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Abstract 

In longitudinal surveys nonresponse often occurs in a pattern that is not monotone. We consider estimation of time-

dependent means under the assumption that the nonresponse mechanism is last-value-dependent. Since the last value itself 

may be missing when nonresponse is nonmonotone, the nonresponse mechanism under consideration is nonignorable. We 

propose an imputation method by first deriving some regression imputation models according to the nonresponse 

mechanism and then applying nonparametric regression imputation. We assume that the longitudinal data follow a Markov 

chain with finite second-order moments. No other assumption is imposed on the joint distribution of longitudinal data and 

their nonresponse indicators. A bootstrap method is applied for variance estimation. Some simulation results and an 

example concerning the Current Employment Survey are presented.  
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1. Introduction 
  

A survey is longitudinal if data are collected from every 

sampled unit at multiple time points. For example, in the 

Current Employment Survey (CES), commonly known as 

the payroll survey conducted by the U.S. Bureau of Labor 

Statistics, data are obtained from establishments on a 

monthly basis by mail, telephone, FAX, and electronic data 

entry (Butani, Harter and Wolter 1997). Other examples 

include the Survey of Income and Program Participation 

(SIPP) and many economic surveys conducted by the U.S. 

Census Bureau. Nonresponse occurs in longitudinal studies. 

We assume that every sampled unit responds at baseline 

(the first time point). Nonresponse is monotone if a unit not 

responding at some time does not return to the survey. 

Nonmonotone nonresponse, however, often occurs in 

surveys such as the CES and SIPP and entails a wider 

variety of nonresponse patterns.  

Let 1, , Ty y…  be the values of a variable from a sample 

unit, where T is the total number of time points, and 

1, , Tδ δ…  be the response indicators ( 1tδ =  if ty  is a 

respondent and 0tδ =  if ty  is a nonrespondent). Non-

response is completely at random if 1( , , )Tδ δ…  is 

statistically independent of 1( , , ),Ty y…  which rarely 

occurs in surveys. A more realistic assumption is that 

nonresponse at time point t depends on observed or 

unobserved past values 1 1, , .ty y −…  In this paper, we focus 

on a stronger assumption, the last-value-dependent 

nonresponse mechanism, i.e., nonresponse of ty  depends 

on the last value 1ty −  (observed or unobserved). The last-

value-dependent nonresponse mechanism is assumed in 

many economic surveys (e.g., the CES; see Butani, Harter 

and Wolter 1997). If nonresponse is also monotone, then 

either ty  is a nonrespondent with certainty or 1ty −  is 

observed. This is a special case of what is referred to as 

ignorable missingness (Little and Rubin 1987). For 

nonmonotone nonresponse, however, last-value-dependent 

nonresponse is nonignorable, as whether ty  is a respondent 

depends on 1ty −  that may be a nonrespondent.  

Existing methods for handling nonmonotone non-

response can be briefly described as follows. Under para-

metric modeling, methods such as the maximum likelihood, 

multiple imputation, or Bayesian analysis can be applied 

(e.g., Troxel, Harrington and Lipsitz 1998; Troxel, Lipsitz 

and Harrington 1998; Schafer 1997), if a suitable parametric 

model for the joint distribution of 1( , , )Ty y…  and 

1( , , )Tδ δ…  can be found. The validity of these methods, 

however, depends on whether parametric models are 

correctly specified. A simple linear regression imputation 

method (see, e.g., Butani et al. 1997) imputes a 

nonrespondent ty  by the predicted value under a fitted 

linear regression model between ty  and 1,ty −  where the 

regression model is fitted using data from sampled units 

with both ty  and 1ty −  observed and the prediction is made 

using the predictor being either the observed 1ty −  or a 

previously imputed value of a nonrespondent 1.ty −  Under 

the nonmonotone nonresponse mechanism (1), however, it 

can be shown that simple linear regression imputation is 

biased even if the linear regression model between ty  and 

1ty −  is correct. The bias is mainly caused by the erroneous 

way of using imputed 1ty −  values to impute missing ty  

values. A censoring approach creates a dataset with 

monotone nonresponse by discarding all respondents from a 

sampled unit after its first missing y-value. Methods 
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appropriate for monotone nonresponse (Paik 1997; Robins, 

Rotnitzky and Zhao 1995; Troxel, Lipsitz and Brennam 

1997) can then be applied to the reduced dataset. Although 

this approach produces correct estimators, it is not efficient 

when T is not small, since many respondents are discarded.  

