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A Bayesian allocation of undecided voters 

Balgobin Nandram and Jai Won Choi 1 

Abstract 

Data from election polls in the US are typically presented in two-way categorical tables, and there are many polls before the 

actual election in November. For example, in the Buckeye State Poll in 1998 for governor there are three polls, January, 

April and October; the first category represents the candidates (e.g., Fisher, Taft and other) and the second category 

represents the current status of the voters (likely to vote and not likely to vote for governor of Ohio). There is a substantial 

number of undecided voters for one or both categories in all three polls, and we use a Bayesian method to allocate the 

undecided voters to the three candidates. This method permits modeling different patterns of missingness under ignorable 

and nonignorable assumptions, and a multinomial-Dirichlet model is used to estimate the cell probabilities which can help to 

predict the winner. We propose a time-dependent nonignorable nonresponse model for the three tables. Here, a nonignorable 

nonresponse model is centered on an ignorable nonresponse model to induce some flexibility and uncertainty about 

ignorabilty or nonignorability. As competitors we also consider two other models, an ignorable and a nonignorable 

nonresponse model. These latter two models assume a common stochastic process to borrow strength over time. Markov 

chain Monte Carlo methods are used to fit the models. We also construct a parameter that can potentially be used to predict 

the winner among the candidates in the November election. 
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1. Introduction 
 

It is a common practice to use two-way categorical tables 

to present survey data. Our application is to predict the 

winner in an election using tables constructed from a short 

series of polls taken before the actual election. For many 

surveys, there are missing data and this gives rise to partial 

classification of the sampled individuals. Little and Rubin 

(2002, section 1.3) give definitions of the three missing data 

mechanism (missing completely at random  -  MCAR, 

missing at random  -  MAR, missing not at random  -

MNAR); ignorable models are used to analyze data from 

MAR and MCAR mechanisms and nonignorable models 

for data from MNAR mechanisms. Thus, for the two-way 

table there are both item nonresponse (one of the two 

categories is missing) and unit nonresponse (both categories 

are missing). One may not know how the data are missing, 

and a model that includes some difference between the 

observed data and missing data (i.e., nonignorable missing 

data) may be preferred. For a general r c×  categorical table 

we address the issue of estimation of the cell probabilities of 

the two-way table. This problem is important because, with 

a substantial number of undecided voters, an election 

prediction based on only the partially observed data may be 

misleading.  

As in Nandram, Cox and Choi (2005) essentially there 

are four two -way tables, one table with all complete cases 

and three supplemental tables. Of the three supplemental 

tables, the first has only row classification (item 

nonresponse), the second has only column classification 

(item nonresponse), and the third does not have any 

classification (unit nonresponse). We have extended the 

ignorable and nonignorable nonresponse models for two-

way categorical tables of Nandram, et al. (2005) to 

accommodate a third category (i.e., time in a short sequence 

of election polls). We have extended these models even 

further to include a time-dependent nonignorable non-

response structure. The inclusion of the time-dependent 

structure can provide a more efficient prediction. A 

Bayesian method permits modeling different patterns of 

missingness under the ignorability and nonignorability 

assumptions, and a time-dependent nonignorable non-

response model is obtained.  

Our application is in Ohio governor’s election, and there 

are several related problems. The sampled persons are 

categorized by two types of attributes and the cells of such 

categorical tables are analyzed. However, only partial 

classification of the individuals is available because some 

individuals are classified by at most one attribute, and others 

are left unclassified. Specifically, we use tabular data from 

the Ohio polls to study the relation between a measure of 

voters’ status (likely to vote and unlikely to vote) and 

candidate preference (Fisher, Taft and other) to illustrate our 

methodology. It is interesting that voters’ status is related to 

candidate preference. Also, it is desirable to make an 

adjustment for undecided voters because the proportion of 

undecided voters is usually high, and they often decide the 

final outcome of an election.  
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We do not know whether an ignorable nonresponse 

model or a nonignorable nonresponse model is appropriate, 

but one may have uncertainty about the ignorability of 

undecided voters in election polls. Referring to the Buckeye 

State Poll, Chen and Stasny (2003) stated that “The 

assumption of nonignorability of the nonresponse may be a 

reasonable assumption in this study because people might 

be reluctant to express their preference for an unpopular 

candidate, or if their current preferences are not firm or 

accurate enough for the standards of the interview.” They 

also said that while Chang and Krosnick (2001) use 

ignorable models for their analyses, Chang and Krosnick 

(2001) suggested that nonresponse might be related to the 

unobserved data itself. Chen and Stasny (2003) fit three 

ignorable nonresponse models (A, B and C) and one 

nonignorable nonresponse model (D). We compare our 

results with theirs.  

Nandram and Choi (2002 a, b) use an expansion model 

to study nonignorable nonresponse binary data. The 

expansion model, a nonignorable nonresponse model, 

degenerates into an ignorable nonresponse model (in the 

spirit of Draper 1995). This degeneracy occurs when a 

parameter in the nonignorable nonresponse model is set to a 

certain value; a good description of the centering idea is 

given in Nandram, et al. (2005, section 1.2). Because it is 

difficult to carry out this procedure as described, we use an 

alternative procedure as in Nandram, et al. (2005). This 

permits an expression of uncertainty about ignorability. This 

is the idea of centering a nonignorable nonresponse model 

on an ignorable nonresponse model, and we have used it in 

several of our papers to express uncertainty about 

ignorability or nonignorability. Here, for nonignorable 

nonresponse we attempt a related methodology, but the 

issues for a two-way categorical table are more complex, 

especially when a third category (i.e., time) is included in 

these tables.  

Using the approach of Chen and Fienberg (1974), Chen 

and Stasny (2003) describe the two issues we are discussing 

in this paper. For the two-way categorical tables they can 

handle item nonresponse only; unit nonresponse is excluded 

from their analysis. However, they assume that the data are 

missing at random and show how to obtain maximum 

likelihood estimators under their model. They also use a 

nonignorable nonresponse model (D), which they claim is 

their best model. It is noted in Little and Rubin (2002, 

chapter 15) that one issue of the nonignorable nonresponse 

model for this problem is that there are too many 

parameters, and many parameters are not identified, so they 

attempted a correction using hierarchical log-linear models. 

See Nandram, et al. (2005) for the case in which there are 

three supplemental tables.  

Our methodology differs from those of Chen and Stasny 

(2003). The major difference is that we use a Bayesian 

approach. This permits us to use a method that does not rely 

on asymptotic theory, incorporate nonignorable missingness 

into the modeling and obtain time-dependent nonignorable 

model for estimating the proportion of voters for the three 

candidates. Looking to predict the winner more convince-

ingly, we have also constructed a new parameter; it is 

relatively easy to analyze this parameter within the Bayesian 

paradigm. The Bayesian method permits modeling different 

patterns of missingness under two different assumptions 

(i.e., ignorable and nonignorable missingness). Our idea is 

to start with an ignorable nonresponse model, which is then 

expanded into a nonignorable nonresponse model, and to 

the time-dependent nonignorable nonresponse model. It is 

worth noting that unit nonresponse is also included in our 

modeling which the other researchers consider as a separate 

problem using weighting adjustment (e.g., see discussion in 

Kalton and Kasprzyk 1986). However, there can be 

nonignorability here as well, and one would need to include 

unit and item nonresponses simultaneously.  

In this paper, our key contribution is to introduce a 

Bayesian method to analyze data from an r c×  categorical 

table when there are both item and unit nonresponse, and the 

missing data mechanism can be nonignorable with a time-

dependent structure. In Section 2, we describe the categor-

ical data on voters’ status and candidate preference with a 

time-dependent structure. In Section 3, we describe the 

methodology to obtain estimates of the cell probabilities 

incorporating the two types of missing data, and we show 

how to expand an ignorable nonresponse model into a 

nonignorable nonresponse model and time-dependent 

model. We also show how to use Markov chain Monte 

Carlo methods to fit the nonignorable nonresponse model. 

In Section 4, we analyze the Ohio election data to 

demonstrate the versatility of our methods. Finally, Section 

5 has concluding remarks.  

