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Small area estimation of average household income based on
unit level models for panel data

Enrico Fabrizi, Maria Rosaria Ferrante and Silvia Pacei '

Abstract

The European Community Household Panel (ECHP) is a panel survey covering a wide range of topics regarding economic,
social and living conditions. In particular, it makes it possible to calculate disposable equivalized household income, which
is a key variable in the study of economic inequity and poverty. To obtain reliable estimates of the average of this variable
for regions within countries it is necessary to have recourse to small area estimation methods. In this paper, we focus on
empirical best linear predictors of the average equivalized income based on “unit level models” borrowing strength across
both areas and times. Using a simulation study based on ECHP data, we compare the suggested estimators with cross-
sectional model-based and design-based estimators. In the case of these empirical predictors, we also compare three
different MSE estimators. Results show that those estimators connected to models that take units’ autocorrelation into
account lead to a significant gain in efficiency, even when there are no covariates available whose population mean is

known.

Key Words: European Community Household Panel; Average equivalized income; Linear mixed models; Empirical

best linear unbiased predictor; MSE estimation.

1. Introduction

In recent years, the academic world has taken an
increasing interest in the analysis of regional economic
disparities that represent a serious challenge to the
promotion of national economic growth, and thus to social
cohesion. This is particularly true within the European
Union, where regional disparities are a distinguishing
feature of the economic landscape. This renewed interest in
local economies has produced a growing demand for
regional statistical information and has stimulated research
on income distribution, poverty and social exclusion at the
sub-national level.

In the 1990s, Eurostat (the EU’s Statistics Bureau)
launched the European Community Household Panel
(ECHP), an annual panel survey of European households
conducted using standardised methods throughout the EU’s
various member countries (Betti and Verma 2002; Eurostat
2002). The ECHP terminated in 2001, after eight waves.
Currently, it is being replaced by the Survey on Income and
Living Conditions in the Community (EU-SILC), which
resembles the ECHP in many ways, but for which no data
has yet been published. The ECHP panel survey covered a
wide range of topics and, in particular, it made it possible to
calculate disposable equivalized household income, which
constitutes a key variable in the study of economic equity
and poverty.

The ECHP was designed to provide reliable estimates for
large areas within countries called NUTS1 (NUTS stands
for the “Nomenclature of Territorial Units for Statistics”

which is defined according to certain principles described
on the EUROSTAT web site http://europa.ew.int/comm/
eurostat/ramon/nuts/home regions en.html ). Unfortunately
NUTSI correspond to areas (five groups of Administrative
Regions in the Italian case) that are too large to effectively
measure local area income disparity or to provide useful
information for the purposes of regional governance.
Therefore, to obtain estimates for a finer geographic detail, a
small area estimation method has to be used and the
problem is to select an appropriate and effective method.

In this paper, in order to combine information from past
surveys, related auxiliary variables and small areas, we
consider several possible extensions of the well-known unit
level nested error regression model (see Battese, Harter and
Fuller 1988) for the estimation of the average of household
equivalized income. Using ECHP panel survey data, we
illustrate how such model could be potentially useful in
improving the efficiency of small area estimates by
exploiting the correlation of individual household incomes
over time.

In section 2, we present a general set-up for small area
estimation using panel survey data and briefly review both
design-based and model-based small area estimation
methods. In this section, we develop empirical best linear
unbiased predictors (EBLUP) and their mean squared error
(MSE) estimators for selected unit level cross-sectional and
time series models using the available theory on EBLUP for
small area estimation (see Rao 2003, and Jiang and Lahiri
2006a, for details). We note that cross-sectional and time
series models were considered in the small area literature,
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but only in the context of area level modelling (see Rao and
Yu 1994; Ghosh, Nangia and Kim 1996; Datta, Lahiri,
Maiti and Lu 1999; Datta, Lahiri and Maiti 2002;
Pfeffermann 2002; among others).

In section 3, we briefly review ECHP survey and
describe how we use this survey data to conduct a Monte
Carlo simulation study to compare different small area
estimators and their MSE estimators. In section 4, we report
results from the Monte Carlo simulation experiment. We
note that the simulation experiment is aimed at evaluating
design-based properties of all estimators, even if they are
derived as model based predictors. We observed that the
EBLUPs perform very well compared to the design-based
estimators even though our pseudo-population exhibits signs
of non-normality. The non-normality of the pseudo-popu-
lation, however, seems to affect the efficiency of the MSE
estimators. In our simulation, the Taylor series (see Prasad
and Rao 1990; Datta and Lahiri 1999, among others) and
the parametric bootstrap (see Butar and Lahiri 2003) MSE
estimators are found out to be more sensitive to the non-
normality than the jackknife method of Jiang, Lahiri and
Wan (2002). We end the paper with a few concluding
remarks.

2. The small area estimation methods considered

To describe sample data, let y,, denote the value of a
study variable for the i™ unit belonging to the d™ small
area for time ¢ (d =1,...,m; t=1,....T; i=1,...,n,). More-
over, let x,, be the vector of covariates’ values associated
with each y,, (and whose first element is equal to 1), and
let X, ={x/,} bethe nx p matrix of covariates’ values for
the whole sample (n=3%,,n, ). Let us suppose that we are
interested in predicting small area means for the target
variable at final time 7:Y,,(d =1,...,m). Let us also
suppose that the vectors of mean population values of
covariates are known for time 7, we denote these vectors by
X' (d=1,..,m).

2.1 Design-based estimators

A first solution to the small area estimation problem is to
use direct estimators, that is, estimators employing only y
values obtained from the area (and time) which the
parameter refers to. The simplest of direct estimators of the
population mean is the weighted mean. We denote this
direct estimator as y,; pr(d =1,...,m) and we will be
using it as a benchmark in the following sections.

Synthetic estimators may be generally defined as
unbiased estimators for a larger area with acceptable
standard errors. They are used to calculate estimates for
small areas, under the hypothesis that small areas have the
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same characteristics as larger ones. Moreover, when infor-
mation about auxiliary variables is available, a particular
synthetic estimator, the regression estimator, may be
obtained by fitting a regression model to all sample data.
Note that the synthetic estimator is area specific with respect
to the auxiliary variables but not with respect to the study
variable.