The purpose of this article is to propose an imputation 

method for longitudinal surveys with nonmonotone non-

response and the last-value-dependent nonresponse 

mechanism (1). Imputation is commonly used to compen-

sate for nonresponse in survey problems (Kalton and 

Kasprzyk 1986; Rubin 1987). Once all nonrespondents are 

imputed, estimates of parameters (such as the mean of ty ) 

are computed using standard methods by treating imputed 

values as observations. Our proposed imputation method 

produces approximately unbiased and consistent estimators 

for the means of 1, , .Ty y…   

The rest of this paper is organized as follows. In Section 

2, we describe our assumptions. Section 3 describes the 

imputation process. Some properties of the resulting esti-

mators of population means are discussed in Section 4, 

together with the proposal of a bootstrap procedure for 

variance estimation. Section 5 contains some simulation 

results. An example related to the CES is presented in 

Section 6. The last section contains a summary.  

 
2. Assumption and imputation model 

 
Let P be a finite population indexed by 1, , ,i N= …  and 

let S be a sample of size n taken from P according to some 

sampling design. According to the sampling design, survey 

weights , ,iw i S∈  are constructed so that for any set of 

values { : },iz i P∈   

( )
1

,
N

s i i i
i S i

E w z z
∈ =

=∑ ∑   

where sE  is the expectation with respect to S. For each unit 

1, ( , , )i T ii P y y, ,∈ …  is a vector of items of interest obtained 

at time points 1, , .t T= …  When nonresponse is present, 

each unit also has the vector 1( , , )i T i, ,δ δ…  of response 

indicators. For simplicity, we may omit the index i in our 

discussion. 

We adopt a model-assisted approach by assuming that 

the vector 1 1( , , , , , )i T i i T iy y, , , ,δ δ… … ’s are independent and 

identically distributed (i.i.d.) from a superpopulation. The 

i.i.d. assumption can be relaxed by dividing P into several 

sub-populations (called imputation classes) so that the i.i.d. 

assumption approximately holds within each imputation 

class. Imputation classes are usually constructed using a 

categorical variable whose values are observed for all 

sampled units; for example, under stratified sampling, strata 

or unions of strata are often used as imputation classes. Each 

imputation class should contain a large number of sampled 

units. When there are many strata of small sizes, imputation 

classes are often obtained through poststratification 

(Valliant 1993) and/or combining small strata.  

Once imputation classes are constructed, imputation is 

done within each imputation class. Thus, for simplicity, 

from now on we assume that there is only one imputation 

class.  

Under the last-value-dependent nonresponse mechanism,  

1 1 1 1

1

( 1 )

( 1 ) 2 .

t T t t T

t t

P y y

P y t T

− +

−

δ = | , , ,δ , , δ , δ , , δ

= δ = | , = , ,

… … …

…
 
(1)

 

We do not make any other assumption on 1( 1 ).t tP y −δ = |  

When there is no nonresponse, we assume that 1( )Ty y, ...,  

is a Markov chain, i.e.,  

1 1( , , ) ( ), 2, , ,t T t tL y y y L y y t T−| = | =… …  (2) 

where ( )L ξ|ζ  denotes the conditional distribution of ξ  
given .ζ  We do not make any other assumption on 

1( )t tL y y −|  except that ty  has a finite second-order 

moment. In many economic surveys, the following 

assumption stronger than (2) is assumed:  

1 1 , 2, , ,t t t ty y y t T− −= β + | | ε = …  (3) 

where β  is an unknown parameter, tε ’s are independent of 

ty ’s, 1 0,ε =  and 2, , Tε ε…  have mean 0 and a common 

variance (e.g., the CES data; see Butani et al. 1997). Under 

(3), the best linear unbiased estimator of β  is the well 
known ratio estimator.  

To consider asymptotics, we adopt the frame work in 

Krewski and Rao (1981) and Bickel and Freedman (1984). 

We assume that the finite population P is a member of a 

sequence of finite populations indexed by v. All limiting 

processes are understood to be as .v→∞  As ,v→∞  the 

population size N and the sample size n increase to infinity. 

In sample surveys, the following regularity conditions on 

iw ’s are typically imposed:  

( ) 2
0 1max and Var ,i s i

i P
i S

n w b N n w b N
∈ ∈

≤ ≤∑  (4) 

where 0b  and 1b  are some positive constants and Vars  is 

the variance with respect to sampling. The first condition in 

(4) ensures that none of the weights iw  is disproportionately 

large (see Krewski and Rao 1981). The second condition in 

(4) means that Var ( )i Ss iw N∈∑ /  is at most of the order 1.n−  

Conditions in (4) are satisfied for stratified simple random 

sampling designs.  