 
2. Data on 1998 Ohio Polls  

The Center for Survey Research (CSR) at the Ohio State 

University conducted the Buckeye State Poll (BSP) during 

the 1998 election for Senator, Governor, Attorney General, 

State Secretary, Treasurer and Columbus Mayor. In certain 

months before the election, CSR conducted pre-election 

surveys as part of the BSP and included additional questions 

to collect information related to the respondent’s likelihood 

of voting and candidate preference. In the BSP, households 

are sampled using the Random Digit Dialing (RDD) 

method, and one adult per household is selected to be 

interviewed using the last birthday method (Lavrakas 1993).  
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It is pertinent to briefly describe the RDD method. 

Polling firms make extensive use RDD, and the main goal 

of RDD is to develop a representative sample of the overall 

voter population. RDD sampling assumes that a represen-

tative sample cannot be obtained using listed telephone 

numbers in the directory. Each telephone number has 10 

digits, the first three form the area code, the next three form 

the prefix (colloquially called the exchange), and the last 

four (suffix) identify a particular subscriber or a household 

(one household can have more than one phone number). 

The area codes are geographically based and typically 

identify localities in a state, and the exchanges can be 

geographically oriented. There are ten million numbers to 

dial but roughly less than 25% of these are real telephone 

numbers. Thus time and money are wasted in dialing 

unused numbers. We discuss this further in Section 3.  

Chen and Stasny (2003) and Chang and Krosnick (2001) 

analyzed data from three BSP pre-election forecasting polls. 

Details of each of these three BSP pre-election surveys can 

be found in Table 1. These BSP pre-election surveys 

measured respondents’ candidate preferences three times 

(January, April and October) for the November 1998 Ohio 

Governor race. In addition, respondents were asked for their 

self-reported likelihood of voting in the upcoming election 

using two questions. Chang and Krosnick (2001) also used 

filter variables (such as registered to vote, self-reported 

likelihood of voting, and voted in the last major election, 

etc.) to obtain those most likely to vote. Thus prediction is 

based only on the respondents likely to vote. Those 

registered to vote are classified into likely to vote, unlikely 

to vote and undecided. Chang and Krosnick (2001) showed 

that deterministic allocation of undecided respondents 

provide improvement in forecasting voters’ candidate 

preferences, as compared to exclusion of all undecided 

respondents. Chen and Stasny (2003) used probability 

models to allocate the undecided voters and compared their 

forecasting with that of Chang and Krosnick (2001).  

The data set in Chen and Stasny (2003) is slightly 

different because we use the undecided counts (unit 

nonresponse) on both variables. A voter can be undecided 

on at least one of the two categorical variables at each of the 

three polls. Chen and Stasny (2003) only study the data with 

undecided in exactly one variable, not both. In Table 1 for 

the undecided voters in both variables the counts for the 

January, April and October polls are respectively 5, 3 and 4; 

these numbers are bolded. In fact, the inclusion of these 

counts into our model, is an extension of the models in Chen 

and Stasny, and generalizes our methodology considerably.  

We briefly describe the 2 3×  categorical table of Ohio 

election data by voters’ status (VS) and candidate 

preference (CAN). Here VS is a binary variable, and there 

are two levels: likely to vote and not likely to vote; CAN has 

three levels: Fisher, Taft, others. There are also undecided 

voters in VS and CAN. The bulk of the undecided voters 

come from voters who are “likely to vote” and “unlikely to 

vote” and the numbers are 173, 142 and 138 for January, 

April and October respectively; the undecided voters for 

Fisher, Taft and others are much smaller.   
Table 1 

Classification of October 1998 Buckeye State Poll by voting 
status and candidate 
 

Candidate 

Status  Fisher Taft Other Undecided Total 

a. January, 1998       

 Likely to vote 127 183 8 109 427 
 Not likely to vote 57 94 4 59 214 
 Undecided 0 2 0 5 7 
 Total 184 279 12 173 648 

b. April, 1998       

 Likely to vote 114 135 1 61 311 
 Not likely to vote 104 149 3 78 334 
 Undecided 2 6 0 3 11 
 Total 220 290 4 142 656 

c. October, 1998       

 Likely to vote 112 140 23 61 336 
 Not likely to vote 96 108 21 73 298 
 Undecided 7 11 1 4 23 
 Total 215 259 45 138 657 

 

NOTE: These data are taken from Chang and Krosnick (2001); Chen 
and Stasny (2003) used a very similar data set; they did not use 
5 3 4,, ,  the number of undecided voters in both variables.  

In the January 1998 poll, about 73% of the voters are 

completely classified, 27% have no decision about 

candidate preference, only 1% did not know whether they 

would vote or not, and only five persons were completely 

unclassified among the 648 participants. The data set, used 

in our study, is presented in Table 1 as a 2 3×  categorical 

table of voters’ status and candidate preference. Our 

problem is to predict the winning candidate by estimating 

the proportion of final votes for each candidate.  

The samples obtained in January, April and October are 

independent. There is no oversampling for a particular sub-

population or weighting of the original sample. Like many 

telephone surveys, RDD frame suffers from the common 

problem of undercoverage. As telephone coverage is not 

uniform over age, race, sex, income and geography, there is 

a need to poststratify the original sample to reduce the 

coverage bias by properly weighting the original data.  

We perform a preliminary test of heterogeneity of the 

cell proportions across the three polls. Assuming a missing 

at random mechanism, we fill in the undecided votes. We 

assume that for each row (column) the undecided voters are 

filled in proportionally to the cell counts. Let tjkn  denote the 

adjusted cell counts with 1 1 ,r c
j kt tjkn n= =∑ ∑=  and let tjkp  

denote the cell proportions. For a model of heterogeneous 

proportions, we assume that  
ind iid

Multinomial( ) and Dirichlet( ) 1t t t t tn t … T| , , = , , ,1∼ ∼n p p p  
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where 1  is a rc -vector of ones.  

For a model of homogeneous proportions, we assume 

that  

ind

Multinomial( ) 1 and Dirichlet( )t tn t … T| , , = , , , .1∼ ∼n p p p  

Then, the Bayes factor of heterogeneity versus homo-

geneity is  

1 1
2

1 1
1 1

{ 1}1BF
{( 1)} ( ) ( 1)

T Tr c
tjk tt t

T T
j k tjk tt t

n n rc

rc n n rc

= =

= = = =

  ! + − ! 
= .  

− ! ! + − !    

∏ ∑∏∏
∑ ∏

 

Thus, using the adjusted cell counts, the logarithm of the 

Bayes factor (LBF) is approximately 12.4, showing very 

strong evidence for heterogeneity, and supporting our time-

dependent model.  

In a similar manner, we have computed the Bayes factors 

of 1 2 3= ≠p p p  or 1 2 3≠ =p p p  versus homogeneity; 

the LBFs are 7.6 and 4.4 respectively. Thus, the time-

dependence occurs for both periods, January-April and 

April-October.  

 
3. Methodology 

 
We have constructed a time-dependent nonignorable 

nonresponse model for the 1998 Ohio Poll data. For 

comparison we have also considered two other models, an 

ignorable and a nonignorable nonresponse model. These 

latter two models are not time-dependent because we 

assume that the three time points come from the same 

stochastic process (i.e., no correlation across time). Our 

main contribution is the time-dependent model. We have 

used the ignorable and nonignorable nonresponse models 

for a single time point in Nandram, et al. (2005). Although 

these two models are not appropriate in the present context, 

they are natural to motivate our time dependent non-

ignorable nonresponse model. Essentially we start with the 

ignorable nonresponse model which is expanded into a 

nonignorable nonresponse model, and we extend the non-

ignorable nonresponse model to a time-dependent model.  

In RDD stratification and clustering are used to reduce 

the excess artificial numbers. Stratification by area code and 

some exchanges is used; geographic ordering (state or 

region) with systematic selection provides implicit 

stratification of exchanges. If an exchange is used to form a 

stratum, there are still ten thousand numbers to dial, still a 

large waste with numerous redundant numbers. The 

Mitofsky-Waksberg (see Waksberg 1978) procedure is a 

stratified two-stage cluster sampling design used to reduce 

the artificial numbers. Exchange areas are divided into equal 

size, and a random sample of exchanges is taken with 

replacement from those eligible (according to the measure 

of size of each exchange area). Within selected exchange 

area, a fixed number of telephone numbers is generated at 

random, without replacement and dialed. Thus, there is also 

differential probabilities of selection (i.e., unequal cluster 

sizes) that must be considered in a comprehensive analysis. 