For instance, if we consider only those observations from
the last wave (¢=T), the simple regression model would
be given by:

— ’
Vari = Xyr B+ ey,

E(ey;)=0, E(ejn) =n’.

To take account of the complexity of the sampling
design, the weighted least squares estimate 8, of B may be
obtained, and thus the synthetic regression estimator will be
given by:

Var, RsYN :)_('dT dezl,...,m. (1)

Synthetic estimators usually display very low variances,
but they may be severely biased whenever the model
holding for the whole sample does not properly fit arca-
specific data. Composite estimators are weighted averages
of a direct and a synthetic estimator. We consider the
composite estimator:

)_/dT, COMP — d)dT)_/dT, DIR + (1 - d)dT ))7dT, RSYN > (2)

where
_ MSE ;, (Var rsyn)
MSE , (¥ur. o ) + MSE , (V47 rsyn)

and MSE , signifies that the mean square error is evaluated
in relation to the randomization distribution. This choice of
¢, leads to composite estimators Yy, coyp that are
approximately optimal in terms of MSE, (see Rao 2003,
section 4.3). In practice, the quantities in the formula for
¢, s are unknown and may be estimated from the data.
Unbiased and consistent estimators can be obtained for
MSE |, (V7. o) =V (Vyr pr ) Using standard formulas.
An approximately design unbiased estimator of
MSE, (7,7 rsyn) can be obtained using the formulas
discussed in Rao (2003, section 4.2.4). In particular, we
calculate the approximation:

Pur

— — — 2 —
mse, (Vur, ksyn) ® (Var, ksyn = Yar. o)™ — Vo (Var, oir )»

where mse, and v, stand for the estimators of the
corresponding MSE, and V,. In particular, v, is the
ordinary design unbiased estimator of V,,. We then take its
average over d, as usual, in order to obtain a more stable
estimator. In fact, one problem with mse, is that it can
even be negative.
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Moreover, a modified direct estimator borrowing
strength over areas for estimating the regression coefficient
can be used to improve estimator reliability. If auxiliary
information is available, the generalized regression esti-
mator (GREG),

Z w;ée;

JESar

)_’dr, GREG — )_{;TBW + > 3)
> w;

JE€Sar

approximately corrects the bias of the synthetic estimator by
means of the term (X, w; )"IZJ-ES” w;e;, based on
regression residuals e;.

2.2 Model-based estimators

The model-based estimators we have considered are
based on the specification of explicit models for sample data
which approximate a hypothetical data-generating process.
As a consequence, the problem of estimating Y, comes
down to one of prediction. Moreover, mean square errors
and other statistical properties of estimators are usually
evaluated with respect to the data-generating process. We
have focused here on “unit level” models based on models
relating y,, to a vector of covariates x,. The use of
explicit models has several advantages, the most important
of which being the opportunity to test underlying
assumptions.

In the estimation of the small area means or totals of
continuous variables, linear mixed models are very often
used. A general linear mixed model can be described as
follows:

y=XB+Zv+..+Z, v, +e, “4)

where y ={y,,} is the n-vector of sample observations, 3
a pxl vector of fixed effects, v, is a g;x1 vector of
random effects (j=1,...,s),e={e,,} a vector of errors; X
is assumed of rank p,Z,=1{z;,} is a nxq, matrix of
incidence of the ;™ random effect. We assume that
EW;)=0,V(v,))=G;,E(e)=0,V(e)=R (all expecta-
tions are wrt. model (4)) and that v, ..., v, e are mutually
independent.

As a consequence, the variance-covariance matrix of y is
given by:

V=r(y)=YZ,G,Z/,+R=ZGZ +R,

=

where Z =[Z,|...| Z,]. 1t is usually assumed that matrices
G, R depend on a k-vector of variance components v, and
so we can write V() =ZG(y)Z' + R(y).

Note that at the level of individual observations, the
model (4) can be rewritten as y,, =X, B+2z,V, +...+
Z;dtiv + Cti+

s
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We consider different specifications for linear mixed
models, all of which can be viewed as special cases of the
general model (4). For the sake of simplicity, we have
adopted a unit level notation when describing the models
considered. The first model:

MMT1: Vi :X:itiB+vd +0Lt +edn" (5)

may be obtained from formula (4) setting s =2, ¢, =m,
¢, =T G,=c.1,,G,=c.1,,R=c1,. It includes inde-
pendent area and time effects, and therefore area effects are
assumed not to evolve over time. This random effects
structure corresponds to the assumption of a constant
covariance between units that belong to the same area,
observed at two different points in time.

The second model:

MM?2: Yai = X'dti B + 6dt + Cti> (6)

corresponds to the particular case in which s=1,
q, =mq,G, =G, IL,R= o’1,. The effects of interaction
between area and time are introduced, that is, we assume
there are area effects which are not constant over time.

The third model:

MM3: y, =X, By, +a, +e,, ™)

is obtained setting s=2, ¢, =m, ¢,=T G,=c1,,R=c"1 ,
while the generic element g,(4, k) of G, is g,(h, k)=
Gi p‘g_k‘, h,k=1,..,T. There are independent area and
time effects, just as in MM]1, but the time effects are
assumed to follow an AR(1) process.

The fourth model:

MM4: y, =x,B+8, +e,, (8)

is similar to model MM? in that it is characterized by time
varying area effects, but the further assumption that such
effects follow an AR(1) process is also introduced. Thus,
provided we order observations by area, with respect to the
general formula (4) we have s=1,¢q =mgq,G,=
diag(G,,), R = Giln where G,;,,d=1,..,m, isa TxT
matrix the generic element g (h,k)= Gép!"k‘,h, k=
L..T.
The last specification:

MMS: y,. =x,,B+v,+q, +e;”., 9
may be obtained by (4) setting s=2,¢,=m,q,=T7,G, =
c.1,,G,=c.1,. Provided we order observations by
household and time, R =diag(R,) where R, isa T'xT
matrix whose generic element is given by r,(h, k)=
Gﬁ p‘:'_k‘, h,k=1,..,T. There are independent areca and
time effects like in MM]1, but errors are assumed to be

autocorrelated according to an AR(1) process.
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In order to evaluate the impact that using past survey
waves has on the efficiency of estimator, a cross-sectional
linear mixed model (SMM) using data from the last wave T
only, has been taken as the benchmark:

SMM = yur = Xur B+ 9, + ey, (10)
11D 11D
with 8, ~ N(0,53), e;,; ~ N(0,57).