 
3. Imputation process 

 
Our proposed imputation is a type of regression imputa-

tion. Thus, one of the key issues to our method is to find the 

right “predictors” for nonrespondents. For a nonrespondent 

, 2,ty t ≥  let r be the time point at which the unit has the last 
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observed value, i.e., ry  is observed but 1 1r t ty y y+ −, ..., ,  are 

nonrespondents. Under assumptions (1)-(2), we can use ry  

as a predictor in imputing .ty    
3.1 The case of 1r t= −= −= −= −    

We first consider the case of 1.r t= −  Let  

1 1 1 1( ) ( , 0, 1)t t t t t t ty E y y, − − − −φ = | δ = δ =  

be the conditional expectation (regression function) for a 

nonrespondent ty  with observed 1.ty −  If 1t t, −φ  is known, 

we can simply impute ty  by 1 1( ).t t ty, − −φ  But 1t t, −φ  is 

usually unknown. It is shown in the Appendix that 

assumption (1) implies that  

1 1 1 1( ) ( , 1, 1), 2, , .t t t t t t ty E y y t T, − − − −φ = | δ = δ = = …  (5) 

Thus, 1t t, −φ  can be estimated by regressing ty  on 1ty −  

using data from all sampled units having observed ty  and 

1.ty −   

The idea of using (5) for imputation is the same as that in 

the monotone nonresponse case treated by Paik (1997). 

Unlike the monotone nonresponse case, however, 1( )t t x, −φ  

may not be linear in x for nonmonotone nonresponse. 

Hence, we consider the nonparametric method in Cheng 

(1994) for regression. The kernel estimator of 1( )t t x, −φ  is  

1

1 1

1 1

ˆ ( )

,

t t

t i t i

i t t i t i i t t i

i S i S

x

x y x y
w I y w I

h h

, −

− , − ,
, − , , , − ,

∈ ∈

=φ

− −   
κ κ   
   

∑ ∑  

where ( )xκ  is a probability density function, > 0h  is a 

bandwidth, and  

1

1

1 1, 1 2, , .

0 otherwise,

t i t i

t t i

t T
I

, − ,
, − ,

δ = δ = =
= 


…
 

A nonrespondent ,t jy  with respondent 1,t jy −  is imputed by  

11
ˆ ( ).t jt j t t

yy − ,, , −
= φɶ  

Cheng (1994) suggested a bandwidth 2 /5 ,h Cn−=  where 

C is a constant. In general, C may be different from 

application to application, and should be chosen using 

techniques developed in the kernel estimation literature 

(e.g., Cheng 1994 and Chapter 5 of Härdle 1990) and/or 

empirical studies.   
3.2 The case of 1r t< −< −< −< −   

When 1,r t< −  the situation is more complicated. Let  

1( ) ( 0, 1).t r r t r t r ry E y y, +φ = | , δ = = δ = δ =⋯  

As nonresponse mechanism (1) is nonignorable, the 

expected value of ty  conditional on ry  with 1r t< −  is not 

equal for observed and missing ,ty  which precludes the use 

of observed ty  values as outcomes in estimating .t r,φ  It is 

explicitly shown by Xu (2007) that  

1 1 1 1

( )

( , 1, , , , 1)

t r r

t r t t t r r r

y

E y y a a

,

− − + +

φ

≠ | δ = δ = δ = δ =…
 
(6)

 

where 0ja =  or 1, 1, , 1.j r t= + −…  On the contrary, in 

the case of monotone nonresponse the two sides of (6) are 

the same (Paik 1997) so that the right hand side of (6) can 

be used as the regression imputation model and observed ty  

values can be used to estimate .t r,φ  

We have to find a conditional expectation of ty  (given 

ry  and some response status) that is equal to ( )t r ry,φ  and 

enables us to carry out imputation. It is shown in the 

Appendix that  

2 1( ) ( , 0, 1),

1, , 2, 2, , .

t r r t r t r r ry E y y

r t t T

, + +φ = | δ = = δ = δ = δ =

= − =

⋯

… …
 

(7)
 

To estimate t r,φ  by fitting regression according to (7), we 

do not have observed ty  values as outcomes in regression, 

because units defined by the right hand side of the equation 

in (7) have 0.tδ =  If we carry out imputation sequentially 

as 1, 2, ,1,r t t= − − …  then the ty  nonrespondents for 

units with 1 1r+δ =  have already been imputed. Thus, we 

can use these previously imputed ty  values as outcomes in 

regression. Although at each fixed time point t, imputation 

is carried out sequentially as 1, 2, ,1,r t t= − − …  imputa-

tion for different time points can be carried out at any order, 

because at any time point t, imputed values are used as 

outcomes at time point t only.  

Since t r,φ  is usually not linear, we use the kernel 

regression. For 2, ,t T= …  and 2, 3, ,1,r t t= − − …  the 

conditional expectation ( )t r x,φ  for any x  is estimated by  

,

ˆ ( )

,

t r

r i r i

i t r i i t r it i
i S i S

x

x y x y
w I w Iy

h h

,

,
, , , ,,

∈ ∈

φ

− −   
= κ κ   

   
∑ ∑ɶ

 
(8)

 

where 
t iy ,ɶ  is a previously imputed value and  

2 11 0, 1,

1, , 2, 2, , .