There are other variants of this procedure. RDD was 

adequate in 1998 Ohio election, but because of new 

technological innovations (e.g., cellular phone, email, 

internet, etc.), the usefulness of RDD may be diminished. In 

this paper, our method and models do not include strat-

ification, clustering or differential probabilities of selection.  

Our models are used to estimate the proportions of voters 

voting for Fisher, Taft and other in the October poll. Then, 

assuming no catastrophic change in the November election, 

we predict the proportion of voters voting for Fisher, Taft 

and other. In this way we can predict the winner in the 

November election. We are excited by a referee’s 

suggestion that one can use a mixture model to cover the 

possibility of a catastrophe.  

In Sections 3.1 and 3.2 we describe the notations and the 

three models. In Section 3.3 we show how to fit the time-

dependent nonignorable nonresponse model. The ignorable 

and nonignorable nonresponse models can be fit in a similar 

manner (see Nandram, et al. 2005 for details). In Section 3.4 

we show how to specify the two parameters ( 0µ  and 2

0c ), 

and in Section 3.5 we show how to do estimation in the 

October poll and prediction in the November election. 

 
3.1 Notation 
 

Let 1tjkI =ℓ  if the th
ℓ  voter belongs to the thj  row and 

thk  column of the two-way table at time t  and 0tjkI =ℓ  

otherwise, 1 1 1 1 .t … T j … r k … c … L= , , , = , , , = , , , = , ,ℓ  

That is, 1tjkI =ℓ  denotes the cell of the r c×  table that a 

voter belongs to. In our application 3,T =  2r =  and 

3.c =  Let 1tsJ =ℓ  if the th
ℓ  voter falls in table s  

( 1 2 3 4s= , , , ) and 0tsJ =ℓ  otherwise, 1, ,4,s …= 4
1 tss J=∑ =ℓ  

1; tsJ ℓ  indicates which table an individual belongs to and 

1 2 3 4( ).t t t t tJ J J J= , , ,ℓ ℓ ℓ ℓ ℓJ  

Let the cell counts be 1 , 1, 2, 3, 4n
tsjk tjk tsy I J s=∑= =ℓ ℓℓ  

for the four tables at each poll. Here 1t jky  are observed and 

, 2, 3, 4,tsjky s =  1, ,t … T=  are missing (i.e., latent 

variables). For 1t jky  we know that 1 01 1 ,r c
t jk tj k y n= =∑ ∑ =  the 

number of individuals with complete data. For 2t jky  we 

know that 21 ,c
t jk tjk y u=∑ =  where the row margins 

, 1, ,tju j … r=  are observed. For 3t jky  we know that 

31 ,r
t jk tkj y v=∑ =  where the column margins , 1, ,tkv k … c=  

are observed. For 4t jky  we know that 41 1
r c

t jk tj k y w= =∑ ∑ =  

(unit nonresponse). In this analysis 0,tn ,tu tv  and tw  are 

held fixed (i.e., fixed margin analysis) and known.  

Whenever it is convenient, we will use notations such as  



Survey Methodology, June 2008 41 
 

 

Statistics Canada, Catalogue No. 12-001-X 

44

1 1 1 1 1 1

r cr c

tsjk tsjk tsjk tsjk

s j k s j k s j k s j k

y y
, , = = = , , = = =

≡ , π ≡ π∑ ∑∑∑ ∏ ∏∏∏  

and (1) 2 3 4 (2) 1 3 4( , , ), ( , , ),t t t t t t t t= =y y y y y y y y  etc., where 

( , 1, , , 1, , , 1, , , 1, 2, 3, 4).ts tsjky j … r k … c t … T s= = = = =y  

Also, we let 1 11 1( , , )T…=y y y  and (1) 1(1) (1)( , , )T…=y y y  

with (1) (1) (4)( , , ).t t…=y y y  Also, 4 .r c
tsjk ts j k y n, ,

, ,∑ =  We will 

also use ts tsjk t jk tsjkj k sy y y y⋅⋅ ⋅,∑ ∑= , = ,  etc., t =y  

1 2 3 4( )t t t t, , ,y y y y  and 1( ).T…= , ,y y y  
 
3.2 Nonresponse models  

Letting ( 1 , 1 1t tjkI t … T j … r k … c= , = , , = , , , = , , , =ℓ ℓ ℓI  

1 ),… L, ,  for all models, we take  

iid

Multinomial{1 }t t t| , ,ℓ ∼I p p  (1) 

where 

1 1

1 0 1 1 1 .
r c

tjk tjk

j j

p p t … T j … r k … c
= =

= , ≥ , = , , , = , , , = , ,∑∑  

For the ignorable nonresponse model we take  

iid

Multinomial{1 }t t t| , .ℓ ∼J π ππ ππ ππ π  (2) 

That is, there is no dependence on the cell status of an 

individual. For the nonignorable nonresponse models we 

take  

iid

{ 1 0 }

Multinomial{1 }

t tjk tjktj k

tjk

I I j j k k′ ′ ′ ′| = , = , ≠ , ≠ ,

, .

ℓ ℓ ℓ

∼

J ππππ

ππππ  (3)

 

Assumption (3) specifies that the probabilities an 

individual belongs to one of the four tables depend on the 

two characteristics (i.e., row and column classifications) of 

the individual. In this manner we incorporate the 

assumption that the missing data is nonignorable. Note that 

conditional on the specified parameters in (1)-(3), one 

voter’s behavior is correlated with another at the same time 

,t  but there is independence over time. It is worth noting 

here that while the parameters in (2) are identifiable, those 

in (3) are not identifiable. This is where the difficulty in the 

nonignorable nonresponse model arises, and special 

attention is needed.  

It follows from (1) and (2) that for the ignorable model  

4 4

1 1 1 1 1

( )
tsjk

ts

yT r c
tjky

ts
tsjkt s s j k

p
g

y

 
 

⋅⋅ 
 
 
  = = = = =

  
, | ∝ π  !  

∏ ∏ ∏∏∏p yππππ  (4) 

subject to 21 1 ,c
t jk tjk y u j r=∑ = , = , ..., 31

r
t jk tkj y v k=∑ = , =  

1 ,c, ...,  and 41 1 .r c
t jk tj k y w= =∑ ∑ =  Note that under 

ignorability the likelihood function in (4) separates into two 

pieces, one that contains the tsπ  only and the other the ,tjkp  

and inference about these two parameters are unrelated; see 

Section 3.2 of Nandram, et al. (2005) for the original 

discussion of this model. Also, it follows from (1) and (3) 

that for the nonignorable nonresponse models the 

augmented likelihood function for (1) 1, , |p y yππππ  is  

4

(1) 1

1

( )
tsjk

t jk

yr c r cT
ysjk
tjk

tsjkt s j k j k

g p
y

 
 
 ⋅
 
 
 
  

, , ,

= , , ,

 π
, , | ∝  ! 

∏ ∏ ∏p y yππππ  (5) 

subject to 21 1 ,c
t jk tjk y u j r=∑ = , = , ..., 31

r
t jk tkj y v k=∑ = , =  

1 ,c, ...,  and 41 1 ;r c
t jk tj k y w= =∑ ∑ =  see Nandram, et al. (2005) 

for a description of identifiability in a similar situation.  

For the ignorable and nonignorable nonresponse models, 

we take  

iid

2 2 2 2Dirichlet ( ) 1 1t t … T| , τ τ , = , , + ,∼p µ µµ µµ µµ µ  (6) 

where we consider prediction at 1,T +  one step ahead 

(November). The probabilistic structure in (6) permits a 

“borrowing of strength” across time. Note that the k -

dimensional vector x  has a Dirichlet distribution if 
1

11( ) ( ) 0 1 1,jk k
j jj jjp x D x j … k x

α −
== ∑∏| = / , ≥ , = , , , =x α αα αα αα α  

where ( )D αααα  is the Dirichlet function and 

0 1 .j j … kα > , = , ,  For a quick reference see Ghosh and 

Meeden (1997, pages 42, 50, 127) in connection with the 

Polya urn distribution, and more appropriately its use as a 

conjugate prior in multinomial sampling; starting with our 

first paper (i.e., Nandram 1998) we have been using the 

Dirichlet-multinomial extensively in our research.  