This is also a particular case of (4) obtained for s =2,
¢,=m,G, =c.1, and R=c_1,. Note that (10) is the
standard nested error regression model of Battese et al.
(1988).

We also consider the corresponding random error
variance linear models (see Rao 2003; section 5.5.2)
obtained by replacing x/,;f in formulas (5) - (10) with a
general intercept 0. These models will be denoted as
MM1*, MM2*, MM3*, MM4*, MMS*, SMM*. All the
assumptions made regarding random effects and residuals
remain unchanged. This latter group of models enables us to
explore the gains in efficiency obtained by exploiting the
repetition of the observation on the same unit when no
covariates are available at the population level.

In small area estimation, the aim is to predict scalar linear
combinations of fixed and random effects of the type
n=m'B+kv where m and k are px1 and ¢gx1 vectors
respectively, with g=3,¢,. The best linear unbiased
predictor (BLUP) of 1 can be obtained by estimating
(B,v) minimizing the model MSE among all linear
estimators:

77 (p) = m' B(y) + K F(y). (11)

When the variance components in y are unknown, they
may be estimated from the data and substituted into formula
(11), thus obtaining “empirical BLUP” """ ()=
m'B({) +k'9(§) (see Rao 2003, chapter 6, and Jiang and
Lahiri 2006b for details).

As far as the estimation of  is concerned, a number of
methods have been proposed in the literature, such as
Maximum Likelihood (ML) and Restricted Maximum
Likelihood (REML) which assume the normality of random
terms, and the MINQUE proposed by Rao (1972) which is
non-parametric. In the present work we have opted for the
REML method, thus assuming normality.

2.3. Measures of uncertainty associated with
predictors based on linear mixed models

The difficult problem of estimating the MSE of EBLUP
estimators, taking the variability of the estimated variance
and covariance components into account, has been faced in
the small area literature by adopting diverse approaches.

One popular method is based on the Taylor series
approximation of MSE under normality (Prasad and Rao
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1990; Datta and Lahiri 1999). More recently, due to the
advent of high-speed computers and powerful software,
resampling methods have been proposed. For instance,
Butar and Lahiri (2003) introduce a parametric bootstrap
method based on the assumption of normality, but analyti-
cally less onerous than the Taylor series method. Jiang et al.
(2002) discuss a general jackknife method, which requires a
distributional assumption weaker than normality (posterior
linearity). We aim to empirically compare the performance
of these three estimators within a context where the number
of areas is moderate and the assumption of normality may
not hold perfectly true. The following is a short description
of the three estimation approaches.

Let us define MSE[R™"" (y)]= ER™ (§) —n)’,
where expectation refers to model (4). It is possible to show
that, under normality,

MSE[R™™" ()]
=g (W) + g, (y) + E@™T —f"0r)? (12)
where g, (y)=k'(G-GZ'V'ZG)k' and g,(y)=

d'(X'V'X)'d, with d=m’'—k'GZ'V'X (see Rao 2003,
chapter 3). Using the following approximation, based on a
Taylor series argument

l;(ﬁEBLUP __ﬁEBLUP)Z

~ tr[(Bb'/ DY)V (b’ / ow) V(w)] = g5 ()

where b'=Kk'GZ'V™", a second order approximation to
(12) can be found:

MSE[R™ ()] = g,(v) + &, (W) +&5(w).  (13)

Note that here * means that the omitted terms are of
order o(m™'). An asymptotically unbiased estimator of
(13), based on Prasad and Rao (1990), is given by

EBLUP

msepp (M ) :g1(\p)+g2(\p)+2g3(\p)' (14)

Datta and Lahiri (1999) show that, under normality and
REML or ML estimation of v, mse,, (fi"*""") estimates
MSE[7{"*"F ()] with a bias of order o(m™).

Butar and Lahiri (2003) propose a parametric bootstrap
estimation of (13) under the assumption of normality. We
adapt their estimator to the models we are analysing,
assuming the following bootstrap model:

ind

D ¥V~ NXB+Zv', R(})]

(15)
ind

ii) v~ N[0, G()]

where v = (v, ...v!)". The parametric bootstrap is then used
twice, once to estimate the first two terms of (13), thus
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correcting the bias of g, () + g, (), and once to estimate

g5 (y).
The following estimator of (13) is proposed:

~ EBLUP
mseg; (7 )

=2[g,(§) + &, (V)] - Ex[g,(§") + g, ()]
+ E [y, BOI ) — iy, B), 9] (16)

where " is the same as \ except that it is calculated on
y instead of y, and E, is the expected value with regard
to the bootstrap model (15).

The bootstrap estimator (16) does not require the
analytical derivation of g,;(\{y) which can be rather
laborious when G and R have complicated structures.

Jiang et al. (2002) introduced a general jackknife esti-
mator for the variance of empirical best predictors in linear
and non-linear mixed models with M-estimation. In the
problem we are investigating here, the estimator they
propose can be written as:

EBLUP ~ -1 - ~ ~
msey () = (1) === £ (F) ~ (0]

n m—1 i(ﬁ?wp _ ﬁEBLUP )2 (17)
m 3
where \p_; is the estimate of y calculated by using all data
except those from the ;™ area. Similarly, AT =
APy B ).

It is worth pointing out that, on the basis of the
simulation results reported in Jiang et al. (2002), mseyy, is
deemed to be more robust than msep; with regard to
departures from the assumption of normality, which can
also be expected to be crucial for msey .