0 otherwise

t i r i r i r i

t r iI r t t T

, + , + , ,

, ,

δ = = δ = δ = δ =
= = − =
 ,

⋯

… …  

A nonrespondent t jy ,  with last respondent r jy ,  is imputed 

by  

ˆ ( ).r jt j t r
yy ,, ,

= φɶ  

The Markov chain assumption (2) ensures that using 

previously imputed values 
t iy ,ɶ  as outcomes in (8) produces 

an asymptotically valid estimator of t r,φ  (see result (11) in 

the Appendix).     
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3.3 An illustration  
To illustrate the previous described imputation process 

and how nonresponse patterns are grouped into imputation 

cells, we consider imputation at time point 4t =  (Table 1). 

The horizontal direction in Table 1 corresponds to 4 time 

points and the vertical direction corresponds to different 

nonresponse patterns, where each pattern is represented by a 

4-dimensional vector of 0’s and 1’s with 0 indicating a 

nonrespondent and 1 indicating a respondent. There are a 

total of 1 32 2 8T − = =  nonresponse patterns. According to 

the previously described imputation process, at step 1, we 

consider nonrespondents at time 4 with last respondents at 

time 3, which are patterns 3 and 4. According to imputation 

model (5), we fit a regression using data in patterns 7 and 8 

indicated by + (used as predictors) and ×  (used as 
outcomes) in the block in Table 1 under title step 1. Then, 

imputed values (indicated by ○ ) are obtained from the 

fitted regression using data indicated by * as predictors in 

the block under title step 1. Next, we focus on the block in 

Table 1 under title step 2. The nonrespondents at 4t =  with 

last respondents at time 2 are those in pattern 2. According 

to imputation model (7), we fit a regression using data in 

pattern 3 indicated by + (used as predictors) and ⊗  

(previously imputed values used as outcomes). Then, 

imputed values (indicated by ○ ) are obtained from the 

fitted regression using data indicated by * as predictors. 

Finally, we focus on the block in Table 1 under title step 3. 

The nonrespondents at 4t =  with last respondents at time 1 

are those in pattern 1. According to imputation model (7), 

we fit a regression using data in pattern 2 indicated by + 

(used as predictors) and ⊗  (previously imputed values used 

as outcomes). Then, imputed values (indicated by ○ ) are 

obtained from the fitted regression using data indicated by * 

as predictors.  
 
Table 1  
Illustration of imputation process at t = 4 
 

 Step 1: r = 3 Step 2: r = 2 Step 3: r = 1 

 Time Time Time 
Pattern 1 2 3 4 1 2 3 4 1 2 3 4 

(1,0,0,0)         *   ○  
(1,1,0,0)      *  ○  +   ⊗  
(1,1,1,0)   * ○   +  ⊗      
(1,0,1,0)   * ○          
(1,0,0,1)             
(1,1,0,1)             
(1,0,1,1)   + ×          
(1,1,1,1)   + ×          

 

:+   observed data used in regression fitting as predictors 

:×   observed data used in regression fitting as responses 

:⊗  imputed data used in regression fitting as responses 

*:  observed data used as predictors in imputation 

:○  imputed values 

 

4. Estimation of population means using 

           imputed data 
 

Let  tY  be the finite population mean at time point t. The 

sample mean based on observed and imputed data is  

ˆ ,i t it
i S

w yY ,
∈

=∑ ɶ  (9) 

where 
t iy ,ɶ  is equal to the observed value if 1t i,δ =  and is 

an imputed value if 0.t i,δ =  We now establish that, as an 

estimator for the population mean at time point ˆ, tt Y  in (9) 

is consistent and asymptotically normal under the 

asymptotic frame work described in Section 2.   
Theorem 1. Assume (1)-(2) and (4), and the asymptotic 

frame work described in Section 2. Assume further the 

following regularity conditions:    
(C1) 2( ) , 1, , .tE y t T< ∞ = …   
(C2) 0 ( 1) 1t rP I ,< = <  and 2[ ( ) ( )] ,t r r t r rE y p y, ,σ / < ∞  

where 1 1 1( ) ( 1 1),t t t t tp x P y x, − − −= δ = | = , δ = ( )t rp x, =  

1 1( 0 1t r r r tP y x + −δ = | = , δ = δ = , δ = =⋯ 2 0),r+δ =  

1, , 2,r t= −…  2 ( ) Var( , 1),t r t r t rx y y x I, ,σ = | = = t rI ,  

is the same as t r iI , ,  with t i,δ ’s replaced by tδ ’s, 

1, , 1, 2, , .r t t T= − =… …    
(C3) ( )t r x,φ  and ( ) ( ) ( )t r t r rg x p x f x, ,=  have bounded 

second derivatives such that  

2

,[{ ( ) ( )} ( )