We next describe the stochastic models for the .tjkππππ  For 

the ignorable nonresponse model, we take  

iid

Dirichlet ( ) 1t t … T, = , , ,1∼ππππ  (7) 

where 1 is a four-dimensional vector of ones. We need (7) 

because T  is small (i.e., 3T =  in our application). Thus, 

we use the uniform prior in 4R  (essentially noniformative); 

otherwise we will have to specify the unknown parameters 

of the Dirichlet distribution with virtually no data. For the 

nonignorable nonresponse models we take  

1 1

iid

1 1Dirichlet ( ) 1 1 1

tjk

t … T j … r k … c

| , τ

τ , = , , , = , , , = , , .∼

π µπ µπ µπ µ

µµµµ  (8)

 

First, we note that (8) provides a “borrowing of strength" 

across time. More importantly, because tjkππππ  are not 

identifiable so are 1µµµµ  and 1.τ  One possible way out of this 

dilemma is to “center” the nonignorable nonresponse model 

on the ignorable nonresponse model.  

For the time-dependent model, we take  

iid

1 2 1 2Dirichlet ( ) 1 1t t t t … T− −| , τ τ , = , , + ,∼p p p  (9) 
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where 0p  is also unknown. Note that  

1 2 1{ } 1 1t t tE t … T− −| , τ = , = , , + ;p p p  

so that { },tp  a priori, is a martingale vector. Here T  is 

small (i.e., 3T = ). Thus, this time-dependent structure 

seems more appropriate, and can potentially provide 

improved precision. Note also that we have taken 

0 Dirichlet ( ).1∼p  

Finally, we specify prior densities for the hyper-

parameters. First, we take  

iid

1 2 Dirichlet ( ), ,1∼µ µµ µµ µµ µ  (10) 

essentially noniformative prior densities.  

Finally, 1τ  and 2τ  are independent and identically 

distributed random variables from  

2( ) 1 (1 ) 0f x x x= / + , ≥ .  (11) 

Again this is an essentially noniformative prior density. 

Note that 1µµµµ  and 1τ  do not exist in the ignorable 

nonresponse model. Gelman (2006) recommended priors 

like (11) instead of the ill-behaved proper diffuse gamma 

priors.  

For the nonignorable nonresponse models we need to be 

more careful to specify the prior density of 1τ  because tjkππππ  

are not identifiable. Here we attempt to “center” the 

nonignorable nonresponse models on the ignorable 

nonresponse model. In (8) the parameter 1τ  tells us about 

the closeness of the nonignorable model to the ignorable 

model. For example, if 1τ  is small, the tjkππππ  will be very 

different, and if 1τ  is large, the tjkππππ  will be very similar. 

Thus, a priori inference will be sensitive to the choice of 1,τ  

and one has to be careful in choosing 1.τ  We would like to 

choose a prior density for 1τ  so that the nonignorable 

nonresponse model is kept close to the ignorable 

nonresponse model. Thus, we take  

2 2
1 0 0 0Gamma (1 1 )c cτ / , /µ ,∼  (12) 

where 1 0( )E τ = µ  and 1 0CV( ) ,cτ =  with CV  the 

coefficient of variation; both 0µ  and 0c  are to be specified. 

We use the prior (12) because by an appropriate choice of 

0µ  and 0c  it is possible to center the nonignorable 

nonresponse model on the ignorable nonresponse model. Of 

course, one can use other convenient proper priors with 

parameters like 0µ  and 0c  to facilitate the centering. In 

Section 3.4 we will use samples from the posterior density 

of 1τ  under the ignorable nonresponse model to specify 0µ  

and 0.c  

For each of the three models, it is easy to write down the 

joint prior density of the parameters. For example, for the 

time-dependent model the joint prior density is  

2 2
0 1 0 0

1 2 1 1

1 1
1 1 2 1 2

2

1 4 1

1 1 1

1 2 1 11 1 1

1( )
(1 )

( ) ( )

t jk s

c c

r c p
T r c

tjk tsjkj k s

tt j k

p e

p

D D

−

/ − −τ /µ

τ − µ τ −
= = =

−= = =

, , , τ , τ ∝ τ
+ τ

 π 
× , τ τ  

∏ ∏ ∏∏ ∏∏

p

p

π µπ µπ µπ µ

µµµµ  (13)

 

where ( )D ⋅  is the Dirichlet function.  
 
3.3 Fitting the time-dependent nonignorable 

nonresponse model   
Combining the likelihood function in (5) with the joint 

prior density in (13) via Bayes’ theorem, the joint posterior 

density of the parameters ,ππππ p 1,µµµµ 1τ 2τ  and the latent 

variables (1)y  is  

2 2
0 1 0 0

1 2 1 1

1 1 2 (1) 1

4
1 1
1 2

2 1

1 4 1

1 1 1

1 2 1 11 1 1

( )

1
(1 )

( ) ( )

tsjk

t jk

t jk s

yr cT r c
ytsjkc c
tjk

tsjkt s j k j k

r c p
T r c

tjk tsjkj k s

tt j k

e p
y

p

D D

 
 
 ⋅
 
 
 
  

−

, , ,
/ − −τ /µ

= , , ,

τ − µ τ −
= = =

−= = =

π , , , τ , τ , |

 π
∝ τ  !+ τ  

 π
×  τ τ

∏ ∏ ∏

∏ ∏ ∏∏ ∏∏

p y y

p

π µπ µπ µπ µ

µµµµ



 (14)

 

subject to 21 1 ,c
t jk tjk y u j r=∑ = , = ,..., 31

r
t jk tkj y v k=∑ = , =  

1 ,c,...,  and 41 1 1r c
t jk tj k y w t … T= =∑ ∑ = , = , , .  

The posterior density in (14) is complex, so we will use 

Markov chain Monte Carlo methods to fit it. However, it is 

easy to fit the time-dependent model using the griddy 

Metropolis-Hastings sampler (our terminology) as we will 

describe. Also, in a similar manner using the griddy Gibbs 

sampler (Ritter and Tanner 1992), it is easy to fit the 

ignorable and the nonignorable nonresponse models. We 

obtain a sample from the joint posterior density in order to 

make inference about the parameters. Specifically, we need 

to make inference about .tp  To run the Metropolis-Hastings 

sampler, we need the conditional posterior density of each 

of the parameters given the others.  

First, we consider the conditional posterior probability 

mass functions of 2 3 4ts s, = , , ,y 1t … T= , ,  given ( ),t sy  

,tp 1 1 .tjk j … r k … c, = , , , = , ,ππππ  From (14) it is clear that 

under the conditional posterior density the 1ts t …, = , ,y  

2 3 4,T s, = , ,  are independent multinomial random vectors. 