3. The simulation study based on the European
Household Community Panel data

The target population of the ECHP survey consists of all
resident households of a large subset of the EU member
countries. Although general survey guidelines were issued
by Eurostat, a certain degree of flexibility was allowed, so
there are some differences in the sampling design across
countries. As far as Italy is concerned, the survey is based
on a stratified two stage design, in which strata were formed
by grouping the PSUs (municipalities) according to geo-
graphic region (NUTS2) and demographic size. For more
details of the survey, see Eurostat (2002).

The ECHP deals with unit non-response, sample attrition
and new entries using weighting and imputation. As attrition
could lead to biased estimates of income if it does not
appear at random, the effect of poverty on dropout
propensity has been investigated (Rendtel, Behr and Sisto
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2003; Vandecasteele and Debels 2004), and the results of
these studies show that in the case of some countries,
including Italy, this effect disappears under the control of
weighting variables.

We have focused our attention on the eight ECHP waves
available for Italy (1994-2001). Given that our aim is to
assess whether the use of several successive observations of
the same household could be profitable for the purposes of
small area estimation, we have overlooked the problem of
attrition and only considered those households that partici-
pate to the survey for all waves.

Our target variable is disposable, post-tax household
income at the time of the last wave (2001). In studies of
poverty and inequality, income is often equivalized
according to an equivalence scale in order to avoid compa-
rison problems caused by differences in the composition of
households. We consider the widely-used modified OECD
scale, also adopted by Eurostat (2002) in its publications on
income, poverty and social exclusion. According to this
scale, equivalized income is calculated by dividing
disposable household income by the number (k) of
“equivalent adults”, defined as k£ =1+ 0.5a + 0.3¢, where a
is the number of adults other then the “head of the
household” and c is the number of children aged 13 or less.
In general, the equivalized income can be perceived as the
amount of income that an individual, living alone, should
dispose of in order to attain the same level of economic
wellbeing he/she enjoys in his/her household.

Of the many covariates available in the bountiful ECHP
questionnaire, we have chosen only those for which area
means were available from the 2001 Italian Census results.
Thus the chosen covariates are: the percentage of adults; the
percentage of employed; the percentage of unemployed; the
percentage of people with a high/mediunviow level of
education in the household; household typology (presence
of children, presence of aged people, etc.); the number of
rooms per-capita and the tenure status of the accommo-
dation (rented, owned etc.).

As we have said, the aim of this paper is to compare the
performance of different estimators in the controlled
environment of a simulation exercise. A number of works in
the literature have compared small area estimators using
Monte Carlo experiments in which samples are drawn from
synthetic populations based either on Censuses (Falorsi,
Falorsi and Russo 1994; Ghosh etral. 1996) or on the
replication of sample units’ records (Falorsi, Falorsi and
Russo 1999; Lehtonen, Sdrndal and Veijanen 2003; Singh,
Mantel and Thomas 1994). Since household income is not
measured by the Italian Census (nor is it given by the results
of other Censuses conducted by EU countries), we treated
the ECHP survey data as the pseudo-population and then
draw samples using stratified probability proportional to
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size sampling, the size variable being given by survey
weights. This solution may not be as good as that of using
data from a real Census population, but it is hopefully more
realistic than generating population values of household
income from a parametric model.

Monte Carlo samples of 1,000 (roughly 15% of the
actual ECHP sample size) were drawn from the synthetic
population by stratified random sampling without replace-
ment, with strata given by the 21 NUTS2 regions. Thus
these regions are treated as planned domains (as in the
ECHP) for which sample size in the small areas is
established beforehand, so that the sampling fractions reflect
the over-sampling of smaller regions exactly as they do in
the actual ECHP sampling design. The region-specific
sample sizes we obtained range from 14 to 112, being on
average equal to 48. Therefore in our simulation » = 1,000,
the number of small areas corresponds to that of the Italian
Regions (m=21) and the number of points in time
corresponds to the ECHP available waves (7 = 8).

The distribution of equivalized household income in our
pseudo-population (that is the distribution obtained by
weighted estimation from the ECHP sample data) is
characterized by an overall mean of 22,547 Euros and a
coefficient of variation of 0.59. The distribution is positively
skewed (even though skewness is not extreme: skewness
coefficient y, =p,/c” =2.5) and kurtosis (1 =p,/
c* =14.3). The difference between mean and median is
9% of the mean. An interesting feature is given by the large
disparities among administrative regions (that are the small
areas of interest in our study). The mean of the equivalized
household income ranges from 16,604 to 27,011, that is the
most affluent area has a mean equivalent income 62%
higher than the poorest one. Also the coefficient of variation
(ranging from 0.28 to 0.84), skewness (y; ranging from 0.1
to 4.6) and kurtosis («k ranging from -0.7 to 32.9) show that
the distribution of our target variable is quite a bit different
in different areas.

30,000
1

Residuals
-10,000 0 10,000 20,000 30,000 40,000
L ('l i L i
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-30,000
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To motivate the selected specifications of the random
effects part of the considered linear mixed models (see
section 2.2), an approach often recommended in textbooks
(see Verbeke and Molenberghs 2000, chapter 9) has been
followed: first we fit a standard OLS regression to our data
using all available covariates; then we analyse the resulting
residuals as a guide to identifying the random effects. This
preliminary analysis has been conducted separately on
several random samples of size 1,000, drawn up according
to the replication design described above.

The adjusted R* of the OLS regression is close to 0.35
in every observed sample. This rather low figure is the result
of the nature of the phenomenon under study (household
income is not easy to predict), the information contained in
the survey and the constraint represented by the need to
include only those covariates for which the population total
can be obtained from the Census.

Figure 1 contains “box and whiskers” plots of the
residuals by area and wave constructed for one of the Monte
Carlo sample (very similar findings may be observed in
every sample). Analysis of the plots suggests that there is
within-area and within-wave correlation, and thus the need
to specify models including area and wave effects. From an
analysis of residuals, it is less clear whether the inclusion of
interaction effects (that is time varying area effects) would
be beneficial or not.

