
York: Spinger-Verlag.  

Woodruff, R.S. (1971). A simple method for approximating de 
variance of a complicated estimate. Journal of the American 
Statistical Association, 66, 411-414. 

 

 