Specifically, letting ( 1 1 1 )tjkp t … T j … r k … c= , = , , , = , , , = , ,p  

and ( 1 1 1 ),tjk t … T j … r k … c= , = , , , = , , = , ,π ππ ππ ππ π  

ind
(2)

2 1{ } Multinomial( ) 1 )t j t tj tju j … r| , , , = , , ,∼y y p qππππ  

ind
(3)

3 1{ } Multinomial( ) 1 )t k t tk tkv k … c| , , , , = , , ,∼y y p qππππ  

(4)
4 1{ } Multinomial( )t t t tw| , , , ,∼y y p qππππ  (15) 
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where (2)
2 21

1 ,c
t jk tjktjk t jk tjkk

q p p k … c′ ′′=∑= π / π , = , , (3)
tjkq =  

3 31
1r

t jk tjk t j k tj kj
p p j … r′ ′′=∑π / π , = , ,  and (4)

tjkq =  
4 41 1

,r c
t jk tjk t j k tj kj k
p p′ ′ ′ ′′ ′= =∑ ∑π / π 1 1 1j … r k … c t … T= , , , = , , , = , ,  

The conditional posterior density of tjkππππ  is given by  

ind

1 1 1 2 2 1

3 3 1 4 4 1

{ } Dirichlet(

)

tjk t t jk t t jk t

t jk t t jk t

y y

y y

| , τ, +µ τ , +µ τ ,

+µ τ , +µ τ

∼yπ µπ µπ µπ µ

 (16)

 

with independence over 1 ,t … T= , , 1 1 .j … r k … c= , , , = , ,  

The conditional posterior density for ,tp 1t … T= , ,  is 

more difficult. We note that 

0 2 1

11 1
0 1

0 2

( else )
( )

jk
r c p

jkj k
p

D

τ −

= =π | , ∝
τ

∏ ∏
p y

p
 (17) 

and 

2

1 2

1

1

11 1 1

21 1

( else )

1
( )

tjk

t jk t jk

t

r c p
r c

t jky p j k
tjk

tj k

p
p t … T

D
⋅ −

τ − 
++ τ −  = =

 
 

= = 

π | ,

∝ , = , , ,
τ

∏ ∏
∏∏

p y

p
 (18)

 

where “else” refers to all of the parameters in 

1 1 2 (1)( ), , , τ , τ ,p yπ µπ µπ µπ µ  excluding 0p  in (17) or tp  in (18). 

We show how to draw samples from (17) and (18) in 

Appendix A.  

Next, we consider the hyper-parameters. Letting sδ =  

1 1 1 ,T r c
sjkt j k= = =∏ ∏ ∏ π  and ( 1 1tjk t … T j … r= π , = , , , = , , ,ππππ  

1 ),k … c= , ,  the joint conditional posterior density of 

1 1, τµµµµ  is  

1 1

2 2
0 1 0 0

4

1 11
1 1 1

1 1

( )
{ ( )}

s

s

c cs
rcT

p e
D

µ τ

/ − −τ /µ=

δ
, τ | ∝ τ ,

τ

∏
µ πµ πµ πµ π

µµµµ
 

where 

4

1 1 11
1 0 1 2 3 4 0.s ss

s
=
µ = , µ ≥ , = , , , , τ >∑  

We do not need to get a sample directly from 

1 1( ).p | τ ,µ πµ πµ πµ π  But, letting 1( )sµµµµ  denote the vector of all 

components of 1µµµµ  except 1 ,sµ  we have  

11 12 13 11 1

1 1( ) 1

(1 )
4

1 1 11 12 13 1

3

1 1

1

( )

{ ( )} { ((1 ) )}

0 1 1 2 3

s

s s

s
rcT rcT

s

s s

s s s

p

s

−µ −µ −µ τµ τ

′
′ ′= , ≠

µ | , τ ,

δδ∝ ,
Γ µ τ Γ − µ − µ − µ τ

≤ µ ≤ − µ , = , , .∑

µ πµ πµ πµ π

 

(19)

 

We use a grid method to draw a sample from 

1 1( ) 1( ).s sp µ | , τ ,µ πµ πµ πµ π  We started by using 50 grids (i.e., we 

have divided the range of 1 ,sµ 3
11(0 1 ),ss s s ′′ ′= , ≠∑, − µ  into 50 

intervals of equal widths) to form an approximate 

probability mass function of 1 1 2 3.s sµ , = , ,  We first draw a 

random variable from this probability mass function to 

indicate which of the 50 intervals is selected. Then, for 1sµ  

we draw a uniform random variable in this interval. This 

procedure is efficient because 1sµ  is bounded, the intervals 

are very narrow, and it is very “cheap” to construct the 

discrete probability mass function for each 1 1 2 3.s sµ , = , ,  

Finally, 14µ  is obtained from its conditional posterior 

density by taking 3
14 111 .ss=∑µ = − µ  

The conditional posterior density of 1τ  is  

1 1 2 2
0 1 0 0

4
1 1

1 1 1 1

1 11

( ) 0
{ ( )}

s
c cs

rcT
ss

p e
µ τ

/ − −τ /µ

=

 δτ | , ∝ τ , τ > . Γ µ τ 
∏µ πµ πµ πµ π (20) 

To draw a random deviate from (20), we proceed in the 

same manner as for (19), except that we transform 1τ  from 

the positive half of the real line to (0 1).,  (It is more 

convenient to perform a grid approximation to a density in a 

bounded interval.) Thus, letting 1 (1 )τ = φ/ − φ  in (20), we 

have  

1 1 2 2
0 1 0 0

1 1

1

4
1 1
12

1 11

( )

1 0 1
(1 ) { ( )}

s
c cs

rcT
ss

p

e
 
 
 
 
 
  φ 

−φ

µ τ
/ − −τ /µ

= τ =

φ | ,

 δ∝ τ , < φ < . − φ Γ µ τ 
∏

µ πµ πµ πµ π

 

Again, we started by using 50 intervals of equal width to 

draw ,φ  and the random deviate for 1τ  is (1 ).φ/ − φ  

Letting ( 1 1 1 ),tjkp p t … T j … r k … c= , = , , , = , , , = , ,  the 

conditional posterior density of 2τ  is  

1 2 1

1 1
2 22

1 22 1

1( ) 0
( )(1 )

t jk
r c p

T
tjkj k

tt

p

D

− τ −

= =

−=

  
π τ | ∝ , τ > . τ+τ   

∏ ∏
∏p

p
 (21) 

A sample is obtained in a manner similar to 1τ  in (20).  

We have extensive experience in using the grid 

approximation. However, one has to be careful in using the 

grid approximation for parameters close to 0 or 1 in the in 

the interval [0 1].,  One would need to use a grid 

approximation in an interval near the boundary; this can be 

obtained by trial and error in looking at the output of the 

sampler as it progresses. If a parameter in [0 1],  is likely to 

be away from 0 or 1, then the grid method works fine; this is 

the case for the 1sµ ’s. However, for a parameter like 1τ  

(can be very large), when transformed to φ  in the interval 
[0 1],, φ  can be very large (near to 1). If the transformed 
value is like 0.999, one needs to adjust the grid search to be 

in an interval containing 0.999. This has to be done by trial 

and error; one needs to look at the output of φ  as the 
sampler progresses, and adjust the interval accordingly. For 

example, if 100 grid points are equally spaced in [0 1],  such 

as 0.01, 0.02, 0.03, …. 0.99, and the parameter is likely to 

be around 0.999, although we draw uniformly in the 

selected grid interval, these grid points are not going to be 

very efficient.  
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The Metropolis-Hastings sampler is executed by drawing 

a random deviate from each of (15), (16), (17), (18), (19), 

(20) and (21) iterating the entire procedure until 

convergence. This is an example of the griddy Metropolis-

Hastings sampler (Ritter and Tanner 1992). We obtain a 

sample from the posterior densities corresponding to the 

ignorable and nonignorable nonresponse models in a similar 

manner. For all models, we use a sample of 1,000M =  

from the posterior densities to do estimation and prediction. 

We monitored the algorithm for convergence by looking at 

the trace plots of each parameter versus iteration order and 

we studied the autocorrelation coefficient. We used a griddy 

Gibbs sampler to fit the ignorable and nonignorable 

nonresponse models. We used a “burn in” of 1,000 iterates 

and we took every tenth thereafter. This procedure works 

well.  

However, for the time-dependent model, we used a 

griddy approximation to the conditional posterior of 0,p  but 

Metropolis steps for 1 .t t … T, = , ,p  The Metropolis steps 

did not work well because the jumping probabilities are 

0.67, 0.65 and 0.73 for the three conditional posterior 

densities of 1,p 2,p  and 3,p  but they are recommended to 

be between 0.25 and 0.50 (Gelman, Roberts and Gilks 

1996); tuning did not help. So we used grid approximations 

to these three conditional posterior densities as well. The 

grid approximations are very accurate. In all grid 

approximations, we started with 50 grids, and we increased 

the number of grids until our estimates of all ,Tp 1,T +p  

2,µµµµ 2τ  do not change. We found that 200 grids were 

adequate in all cases (i.e., for 1 2 1 2)., , τ , τµ µµ µµ µµ µ  Also, we found 

that although the Metropolis-Hastings sampler did not work 

as well as we wanted, the estimates of the cell proportions 

are virtually the same from both samplers. The Metropolis-

Hastings sampler was run for 25,000 iterations with a “burn 

in” of 5,000 and thinning by choosing every twentieth.  