{1 ( )}/ ( )

t r r t r r t r r

t r r t r r

E y y g y

p y g y

, ,

, ,

′′σ + φ

× − < ∞
 

 and  

2
, , ,[{ ( ) ( ) ( ) ( )}

{1 ( )}/ ( )] ,

t r r t r r t r r t r r

t r r t r r

E y g y y g y

p y g y

,

, ,

′′ ′ ′φ + φ

× − < ∞
 

where ( )rf x  is the probability density function of 

, 1, , 1, 2, , .ry r t t T= − =… …   
(K) The kernel function κ  is a bounded and symmetric 

probability density function on the real line with 

finite second moment.   
(B) The bandwidth h satisfies 2 2(log )nh n/ → ∞  and 

4 0nh →  as .n→∞    
Then, for 1, , ,t T= …   

2ˆ( ) (0 ),t t d tn Y N− µ → , σ  (10) 

where 2( ),t t tE yµ = σ  is an unknown parameter, and d→  

denotes convergence in distribution with respect to the joint 

distribution of 1 2( , , , , , )i T i i T iy y, , , ,δ δ… …  and sampling 

(model and design).  

The proof is given in the Appendix. Conditions (K) and 

(B) are exactly the same as those in Cheng (1994) and 
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conditions (C1)-(C3) are the same as those in Cheng (1994) 

applied to units defined by the right hand sides of (5)-(7). 

Because of the complexity of the imputation, it is 

difficult to obtain an explicit form of 2

tσ  in (9). We consider 

the bootstrap method. A correct bootstrap can be obtained 

by applying the imputation process in each of the bootstrap 

samples, i.e., by imputing each bootstrap data set exactly the 

way the original data set is imputed (Shao and Sitter 1996). 

More specifically, we proceed as follows.    
1. Within each imputation class, draw a bootstrap sample 

as a simple random sample with replacement from the 

sample, where the bootstrap sample size is the same as 

the number of sampled units in the imputation class. 

Combine the bootstrap samples to form *.S  The 

bootstrap data set contains all observed data, weights, 

and response indicators of units in *.S  
 

2. Apply the proposed imputation procedure to the 

bootstrap data set. Calculate the bootstrap analogue  
*ˆ .tY  

 

3. Independently repeat the previous steps B times to 

obtain *1 *ˆ ˆ, , .Bt tY Y…  The sample variance of *1ˆ , ,tY …  
*ˆ B

tY  is our bootstrap variance estimator for ˆ .tY   
Note that the bootstrap method requires a large amount 

of repeated computation, which is the price paid for 

replacing a theoretical derivation of asymptotic variances. 

One may also use other valid bootstrap methods for survey 

data described in Shao and Tu (1995, Chapter 6).  

Performance of the proposed bootstrap variance estima-

tor is evaluated by simulation in the next section.  

 
5. Simulation 

 
A simulation study was conducted to evaluate the 

performance of the proposed imputation method in terms of 

the estimation of the mean of .ty  We considered a sample 

of size 1,000. Each sample unit has longitudinal data of size  

4.T =  The population mean values for the 4 time points are 

1.33, 1.94, 2.73, and 3.67, respectively. Longitudinal data 

were generated according to two models. In the first model, 

1( , , )Ty y…  is multivariate normal and follows the AR(1) 

model with correlation coefficient 0.9 and standard error 1. 

In the second model, 1(log , , log )Ty y…  is multivariate 

normal and follows the AR(1) model with correlation 

coefficient 0.9 and standard error 1. All data at 1t =  are 

observed. For 2, , ,t T= …  nonrespondents were generated 

using  

1
1

1

exp{1 1 2 }
( 0 )

1 exp{1 1 2 }

t
t t

t

y
P y

y

−
−

−

− .
δ = | =

+ − .
 

for the case of normal data and  

1
1

1

exp{2 0 7 }
( 0 )

1 exp{2 0 7 }

t
t t

t

y
P y

y

−
−

−

− .
δ = | =

+ − .
 

for the case of log-normal data. These nonresponse models 

were chosen so that the unconditional probabilities of non-

response are about the same in the two cases (see Table 2).  

For comparison, we included five estimators in the 

simulation: the sample mean of complete data, which is 

used as the gold standard; the sample mean of respondents 

that ignores nonrespondents; the sample mean based on 

simple linear regression imputation described in Section 1; 

the sample mean based on censoring (as described in 

Section 1) and linear regression imputation for monotone 

missing data (Paik 1997); and the sample mean based on 

our proposed imputation procedure. In the nonparametric 

regression described in Sections 3.1 and 3.2, the standard 

normal density was used as the kernel ( )xκ  and the 

bandwidth h was chosen to be around 2/ 54 ,n−  which was 

used in the simulation in Cheng (1994).  