Moreover the residuals show a degree of autocorrelation,
the average of the autocorrelation coefficient calculated over
all individual residual histories being 0.27. Even though this
autocorrelation level is not very high, for the sake of
completeness we decided to also take into consideration
models with autocorrelated errors or random effects. After
having tested various different autocorrelation structures
(ARMA(p, q), General Linear, efc.), we found that the auto-
regressive process of order 1 provides the best fit to our
data.

1

L
-30,000

—

d0pboantasdagotuest
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123456 78 9 1011121314151617 18 19 20 21
area

Figure 1 Box and whiskers plot of residuals by wave (left) and area (right)
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The apparent skewness of residuals also suggests that the
normality assumption for errors does not hold exactly. We
maintain this assumption for all the models we specify, and
we use REML estimators for variance components. In fact,
we may expect departures from normality to have a slight
impact on point values of predictors. BLUP formulas can be
derived without normality; moreover, there are sound
reasons for us to expect REML (and ML) estimators of
to perform well even if normality does not hold (see Jiang,
1996, for details). Departures from normality may have
more a serious impact on MSE estimation, and this is a
problem we are going to be looking at in section 4.2 below.

4. Results

4.1 Point estimators

All computations involved in the simulation exercise
described in section 3 were carried out using SAS version
9.1 for Windows. EBLUP estimators are obtained using
Proc MIXED, and the generation of samples is based on
Proc SURVEYSELECT.

Given that the primary goal of Small Area Estimation is
the precise estimation of area-specific parameters, we first
evaluated how well the described estimators perform when
predicting individual area values. Moreover, we also
evaluated the amount of over-shrinkage connected with
each estimator. In fact, small area estimates should reflect
(at least approximately) the variability in the underlying area
parameters taken as a whole.

We note that our simulation experiment is aimed at
evaluating design-based properties of the estimators, that is,
the population from which the random samples are
generated is held fixed.

For the evaluation of the estimators’ performance, we
adopted an approach that is commonly found in the
literature (see Rao 2003; section 7.2.6), using two
indicators, the Average Absolute Relative Bias (AARB) and
the Average Relative Mean Square Error (ARMSE):

R‘li{—yd_f‘” —1)
r=1 Y

dT

AARB = mlz
d=1

, (18)
m R ydT(r)
ARMSE=m™Y <R’ = -1
r=1

d=1 dT

where J,7, is the estimate for area d, time 7" and replicated
sample r, while Y, is the population mean being estimated.
Note that AARB measures the bias of an estimator, whereas
ARMSE measures its accuracy. The number of replications
R is set at 500, a figure large enough to obtain stable Monte
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Carlo estimates of expected values and variances, frequently
used in simulation studies on small area estimation (Heady,
Higgins and Ralphs 2004; EURAREA Consortium 2004).

The gain in efficiency connected to each small area
estimator is evaluated using the ratio of its ARMSE to the
ARMSE of certain estimators we use as benchmarks. In
particular, all estimators are compared with the weighted
mean Y,y and we denote this ratio as AEFF.
Moreover, EBLUP estimators associated with models (5) -
(9), which use data from previous waves, are compared with
the EBLUP estimator associated with the cross-sectional
model (10), in order to assess the gain in efficiency deriving
from the use of past waves. In this case the ratio is denoted
as AEFF .

As far as the evaluation of the degree of shrinkage is
concerned, we have compared the empirical standard
deviation of population area values:

ESD =Jm‘12(?ﬂ -1,
d=l1

where Y, is the mean of the population values of the m
areas at time 7, with the empirical standard deviation of the
estimated area values, which in the case of a simulation
study is given by:

R m
esd = R_lz {\/M_IZU’M(M - yT(r))z }’
r=1 d=1

where ):/m) is the mean of the estimated values for the m
areas at time 7 in the simulation run . The comparison is
carried out using the indicator

s
ESD

1 (19)

which tells us how the empirical standard deviation
associated with one estimator differs from that of the
population.

Table 1 contains the percentage values of AARB,
ARMSE, AEFF and RESD obtained for the direct esti-
mator, the design-based estimators given in (2) and (3) and
the EBLUP estimators derived from models (5) - (10).

All estimators perform significantly better than y,;
in terms of ARMSE, leading to less than 100% AEFEF,,
values. We can also see that design-based estimators are
worse than EBLUP estimators in terms of ARMSE, and that
the gain in efficiency demonstrated by AEFE,, is
particularly high in some cases (in excess of 50%). This
result highlights the superior accuracy of the model-based
estimators in question.
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Table 1 Performance indicators - auxiliary information is available

Model AARB% ARMSE% AEFFp;,% AEFFg.% RESD%
DIR 0.0 0.787 100.0 - 15.6
COMP 2.7 0.552 70.1 - -9.8
GREG 0.2 0.543 68.2 - 10.0
SMM 23 0.377 47.7 100.0 -8.7
MM]1 3.1 0.358 453 95.0 2.4
MM?2 2.4 0.427 54.1 113.4 4.4
MM3 2.6 0.380 48.3 101.2 4.7
MMA4 2.6 0.429 54.2 113.6 -8.0
MMS5 2.9 0.318 40.4 84.7 -1.7

The most reliable EBLUP estimator is the one associated
with the MM5 model, with independent area and time
effects and residuals autocorrelated according to an AR(1)
process, leading to a gain in efficiency of about 60%
compared with the direct estimator. This is followed by the
EBLUP estimator associated with model MM1, which
differs from the previous one only because of the absence of
autocorrelated residuals.