Finally, we stored the sample from the joint posterior 

density for further analysis. Specifically, for the ignorable 

and the nonignorable nonresponse models, we need the 

sample of size M  from ( ) ( ) ( ) ( )
2 2 1{( ) 1 },h h h h

T h … M−, τ , , , = , ,p pµµµµ  

and for the time-dependent model we need the sample of 

size M  from ( ) ( ) ( )
2 1( ) 1 .h h h

T h … M−τ , , , = , ,p p  
 
3.4 Specification of 0µµµµ  and 

2

0
c   

Finally, we describe how to specify 0µ  and 0c  in (12). 

This is important because it permits us to “center” the 

nonignorable nonresponse model on the ignorable 

nonresponse model (i.e., an expansion model). This 

procedure is in the spirit of Nandram, et al. (2005).  

We have drawn a sample of ( ) 1 1h
t t … T h … M, = , , , = , , ,ππππ  

M = 1,000 iterates from the ignorable nonresponse model, 
and computed ( ) ( )

1 1 .h hT
tt T h … M=∑= / , = , ,π ππ ππ ππ π  Then, using 

the griddy Gibbs sampler, we fit the model  

iid
( )

1 1

2
1 1 1 1

Dirichlet( )

Dirichlet( ) ( ) 1 (1 ) 0

h

p

τ ,

, τ = / + τ , τ > ,1

∼

∼

π µπ µπ µπ µ

µµµµ
 

with a priori 1µµµµ  and 1τ  independent, to obtain a sample 
( )
1 1 .h h … Mτ , = , ,  We have drawn 1,500 iterates with a 

“burn in” of 500 to get M = 1,000 iterates.  
Finally, taking 1 ( )

1 1
hM

ha M −
=∑= τ  and b =  

1 ( ) 2
1 1( 1) ( ) ,hM

hM a−
=∑− τ −  we set  

0 0andc b a a= / µ = .
 

For the election data, our procedure gives 0c = 0.031 and 
0µ = 2.431. This specification will hold the nonignorable 

nonresponse model close to the ignorable nonresponse 

model, thereby providing a possible centering mechanism.  

To study sensitivity to the misspecification of the prior 

density of 1,τ  we use two constants, 1κ  and 2,κ  such that 

a priori  

2 2 2 2
1 1 0 1 2 0 0Gamma (1 1 )c cτ / κ , / κ κ µ∼  

with varying values of 1κ  and 2.κ  It is worth noting that 

1 2 0( )E τ = κ µ  and 1 1 0CV( ) ;cτ = κ  thus increasing 2κ  

means increasing 1τ  which, in turn, means increasing 

precision a priori but not necessarily a posteriori. We will 

study the sensitivity to the specification of 1κ  and 2κ  when 

we describe the data analysis.  
 
3.5 Estimation and prediction   

We show how to improve estimation (i.e., Rao-

Blackwellization) in the October poll, and how to do 

prediction in the November election.  

For the ignorable and nonignorable nonresponse models,  

1 2 2 2 2 1 2 2

( ) ( )
2 2

1

( ) ( ) ( )

1 ( )

T T

M
h h

T

h

g g d d

g
M

=

| = | , τ π ,τ | τ

≈ | , τ ,

∫

∑

p y p y

p

µ µ µµ µ µµ µ µµ µ µ

µµµµ  (22)

 

where 2 2 2 2Dirichlet ( ),T | , τ τ∼p µ µµ µµ µµ µ  and for the time-

dependent model,  

1 1 2 1 2 1 2

( ) ( )
1 2

1

( ) ( ) ( )

1 ( )

T T T T T

M
h h

T T

h

g g d d

g
M

− −

−
=

| = | , τ π ,τ | τ

≈ | , τ ,

∫

∑

p y p p p y p

p p  (23)

 

where 1 2 1 2Dirichlet ( ).T T T− −| , τ τ∼p p p  

We obtain (predict) the cell proportions for November as 

follows. The ignorable or nonignorable nonresponse model, 

posterior density of 1T +p  is  

1 1 1 2 2 2 2 1 2 2

( ) ( )
1 2 2

1

( ) ( ) ( )

1 ( )

T T

M
h h

T

h

g g d d

g
M

+ +

+
=

| = | , τ π ,τ | τ

≈ | , τ ,

∫

∑

p y p y

p

µ µ µµ µ µµ µ µµ µ µ

µµµµ  (24)
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where 1 2 2 2 2Dirichlet ( ).T + | , τ τ∼p µ µµ µµ µµ µ  For the time-

dependent  

1 1 1 2 2 1 2

( ) ( )
1 2

1

( ) ( ) ( )

1 ( )

T T T T T

M
h h

T T

h

g g d d

g
M

+ +

+
=

| = | , τ π ,τ | τ

≈ | , τ ,

∫

∑

p y p p p y p

p p (25)

 

where 1 2 2Dirichlet ( ).T T T+ | , τ τ∼p p p  

Thus, by (22), (23), (24) and (25), estimation and predict-

tion are straight forward. For example, consider the time-

dependent model. For estimation, by (24) for each ,h  we 

draw a random deviate ( ) ( ) ( ) ( )
1 2 1 2Dirichlet( ),h h h h

T T T− −| , τ τ∼p p p  

denoted  by  ( ) 1 .h
T h … M, = , ,p   For  prediction,  by  (25)  for 

each ,h  we draw a random deviate ( )
1

h
T T+ | ,p p  

( ) ( ) ( )
2 2Dirichlet ( ),h h h

Tτ τ∼ p  denoted by ( ) 1 .h
T h … M, = , ,p  

Thus, inference about Tp  and 1T +p  is made in the usual 

manner. The procedure is similar for the ignorable and 

nonignorable nonresponse models.  

 
4. Data analysis  

 
In this section we compare our models with those of 

Chen and Stasny (2003) and the actual (November election) 

outcomes. We have introduced a new parameter to help 

predict the outcome of the election. We also study 

extensively sensitivity of inference to choices of 1κ  and 2.κ  

Based on our procedure, we have specified the coefficient of 

variation, 0c = 0.031, and the mean, 0µ = 2.431, of the 
prior distribution of 1.τ  

In Table 2 we compare inference about the proportions of 

October voters allocated to the three candidates by our 

models and those of Chen and Stasny (2003). In this table 

the results are based on the prior 2 2
1 0 0 0Gamma (1 1 )c cτ / , /µ∼  

(i.e., 1 2 1κ = κ = ). We also present the actual proportions 

taken from Chang and Krosnick (2001). The actual 

proportions are (0.45, 0.50, 0.05) for Fisher, Taft and other. 

Using our time-dependent nonresponse model these 

proportions are estimated to be (0.41, 0.50, 0.09). These 

compare favorably with the actual outcomes. The 

corresponding estimates are (0.41, 0.51, 0.08) for the 

ignorable nonresponse model and (0.40, 0.50, 0.09) for the 

nonignorable nonresponse model. The best result of Chen 

and Stasny (2003) is obtained from their Model D, and their 

estimates are (0.42, 0.51, 0.07). We have provided 95% 

credible intervals for our estimates, but within the approach 

of Chen and Stasny (2003) it is relatively more difficult to 

provide similar intervals. Also, in Table 2 we present 

estimates of the predicted proportions for the November 

elections. The point predictors are similar to the point 

estimates except for the predicted proportion going to Taft 

under the ignorable nonresponse model. However, as 

expected the 95% credible intervals for the predicted 

proportions are much wider. For example, under the time-

dependent model 95% credible interval for the proportion 

voting for Taft in the October poll is (0.41, 0.60) and for 

prediction it is (0.21, 0.78). Thus, while the point estimates 

and predictions do indicate the winner, the variability 

indicates no difference between Taft and Fisher. We will 

look at this further.   
Table 2 
Comparison of the proportion of likely voters for the October 
1998 poll and prediction for November 1998 election for 

different models with actual outcome 
 

Status  Fisher Taft Other 

Sample Estimate   0.41  0.51  0.08  

Approximate 95% CI   (0.35, 0.47)  (0.45, 0.57)  (0.05, 0.11) 
Actual Outcome   0.45  0.50  0.05  

a. Estimation     

 Chen/Stasny models A,B,C   0.41  0.51  0.08  

 Chen/Stasny model D   0.42  0.51  0.07  
 Chen/Stasny model E   0.41  0.51  0.08  

 Ignorable model   0.41  0.51  0.08  

 95% CI   (0.35, 0.46)  (0.46, 0.57)  (0.05, 0.12) 
 Nonignorable model   0.41  0.50  0.09  