 
Table 2  
Unconditional probabilities of nonresponse in the simulation study 

 

   Nonresponse probability 

 Nonresponse pattern The normal case The log-normal case 

t = 3 Monotone (1,0,0) 0.14  0.16  
  (1,1,0) 0.12 0.26 0.09 0.25 
 Intermittent (1,0,1) 0.25 0.25 0.20 0.20 

 Complete (1,1,1) 0.49 0.49 0.55 0.55 

t = 4 Monotone (1,0,0,0) 0.04  0.06  
  (1,1,0,0) 0.02  0.02  
  (1,1,1,0) 0.04 0.10 0.02 0.10 

 Intermittent (1,0,0,1) 0.10  0.10  
  (1,0,1,0) 0.04  0.03  
  (1,0,1,1) 0.21  0.17  
  (1,1,0,1) 0.10 0.45 0.06 0.36 

 Complete (1,1,1,1) 0.45 0.45 0.54 0.54 
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Tables 3-4  report (based on 1,000 simulation runs) the 

relative bias and variance of mean estimators, the bootstrap 

variance estimator (based on 200 bootstrap replications), the 

coverage probability of approximate 95% confidence 

intervals (CI) obtained using point estimator 

1.96 bootstrap variance,± ×  and the length of CI. The 

results in Tables 3-4  can be summarized as follows.   
1. Bias. The proposed imputation method produces 

estimators with negligible bias in all cases under 

consideration. The sample mean of respondents 

only is clearly biased unless 1.t =  Although in 

some cases the values of the bias are small, the bias 

leads to very low coverage probability of the CI, 

because the variance of the sample mean is much 

smaller than its squared bias. The simple linear 

regression imputation method is correct only when 

2t =  and data are normally distributed. Its relative 

bias at 3t =  in the normal case is very small, but at 

4,t =  it has a relative bias of 1.1% that leads to a 

coverage probability 76.3% only for its CI. The 

method of censoring and linear regression 

imputation is correct in the normal case and has 

little bias. In the log-normal case, however, both 

the simple linear regression imputation and the 

method of censoring with linear regression 

imputation are biased, due to the fact that the 

regression functions are not linear.   

2. The bootstrap and CI. The bootstrap variance as an 

estimator of the variance of the mean estimator 

performs well in all cases, even when the mean 

estimator is biased. The related CI has a coverage 

probability close to the nominal level 95% when 

the mean estimator has no bias.  
3. Proposed imputation versus censoring. When 

censoring and linear regression imputation is used, 

the mean estimator is biased in the log-normal case 

and, thus, the proposed imputation method is 

clearly better. In the normal case, both methods are 

correct. However, the results in Table 3 show the 

effect of discarding observed data. When 2,t =  

censoring is better than the proposed imputation 

method, because no unit is actually censored and 

the censoring method uses the correct linear 

regression whereas the proposed imputation 

method fits a nonparametric regression. When 

3,t =  censoring is about the same as the proposed 

imputation method but when 4,t =  censoring is a 

lot worse than the proposed imputation method. 

From Table 2, on average 25% sample units are 

censored when 3t =  and 45% sample units are 

censored when 4.t =  The gain in using a correct 

linear regression is not enough to compensate the 

effect of discarding observed data, especially when 

4.T =   
 

Table 3  
Simulation results for estimation of means (Normal case) 

 

Method Quantity t = 1 t = 2 t = 3 t = 4 

complete data relative bias 0.0% 0.0% 0.0% 0.0% 

 variance 310×  0.962 0.981 1.052 1.033 

 bootstrap variance 1.002 1.002 1.002 1.006 

 coverage prob of CI 95.4% 94.9% 94.5% 94.5% 

 length of CI 0.124 0.124 0.124 0.124 

respondents relative bias  16.8% 8.3% 3.5% 

 variance 310×   1.319 1.240 1.051 

 bootstrap variance  1.364 1.178 1.062 

 coverage prob of CI  0.0% 0.0% 2.4% 

 length of CI  0.145 0.134 0.128 

simple linear relative bias  0.0% 0.0% 1.1% 

regression imputation variance 310×   1.121 1.434 1.185 

 bootstrap variance  1.172 1.466 1.192 

 coverage prob of CI  94.9% 94.7% 76.3% 

 length of CI  0.134 0.150 0.135 

censoring and linear relative bias  0.0% 0.0% 0.0% 

regression imputation variance 310×   1.121 1.437 1.642 

 bootstrap variance  1.172 1.476 1.819 

 coverage prob of CI  94.9% 94.7% 96.1% 

 length of CI  0.134 0.150 0.167 

proposed imputation relative bias  0.2% 0.3% 0.2% 

 variance 310×   1.196 1.438 1.264 

 bootstrap variance  1.231 1.401 1.224 

 coverage prob of CI  95.0% 93.7% 94.1% 

 length of CI  0.137 0.146 0.137 
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Table 4  
Simulation results for estimation of means (Log-normal case) 