In terms of bias, the GREG estimator gives the smallest
value of AARB, as would be expected (Sdrndal, Swensson
and Wretman 1992, chapter 7; Veijanen, Lehtonen and
Sarndal 2005). This is followed by the remaining estimators,
all of which reveal a similar value for AARB. Of the
EBLUP estimators, those associated with the AM1 and
MMS5 models are more efficient in terms of ARMSE, but
they are slightly more biased than the one associated with
the SMM. This is probably due to the fact that we limit our
evaluation of performance to the last wave; for this data
subset we would expect the fit of the regression underlying
SMM, based on the last wave only, to be better than the one
based on the whole data set. As far as EBLUP estimators are
concerned, the AEFE,,, column shows how the gain in
efficiency of the predictors, based on borrowing strength
over time, is positive in some cases and negative in others.
Models MM?2 and MM4 (see formulas (6) and (8)), where
effects of interaction between area and time are present, are
apparently inadequate because the predictors associated
with both models perform rather poorly. The performance
of the predictor associated with MM3 (see (7)) is also
slightly worse than that of the predictor associated with the
cross-sectional model: this rather surprising result is
probably due to the low number of waves, which does not
allow for an effective estimation of the correlation
coefficient between consecutive time effects.

As we have already said, the estimator associated with
model MMS5 is the one that performs the best: it is
considerably more efficient than the one associated with
SMM, with an AEFF,, of roughly 85% representing a gain
in efficiency of about 15% due to consideration of more
than one wave. The EBLUP estimator associated with MM1
also turns out to be more efficient than the one associated
with SMM, but in this case the gain is one of only 5%.
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These results confirm the fact that household level data at
several consecutive points in time may be employed, via
certain kinds of longitudinal model, to produce more
efficient estimates.

Moving on to the indicator for shrinkage reported in the
last column of the table, we can see that the direct estimator
overestimate the standard deviation of the population of area
means, by 15%. The same effect, albeit somewhat
attenuated, is observed for the GREG estimator, whose
standard deviation is over-inflated by 10%. On the contrary,
the COMP estimator tends to “shrink” the estimates towards
the centre of the distribution, leading to a reduction in the
standard deviation of area means of about 10% with respect
to the population. These results are in line with those
obtained by other authors comparing the same kinds of
estimator (Heady et al. 2004; Spjetvoll and Thomsen 1987).
The results obtained for EBLUP estimators are more
encouraging, as the calculated percentage difference is
always less then 10% in absolute terms. Hence, in this
respect all EBLUP estimators seem to be acceptable.
Moreover, we may expect that the BLUP estimators are
under-dispersed compared to the corresponding population
parameters. In this case, the indicator RESD assumes
positive values for some longitudinal EBLUP estimators
because it is calculated only on the last wave, while
longitudinal models are aimed to predict m x T parameters.

Table 2 summarizes the results regarding those EBLUP
estimators associated with random error variance models, as
described in the last paragraph of section 2. When no
auxiliary variables are included in the models, the advantage
of “borrowing strength” over time and area is singled out
independently of the advantage associated with covariates.

As expected, the improvements in efficiency measured
by AEFFE,, are smaller than those shown in Table I,
although the reductions in ARMSE remain significant. The
ranking of those predictors associated with the various
random effects specification remains the same as the one
presented in Table 1, the predictor associated with the
MMS" model resulting the most efficient, as shown by
ARMSE%. The gain in efficiency associated with this latter
estimator compared with the direct estimator is about 43%.
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Table 2 Performance indicators - auxiliary information is unavailable

Model AARB% ARMSE% AEFF,,% AEFFs.% RESD%
SMM" 2.7 0.575 72.8 100.0 1.6
MMI1" 2.9 0.556 70.3 96.6 7.5
MM2’ 2.8 0.639 80.8 111.0 3.0
MM3’ 3.7 0.574 72.6 99.7 8.6
MM4 3.5 0.691 87.2 119.8 6.7
MM5" 3.0 0.445 56.2 772 6.3
With regard to bias, the EBLUP estimators obtained  where n??(LgP is by’ calculated on the " replicated

from those models with no covariates tend to be more
biased than the corresponding ones with covariates.

The analysis of the AEFF,, column shows that the
reduction in ARMSE allowed for by some of those models
borrowing strength over time, is larger than in the case
where covariates are included, as it reaches 22% in the best
example of the MM 5" model.

This last result is really encouraging. In fact, within the
context of Small-Area Estimation, the absence of any
known totals of covariates in the population can be very
limiting when trying to obtain reliable estimates. The
observed ARMSE reduction connected to the consideration
of more waves in a panel survey show that estimates may be
improved “borrowing strength” over time, when it is not
possible to exploit auxiliary information.

With regard to the results of shrinkage, they may be
considered acceptable also in this case, and one can sec a
relationship between the results obtained for EBLUP
estimators derived from analogous models with or without
covariates.

4.2 Comparing different estimators of the MSE of
EBLUP estimators

In section 2.3 we reviewed three different estimators of
the MSE associated with EBLUP estimators. In this section
we are going to compare the performances of these three
estimators using our simulation exercise. Given that we are
focusing on MSE estimation rather than a comparison of
EBLUP estimators derived from different models, we only
consider the predictor associated with model MMS5, which
emerged as the best performer in the previous section.

Let us denote the predictor of ¥,, with 7’2"
EBLUP

and its
mean square error as MSE(fj,, ). The following esti-

mator:

EBLUP EBLUP —EBLUP 2
mse ,cr (M7 z (Marer) )
~EBLUP _
+(Myr Y, )

~EBLUP ~EBLUP
sample and Mo F =R'YR 1 Narr) >

will be used as
benchmark for the comparison of the performance of the
mean square error estimators described in section 2.3,
because the true mean squared error is not known.

As in the case of point estimators, all computations are
done using SAS. To determine the Prasad-Rao estimator
(14), the output of Proc MIXED’s ESTIMATE statement is
used with the option KENWARDROGER activated. The
sum g, () + g,(\y) is obtained from the output of Proc
MIXED. The KENWARDROGER option allows for the
calculation of an MSE inflation factor, described in
Kenward and Rogers (1986), which is equivalent to
2g,(\r) (see also Rao 2003, section 6.2.7).

The estimator msey (fi5r ') is re-sampling based.
Hence the evaluation of its performance with respect to a
Monte Carlo exercise requires the implementation of two
nested simulations: for each r(r=1,...,R), we run the
Rpoor replications needed to approximate expectations
with respect to the bootstrap model. To limit the
computational burden, we set Rpoor =150. Butar and
Lahiri (2003) propose an analytical approximation of
mseg; , but only for models that are not as complex as the
one in question.