 95% CI   (0.32, 0.51)  (0.40, 0.60)  (0.05, 0.17) 

 Time-dependent model   0.41  0.50  0.09  
 95% CI   (0.32, 0.52)  (0.41, 0.60)  (0.05, 0.16) 

b. Prediction     

 Ignorable model   0.41  0.54  0.05  

 95% CI   (0.15, 0.70)  (0.25, 0.81)  (0.00, 0.22) 
 Nonignorable model   0.42  0.52  0.06  

 95% CI   (0.15, 0.70)  (0.22, 0.79)  (0.00, 0.28) 

 Time-dependent model   0.41  0.50  0.09  
 95% CI   (0.15, 0.71)  (0.21, 0.78)  (0.00, 0.31) 

 

NOTE: 2 2
1 0 0 0Gamma(1 1 ),c cτ / , /µ∼  where 0c = 0.031 and 

0µ = 2.431.  
Although our estimates from the time-dependent model 

are close to the actual estimates, the 95% credible intervals 

for 311p  and 312p  overlap, thereby making it difficult to 

predict Taft is the winner. Although the 95% credible 

intervals for our other models are shorter, the point 

estimates are not so good and they still overlap. One 

weakness in our analysis in Table 2 is that we have ignored 

the correlation between the two estimates (i.e., we should 

really study the difference 312 311,p p−  the margin of 

winning).  

In Table 3 we present estimates of 312 311e p pΛ = −  and 

412 411p p pΛ = −  at 1 2 1κ =κ =  for the three models. We 

have also included the numerical standard error (NSE) 

which is a measure of how well the numerical results can be 

reproduced; we have used the batch-means method to 

compute it. Small NSEs mean that if we repeat the entire 

computation the same way (i.e., using another 1,000 

iterates), we should see very little difference between the 

two sets of answers. In Table 3 the NSEs are small. The 

point estimators and predictors are all positive showing that 

Taft is the winner in both the October poll and the 

November election. However, the variability dwarfs this 
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result somewhat because the PSD are large, as expected 

even more so for prediction. This causes the 95% credible 

intervals for both parameters to contain 0. Thus, again when 

variability is considered, there is no difference between Taft 

and Fisher.  
 
Table 3 
Comparison of the three models for estimation and prediction 

using the posterior means (PM), posterior standard deviations 
(PSD), numerical standard errors (NSE) and 95% credible 
intervals for ΛΛΛΛe  ( ΛΛΛΛ p ) and ∆∆∆∆e  ( ∆∆∆∆ p ) 
 

 Model  PM  PSD  NSE  Interval  

eΛ   Ignorable  0.105  0.055  0.002  (-0.002,  0.209)  

 Nonignorable  0.097  0.099  0.006  (-0.100,  0.280)  

 Time-dependent  0.093  0.101  0.007  (-0.098,  0.276)  

pΛ   Ignorable  0.071  0.154  0.004  (-0.240,  0.362)  

 Nonignorable  0.058  0.150  0.005  (-0.252,  0.369)  

 Time-dependent  0.050  0.134  0.005  (-0.244,  0.314)  

e∆   Ignorable  0.688  0.175  0.008  (0.295,  0.958)  

 Nonignorable  0.663  0.200  0.012  (0.222,  0.959)  

 Time-dependent  0.632  0.148  0.014  (0.336,  0.901)  

p∆   Ignorable  0.688  0.175  0.008  (0.295,  0.960)  

 Nonignorable  0.663  0.193  0.009  (0.253,  0.972)  

 Time-dependent  0.648  0.155  0.011  (0.341,  0.923)  
 

NOTE: See note to Table 2; 312 311e p pΛ = −  (estimation, 
difference between Taft and Fisher for the October poll); 

412 411p p pΛ = −  (prediction, difference between Taft 
and Fisher for the November election); e∆ =  

312 311 311 312 313Pr( );p p p p p> | + + ,αααα  and p∆ =  
412 411 411 412 413Pr( );p p p p p> | + + ,αααα  see (26).   

 
We seek an alternative parameter looking to help us 

predict the winner more convincingly. We pose the 

following question: “What is the probability that the 

proportion of Taft’s voters in the October poll and the 

November election is larger than that of Fisher’s voters?”  

Thus, we consider the parameter e∆ = 312Pr (p >  
311 311p p| + 312 313 )p p+ ,αααα  where 2 1jk jk j … r kα =µ τ , = , , , =  

1 ,… c, ,  for the ignorable and nonignorable nonresponse 

models, and 2 2 1 1 ,jk jkp j … r k … cα = τ , = , , , = , ,  for the time-

dependent model. In either case, letting 1 311 31 ,q p p .= /  

2 312 31 ,q p p .= /  and 3 313 31q p p .= /  with 3
31 311 kkp p⋅ =∑=  

and 3
1 1,kk q=∑ =  it is easy to show that 

1 2 3 1 2 3( ) Dirichlet ( ),q q q, , α , α , αɶ ɶ ɶ∼  where 1 11,α = αɶ  

2 12α = αɶ  and 3 13 21 .c
kk=∑α = α + αɶ  Therefore, we have  

1 1 1
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Then, it is easy to show that  

1 2 3 2 3

1 2 3

1 2 3

1 2

1 1
0

1 1
11

1
1 2 3

1 (1 2) { (1 )}

(1 )

(1 2) ( )

e F F q q

q q
dq

F B

/
, + ,α α α α α

− + −α α α

, +α α α

∆ = − / / −

 −
, / , +α α α 

∫ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ
 (26)

 

where  

11 2 31
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a x x
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, +α α α , +α α α
= ∫

ɶ ɶɶ

ɶ ɶ ɶ ɶ ɶ ɶ
 

and 
11 32
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We note that e∆  is the probability that Talft received a 

higher proportion of the votes in the October poll, and p∆  is 

the probability that Taft received a higher proportion of the 

votes in the November election. These parameters can be 

very useful for estimation (e ) and prediction ( p ). 

Parameters like e∆  or p∆  are difficult to analyze in the 

non-Bayesian approach such as that of Chen and Stasny 

(2003); indeed this is a great strength of the Bayesian 

paradigm.  

It is easy to compute (26) using Monte Carlo integration. 

For each 1 2 3,, ,α α αɶ ɶ ɶ e∆ 1 1 2 3Beta( )q , +α α α∼ ɶ ɶ ɶ  truncated to 

the (0 1 2), /  is used as an importance function. Thus, for 

each ( ),hɶαααα 1 ,h … M= , , M = 1,000 from the Metropolis-

Hastings sampler (or Gibbs sampler), we can compute ( ).he∆  

A posteriori inference about e∆  is obtained in the standard 

empirical manner. For prediction, we have also considered 

412 411 411 412 413Pr( ),p p p p p p∆ = > | + + ,αααα  where jkα =  
2 1 1 ,jk j … r k … cµ τ , = , , , = , ,  for the ignorable and non-

ignorable nonresponse models, and 3 2 1jk jkp j … rα = τ , = , , ,  
1 ,k … c= , ,  for the time-dependent model. Note that e∆  and 

p∆  are the same for the ignorable and nonignorable non-

response models.  

In Table 3 we also present estimates of e∆  and pΛ  for 

the three models. First, note again that the NSEs are all 

small. The estimates of these parameters are similar for the 

three models, and larger than 0.60, but the 95% credible 

intervals contain 0.5. Thus, again the posterior means 

indicate that Taft is the winner, but variation is nullifying 

the effect of Taft being the winner. We note again that the 

time-dependent model provides sharper inference, not 

enough though. The parameters e∆  and p∆  are more 

sensible because they restrict inference to a smaller region 

by conditioning on 311 312 313p p p+ +  and 411 412 413,p p p+ +  

and from a probabilistic view these parameters are more 

appropriate.  