 

Method Quantity t = 1 t = 2 t = 3 t = 4 

complete data relative bias 0.0% 0.0% 0.0% 0.0% 

 variance  0.069 0.172 0.383 1.074 

 bootstrap variance 0.067 0.161 0.418 1.138 

 coverage prob of CI 94.4% 93.8% 94.9% 94.6% 

 length of CI 1.008 1.557 2.511 4.142 

respondents relative bias  28.1% 18.8% 10.8% 

 variance   0.366 0.614 1.378 

 bootstrap variance  0.344 0.668 1.461 

 coverage prob of CI  0.1% 2.1% 31.6% 

 length of CI  2.267 3.171 4.690 

simple linear relative bias  7.0% 12.6% 12.5% 

regression imputation variance   0.266 0.877 1.589 

 bootstrap variance  0.240 0.807 1.611 

 coverage prob of CI  71.6% 39.3% 23.2% 

 length of CI  1.894 3.481 4.938 

censoring and linear relative bias  7.0% 12.1% 13.8% 

regression imputation variance   0.266 0.874 2.735 

 bootstrap variance  0.240 0.836 2.617 

 coverage prob of CI  71.6% 43.9% 36.4% 

 length of CI  1.894 3.540 6.277 

proposed imputation relative bias  0.1% 0.1% 0.1% 

 variance   0.189 0.447 1.119 

 bootstrap variance  0.179 0.482 1.236 

 coverage prob of CI  94.5% 95.7% 95.6% 

 length of CI  1.644 2.697 4.317 

 

6. An example 
 
 

In the CES introduced in Section 1, data for employment 

are collected from nonagricultural establishments on a 

monthly basis. In any particular month after the baseline, the 

nonresponse rate is about 20-40%  and nonresponse is 

nonmonotone. In CES, it is typically assumed that (1)-(2) 

hold. In fact, assumption (3) that is stronger than assumption 

(2) is often assumed (Butani, Harter and Wolter 1997). We 

consider a stratified simple random sample from a CES 

dataset (a subset of a sample from the 1980’s). Stratum 

sizes, sample size by stratum, and nonresponse rate by 

stratum are listed in Table 5. For each imputation method, 

imputation is carried out within a group of strata (group 1 = 

strata 1-4;  group 2 = strata 5-7; group 3 = strata 8-11; 

group 4 = stratum 12; group 5 = strata 13-15; group 6 = 

stratum 16).  

To estimate the employment counts from month 1 

(baseline) to month 8, we applied the five methods in the 

simulation study in Section 5. The kernel and bandwidth in 

nonparametric regression were the same as those in the 

simulation (Section 5). Since population employment counts 

are obtained once a year from Unemployment Insurance 

administrative records, nonrespondents in any month 

actually become available later so that the sample mean of 

complete data is available as a standard. The sample means 

based on different methods are reported in Table 6 together 

with their bootstrap variance estimates (based on bootstrap 

sample size 200). For the sample means based on respon-

dents and three imputation methods, we also computed the 

estimated relative bias defined as (sample mean/sample 

mean of complete data) 1.−  

The result in Table 6 shows that the sample mean based 

on the proposed imputation method is very comparable to 

the sample mean from the complete data, whereas the 

sample mean of respondents is clearly biased. Due to the 

fact that nonresponse is nonignorable, the simple linear 

regression imputation shows some bias starting from month 

4, although the estimated relative bias is at most 5.5% in 

absolute value. The method of censoring with linear 

regression imputation has some bias after month 4, probably 

due to the fact that data are not normally distributed so that 

fitting linear regression is not correct. Furthermore, it has 

larger estimated variances compared with the proposed 

method, indicating the effect of discarding observed data.  
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Table 5  
Stratum size, sample size, and nonresponse rate in the CES example 

 

 Stratum Sample Nonresponse percentage 
Stratum size size t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 