For both msey; (fi,;; ) and mse;, (fi, ), we have
prepared ad-hoc SAS codes using the output of Proc
MIXED as inputs.

In order to compare the three MSE estimators, we
employ the same measures used to evaluate the performance
of point estimators, AARB and ARMSE. As there is usually
some concern about the under-estimation of MSE
estimators, we are also interested in the sign of any bias
associated with the estimators in question. Therefore, in the
case of MSE estimators we do not only calculate the
average of the absolute values of the estimates obtained for
the bias in each region (AARB), but also the average of
these estimates without the absolute value (AARB’), so as
to better understand whether the given estimators indeed
tend to under-evaluate the MSE or not. Hence the calculated
measures are:

EBLUP EBLUP
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_ m _ R mse*(ﬁEBLUP)
AARB=m") |R lz(—iTEBwP -1
d=1 =\ ms€or (Agr )
m R ~EBLUP
/ -1 -1 mse. (7 )
AARB'=m™ ) {R z(—iTEBLUP —1] ,
d=1 s\ mseer(fyr )

m R ~ EBLUP
ARMSE =m™Y R-lz{—mse* (”ggw{ - 1]
d=1 i\ msexer(fgr )

where the symbol * refers to the considered estimation
procedures, that are PR, BL, JLW. Results of the
comparisons based on R =500 MC iterations are reported
in Table 3.

Table 3 Performance of MSE estimators of ﬁg?LUP under

model MMS5
Estimator AARB AARB' ARMSE
msepy 0.378 -0.383 0.238
mseg; 0.377 -0.318 0.228
mse; w 0.337 0.036 0.261

In terms of ARMSE and AARB, the three estimators
behave similarly, with no particular one emerging as clearly
better than the other two. Nonetheless, the AARB' column
clearly shows that mse,; and msey systematically
underestimate MSE ,.;, whereas mse,;,, does not. This is
probably due to the failure of the normality assumption for
error terms. In fact, as we foresaw in section 3, equivalized
income is a positively skewed variable, and the regression
residuals e also appear to be so. Normality is a crucial
assumption in the derivation of msep; and msey;, while
mse;;, could be expected to be more robust in this respect.
Our findings are consistent with the theory predictions and
simulation results described in Jiang et al. (2002). Although
Bell (2001) noted that mse;,, may be negative for some
data set because of the bias correction, this never happens in
our simulations. For all replicated data set we have that the
second term in (17) gives a positive, and in most cases
substantial contribution to the estimate of the MSE. A
discussion of modifications of (17) when it returns negative
values can be found in Jiang and Lahiri (2006b).

To conclude then, in the case of the present problem,
mse;,, emerges as the most appropriate of the three
measures for estimating MSE(fi5; ). This finding could
be of importance for any application of normality-based
linear mixed models theory to data set in which normality
assumptions for error terms do not hold exactly.

We replicated the simulation exercise also for the cross-
section model without covariates SMM ", that is often
considered in simulations aimed at the comparison of
different estimation methods. To this end we note that for
this model the ratio & /6> is around 12, leading to a
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EBLUP predictor characterized by y, = &> n, (6. n, +6-)"
ranging from 0.54 to 0.9. We note also that some, but not
all, areas are characterized by the presence of outliers
(skewness coefficient y, ranges from 0.1 to 4.6).

In this setting MSE estimators show a behavior quite
different form that illustrated in the case of model MMS5.
Results are shown in Table 4.

Table 4 Performance of MSE estimators of ﬁg?LUP under

model SSM*

Estimator AARB AARB' ARMSE
msepg 0.449 0.262 0.503
mseg 0.376 0.213 0.376
mse;; v 0.354 0.149 0.335

All estimators overestimate the actual MSE, although
mse;,, overestimates less than the other two. From a
detailed analysis of results related to individual areas, we
have the values of AARB' (that represents the most
apparent difference with the results of Table 3) is driven by
severe overestimation of actual MSE in areas characterized
by the lowest levels of skewness and kurtosis. For these
areas G- largely overstates actual variation in the data, thus
leading to overestimation of g, (5>, c>). This is likely to be
due to the fact that the failure of normality (the excess of
kurtosis) causes the overestimation of . This problem did
not appear in the case of model MMS5 because of the
presence of covariates and the AR(1) modeling of individual
residuals.

5. Concluding remarks and further developments

The results obtained show that, in general, EBLUP
estimators derived from unit level linear mixed model
specifications that “borrow strength over time”, as well as
over areas, provide a significant gain in efficiency compared
with both the direct estimator and with other commonly-
used design based estimators such as the optimal composite
estimator and the GREG estimator. Moreover, the mean
squared error of some of the longitudinal EBLUP estimators
in question is considerably lower, on average over the areas,
than that of the analogous cross-sectional EBLUP esti-
mators. Among the model specifications used to derive
EBLUP estimators, those with independent time and area
effects, whether inclusive of the autocorrelation of residuals
or not, appear the most efficient, offering a gain in
efficiency of about 55-60% compared with the direct
estimator. These results also hold when covariates are
removed; in fact, they offer the chance to obtain reliable
small area estimates even in the absence of covariates,
provided that repeated observations of the same unit at
several points in time are available. Besides the shrinkage
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effect connected to EBLUP estimators appears moderate,
reducing the need for ensemble or multiple estimation (Rao
2003, Chapter 9). With regard to estimation of the MSE of
the small area estimators in question, we noted that the
jackknife estimator provides the best results being correct,
on average, over the areas and thus more robust to any
departure from the standard assumptions of linear mixed
models. This finding may be of importance to all
applications of normality-based linear mixed models theory
to data set in which normality assumptions do not hold
exactly, as in the case of income data.