Finally, we study sensitivity to inference about pΛ  and 

p∆  for the nonignorable nonresponse model and the time-

dependent model. We do not present results for eΛ  and e∆  

because they are similar to pΛ  and .p∆  Also, we have 

dropped the ignorable model as well, and we do not present 

95% credible intervals because the posterior densities are 

roughly symmetric. Our results are presented in Table 4 by 

model, 1κ  and 2.κ  The posterior means of pΛ  and p∆  are 

respectively very similar for different values of 1κ  and 2.κ  

Note that a priori 
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Table 4 

Sensitivity of the posterior means (PM) and the posterior standard deviations (PSD) of 

ΛΛΛΛ p  and ∆∆∆∆ p  with respect to changes in 1κκκκ  and 2κκκκ  by model 
 

   2κκκκ  

   1  5  25  50 

Model 1κκκκ   PM PSD  PM PSD  PM PSD  PM PSD 

a. pΛ         

 Nonignorable  1   0.058  0.150   0.046  0.153   0.060  0.148   0.054  0.147  

 2   0.051  0.153   0.046  0.146   0.062  0.151   0.054  0.145  

 3   0.058  0.152   0.059  0.145   0.053  0.149   0.055  0.149  

 4   0.055  0.151   0.057  0.148   0.049  0.148   0.043  0.154  

 Time-dependent  1   0.050  0.134   0.044  0.144   0.048  0.136   0.050  0.130  

 2   0.049  0.136   0.052  0.140   0.056  0.129   0.047  0.137  

 3   0.039  0.139   0.049  0.137   0.045  0.139   0.052  0.133  

 4   0.037  0.138   0.042  0.138   0.041  0.141   0.051  0.129  

b. p∆         

 Nonignorable  1   0.663  0.200   0.650  0.194   0.666  0.186   0.670  0.182  

 2   0.663  0.197   0.661  0.188   0.667  0.185   0.659  0.181  

 3   0.663  0.199   0.647  0.196   0.666  0.184   0.669  0.180  

 4   0.641  0.202   0.668  0.191   0.643  0.197   0.650  0.195  

 Time-dependent  1   0.648  0.155   0.642  0.123   0.657  0.099   0.661  0.095  

 2   0.660  0.151   0.652  0.127   0.659  0.102   0.657  0.099  

 3   0.622  0.153   0.636  0.137   0.649  0.120   0.648  0.115  

 4   0.610  0.162   0.636  0.152   0.646  0.132   0.644  0.127  
 

NOTE: We have taken 2 2 2 2
1 1 0 2 0 1 0Gamma (1/ 1/ )c cτ κ , κ µ κ∼  and we studied sensitivity 

with respect to 1κκκκ  and .2κκκκ  See note to Table 3. 
   
 

( )1 2 2 2 2
1 0 2 0 1 0

1 1Gamma , ,
c c

τ
κ κ µ κ

∼  

1 2 0( )E τ = κ µ  and 1 1 2 0 0SD( ) ;cτ = κ κ µ  so clearly, 

a priori 1( )E τ  increases with 2κ  and 1SD( )τ  increases 

with either 1κ  or 2,κ  but not necessarily a posteriori. These 

changes do not have a lot of effect on inference a posteriori. 

For almost all combinations of 1κ  and 2,κ  under the time-

dependent model posterior standard deviations of pΛ  are 

smaller (but not substantially) than under the nonignorable 

nonresponse model. Under the time-dependent model 

posterior standard deviations of p∆  are substantially 

smaller than under the nonignorable nonresponse model for 

all combinations of 1κ  and 2.κ  

 
Concluding Remarks   

The main contribution in this paper is the construction 

and analysis of a time-dependent nonignorable nonresponse 

model and its application to the Ohio polling data. We have 

done two additional things as well. First, we have compared 

the time-dependent model with an extended version (to 

include time) of the ignorable and nonignorable 

nonresponse models of Nandram, et al. (2005). Second, we 

have constructed a new parameter to help predict the 

winner; however, this parameter did not make an enormous 

difference partly because there are only three time points in 

the time-dependent model.  

Our time-dependent model provides posterior inferences 

that are closer to the truth than the ignorable and 

nonignorable nonresponse models as well as those of Chen 

and Stasny (2003). It is natural for voters’ preference to 

change as new information, detrimental or supportive, is 

revealed into the public place. Thus, our time-dependent 

model, which takes care of changes over time and provides 

improved precision, is to be preferred. The uncertainty in 

the prediction can be reduced in two ways. First, with an 

increased number of polls there will be increased precision 

in the parameters, which in turn, can lead to improved 

prediction. Second, with more prior information (e.g., exit 

polling) about the November election, one can also improve 

the prediction.  

Our 95% credible intervals can be shortened by using 

prior information on the proportion of voters going to Taft 

or Fisher. A referee suggested, “The major-party voting 

proportions are between 35% and 65% in general elections, 

and in specific states an objective political scientist could 

generally provide an even tighter prior.” However, this is a 

complex problem because with truncated prior distributions 

on the p s, there is a normalization constant which is a 

function of 2.τ  Thus, when 2τ  is drawn from its conditional 

posterior density, we need to perform a Monte Carlo 

integration to compute the normalization constant at each 

iterate. While this will be a useful contribution, we prefer 

not to pursue this problem here. 
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The number of days to an election has an important 

impact on poll accuracy and that this effect can vary 

substantially across different campaign contexts (e.g., 

DeSart and Holbrook 2003). Thus, it is really difficult to 

predict the outcome of an election weeks before it actually 

occurs, unless there exists an absolute margin. Someone 

who wishes to predict the outcome of an election must take 

into consideration additional information near the actual 

election. Our prediction assumes that there is no 

catastrophic change near the election; such an abrupt change 

in public opinion can occur. For example, in 1988 Dukakis 

lost the election against George Bush for various reasons: he 

spent the last week in Massachusetts, his cold personality, 

and Bush’s attack on his liberal position. Also, an effective 

campaign can mobilize undecided voters near the election 

(e.g., Truman and Dewey in 1948). One way to capture a 

possible catastrophe is to use mixture distributions or other 

heavy-tailed distributions (as researchers use Levy 

distributions in mathematical finance).  
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Appendix A   

Time-dependent model: Conditional posterior 

densities of 0, = , ,, = , ,, = , ,, = , ,tp t … T  
 

We show how to draw a sample from the conditional 

posterior density of 0p  in (17) using a grid method, and 

how to draw a sample from the conditional posterior 

densities of 1t t … T, = , ,p  in (18) using Metropolis steps, 

each with an independence chain.  

First, we show how to draw a sample from the 

conditional posterior density of 0p  in (17) using a grid 

method. Letting 01 0 01 0( ) ( )L rcq … q p … p, , = , ,  and 

11 1 11 1( ) ( )L rcq … q p … p, , = , ,  where ,L rc=  with 
1
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and it is easy to show that  
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For each ℓ  we divide the range 1
0 010 1 Lq q−

′′ ′= , ≠∑≤ ≤ −ℓ ℓℓ ℓ ℓ  into 

a number of subintervals. To obtain a random deviate 0q ℓ  

from its conditional posterior density, we select an interval 

proportional to its area, and draw a uniform random deviate 

from this interval.  

Second, we show how to draw a sample from the 

conditional posterior densities of 1t t … T, = , ,p  in (18) 

using Metropolis steps, each with an independence chain. 

Consider 1 2 1 .t t t … T−| , τ , , = , ,p p y  We use the candidate 

generating density  

1 2 Dirichlet( )t t t−| , τ , ,∼p p y a  

where  

2 1 1 1 1 .tjk t jk t jka y p t … T j … r k … c⋅ −= + τ , = , , , = , , , = , ,  

Then, the acceptance probability is 1s sA , + =  
1min(1 )s s+,ψ /ψ  where 

( )
2 1 ( )

211 1
( ).

s
tjk

r c p s
s tt jkj k

p D
τ −

+= =
ψ = / τ∏ ∏ p  
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