1 223 102 0 32.4 39.2 34.3 27.5 30.4 28.4 33.3 
2 1,649 110 0 28.2 31.8 30.0 34.5 33.6 26.4 29.1 
3 1,900 120 0 37.5 39.2 34.2 44.2 41.7 40.0 40.8 
4 419 98 0 41.8 48.0 35.7 38.8 44.9 38.8 38.8 
5 1,947 132 0 37.1 33.3 25.8 25.0 27.3 23.5 28.8 
6 2,391 180 0 41.1 36.1 42.8 37.8 39.4 39.4 38.3 
7 5,365 256 0 35.2 34.0 33.6 36.7 35.2 40.6 39.1 
8 2,330 201 0 30.3 36.8 40.3 34.8 37.3 37.3 37.8 
9 1,164 113 0 35.4 29.2 33.6 30.1 29.2 32.7 33.6 
10 593 106 0 37.7 44.3 40.6 47.2 41.5 37.7 32.1 
11 2,222 182 0 24.2 26.4 27.5 27.5 28.0 20.3 27.5 
12 6,880 512 0 40.0 39.6 40.6 41.0 41.4 39.8 38.9 
13 2,373 160 0 36.9 40.6 36.2 33.8 39.4 30.0 36.9 
14 50 42 0 40.5 38.1 28.6 45.2 33.3 33.3 31.0 
15 4,100 241 0 36.5 38.6 34.4 34.9 42.7 33.2 32.8 
16 3,951 412 0 37.9 36.9 36.9 38.1 40.3 40.5 39.3 

 
Table 6  
Estimates in the CES example 

 

Method Quantity t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 

complete data mean 38.05 38.41 38.70 38.95 39.16 38.91 38.79 38.81 

 �var  0.805 0.814 0.828 0.830 0.990 0.832 0.822 0.852 
respondents mean  54.03 54.31 54.15 55.08 55.15 54.20 54.50 

 �bias   40.7% 40.3% 39.0% 40.7% 41.7% 39.7% 40.4% 

 �var   1.647 1.488 1.506 1.990 1.708 1.413 1.491 
simple linear mean  38.45 38.72 39.33 38.81 41.04 40.54 39.79 

regression imputation �bias   0.1% 0.1% 1.0% -0.9% 5.5% 4.5% 2.5% 

 �var   0.821 0.834 0.866 0.963 1.979 1.465 1.008 
censoring and linear mean  38.45 38.71 39.17 38.25 40.46 40.34 40.30 

regression imputation �bias   0.1% 0.0% 0.6% -2.3% 4.0% 4.0% 3.8% 

 �var   0.821 0.833 0.881 1.289 1.497 1.630 1.660 
proposed imputation mean  38.37 38.68 38.97 39.10 39.05 38.72 38.88 

 �bias   -0.1% -0.1% 0.0% -0.1% 0.4% -0.2% 0.2% 

 �var   0.813 0.834 0.837 1.019 0.962 0.924 0.910 
�bias:  (sample mean / sample mean of complete data) - 1 
�var:  bootstrap variance estimate 

 

7. Concluding remarks 
 

For longitudinal data with nonmonotone nonresponse, 

we propose an imputation method under the assumptions 

that the nonresponse mechanism is last-value-dependent and 

the longitudinal data follow a Markov chain. Our method is 

nonparametric and produces consistent and asymptotically 

normally distributed estimators of population means. 

Because the asymptotic variances of the estimators of popu-

lation means are very complicated, we propose a simple 

bootstrap method for variance estimation. Some simulation 

results show that the proposed method works well. The CES 

is our motiving example and is used for illustration.  

In general, nonresponse of data at time point t may 

depend not only on the last value at time 1,t −  but also on 

other past values at time points prior to 1.t −  Furthermore, 

the longitudinal data may not be a Markov chain, i.e., there 

may be long time dependence among data from different 

time points. In either case, our proposed method is not 

applicable. A general method is still under development.  

 
Appendix 

 
Proof of (5) 

Let ( )L ξ  denote the distribution of ξ  and ( )L ξ | ζ  

denote the conditional distribution of ξ  given .ζ  Then,  
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where the third equality follows from (1). Similarly, we can 

show that  

1 1 1 1( , 1, 1) ( , 1).t t t t t t tL y y L y y− − − −| δ = δ = = | δ =  

Hence, 1 1 1 1( , 0, 1) ( , 1, 1)t t t t t t t tL y y L y y− − − −| δ = δ = = | δ = δ =  

and result (5) follows.   
Proof of (7)  

Using the same notation as in the previous proof, we 

have  
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where the last equality follows from (1). Similarly, we can 

show that  
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and result (7) follows.   
Proof of theorem 1 

Let ( 2, , )t T= …  be fixed and t rn , =  the number of units 

with 1, 1, , 1.t r iI r t, , = = −…  We first show that, for 

1,r t< −   
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where the last equality follows from assumption (2). Then  
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Hence, {( , ), 1, , }t ty t Tδ = …  is a Markov chain. 

Consequently,  
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Then, the left hand side of (11) is equal to  
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which is the right hand side of (11). 

It follows from the construction of 
t iy ,ɶ  described in 

Section 3, result (11), and the proof of Theorem 2.1 in 

Cheng (1994) that  
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