Acknowledgements

Research was partially funded by Miur-PRIN 2003
“Statistical analysis of changes of the Italian productive
sectors and their territorial structure”, coordinator Prof.
C. Filippucci. The work of Enrico Fabrizi was partially
supported by the grants 60FABRO6 and 60BIFF04,
University of Bergamo.

We thank ISTAT for kindly providing the data used in
this work.

References

Battese, G.E., Harter, RM. and Fuller, W.A. (1988). An error
component model for prediction of county crop areas using survey
and satellite data. Journal of the American Statistical Association,
83, 28-36.

Bell, W. (2001). Discussion with “Jackknife in the Fay-Herriott
model with an example”, Proceeding of the Seminar on Funding
Opportunity in Survey Research, 98-104.

Betti, G., and Verma, V. (2002). Non-monetary or lifestyle
deprivation, in EUROSTAT (2002). Income, Poverty Risk and
Social Exclusion in the European Union, Second European Social
Report, 87-106.

Butar, F., and Lahiri, P. (2003). On measures of uncertainty of
empirical bayes small-area estimators. Journal of Statistical
Planning and Inference, 112, 63-76

Datta, G.S., and Lahiri, P. (1999). A unified measure of uncertainty of
estimated best linear predictors in small area estimation problems.
Statistica Sinica, 10, 613-627.

Datta, G.S., Lahiri, P. and Maiti, T. (2002). Empirical bayes
estimation of median income of four-person families by state
using time series and cross-sectional data. Journal of Statistical
Planning and Inference, 102, 83-97.

Datta, G.S., Lahiri, P., Maiti, T. and Lu, K.L. (1999). Hierarchical
bayes estimation of unemployment rates for the States of the U.S.
Journal of the American Statistical Association, 94, 1074-1082.

EURAREA CONSORTIUM (2004). EURAREA. Enhancing Small
Area Estimation Techniques to meet European Needs, Project
Reference Volume, downloadable at http:/www.statistics.gov.uk/
eurarea/download.asp.

EUROSTAT (2002). European social statistics - Income, poverty and
social exclusion. 2™ report.

197

Falorsi, P.D., Falorsi, S. and Russo, A. (1994). Empirical comparison
of small area estimation methods for the Italian Labour Force
Survey. Survey Methodology, 20, 171-176.

Falorsi, P.D., Falorsi, S. and Russo, A. (1999). Small area estimation
at provincial level in the Italian Labour Force Survey. Journal of
the Italian Statistical Society, 1, 93-109.

Ghosh, M., Nangia, N. and Kim, D. (1996). Estimation of median
income of four-person families: A bayesian time series approach.
Journal of the American Statistical Association, 91, 1423-1431.

Heady, P., Higgins, N. and Ralphs, M. (2004). Evidence-Based
Guidance on the Applicability of Small Area Estimation
Techniques. Paper presented at the European Conference on
Quality and Methodology in Official Statistics, Mainz, Germany,
May, 24-26.

Jiang, J. (1996). REML estimation: Asymptotic Behavior and Related
Topics. The Annals of Statistics, 24, 255-286.

Jiang, J., Lahiri, P. and Wan, S.M. (2002). A unified jackknife theory
for empirical best prediction with M-estimation. The Annals of
Statistics, 30, 1782-1810.

Jiang, J., and Lahiri, P. (2006a). Estimation of finite population
domain means - A model-assisted empirical best prediction
approach. Journal of the American Statistical Association, 101,
301-311.

Jiang, J., and Lahiri, P. (2006b). Mixed model prediction and small
area estimation. Editor’s invited discussion paper, Test, 15, 1, 1-
96.

Kenward, M.G., and Roger, J.H. (1986). Small sample inference for
fixed effects from restricted maximum likelihood. Biometrics, 53,
983-997.

Lehtonen R., Sdrndal C.-E. and Veijanen A. (2003) The effect of
model choice in estimation for domains, including small domains,
Survey Methodology, 29, 1, 33-44.

Pfeffermann, D. (2002). Small area estimation — New developments
and directions. International Statistical Review, 70, 125-143.

Prasad, N.G.N., and Rao, J.N.K. (1990). The estimation of mean
squared errors of small area estimators. Journal of the American
Statistical Association, 85, 163-171.

Rao, C.R. (1972). Estimation of variance and covariance components
in linear models. Journal of the American Statistical Association,
67, 112-115.

Rao, J.N.K. (2003). Small Area Estimation, New Y ork: John Wiley &
Sons, Inc.

Rao, JN.K., and You, M. (1994). Small area estimation by combining
time series and cross-sectional data. Canadian Journal of
Statistics, 22, 511-528.

Rendtel, U., Behr, A. and Sisto, J. (2003). Attrition effect in the
European Community household panel, CHINTEX PROJECT,
European Commission.

Sarndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted
Survey Sampling. New Y ork: Springer-Verlag.

Singh, A.C., Mantel, H.J. and Thomas, B.W. (1994). Time series
EBLUPS for small areas using survey data. Survey Methodology,
20, 1, 33-43.

Spjetvoll, E., and Thomsen, 1. (1987). Application of some empirical

bayes methods to small area statistics. Bulletin of the International
Statistical Institute, 4, 435-450.

Statistics Canada, Catalogue No. 12-001-X


http://www.statistics.gov.uk/

198 Fabrizi, Ferrante and Pacei: Small area estimation of average household income based on unit level models

Vandecasteele, L., and Debels, A (2004). Modelling attrition in the Verbeke, G., and Molenberg, H. (2000). Linear Mixed Models for
European Community Household Panel: The effectiveness of Longitudinal Data, New Y ork: Springer-Verlag.
weighting, 2™ International Conference of ECHP Users, EPUNet
2004, Berlin, June 24-26.

Veijanen, A., Lehtonen, R. and Sérndal, C.-E. (2005). The Effect of
Model Quality on Model-Assisted and Model-Dependent
Estimators of Totals and Class Frequency for Domains, paper
presented at SAE2005 Conference, Challenges in Statistics
Production for Domains and Small Areas, August, 28-31 2005,
Jyviskyld, Finland.

Statistics Canada, Catalogue No. 12-001-X



