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Handling survey nonresponse in cluster sampling

Jun Shao !

Abstract

In surveys under cluster sampling, nonresponse on a variable is often dependent on a cluster level random effect and, hence,
is nonignorable. Estimators of the population mean obtained by mean imputation or reweighting under the ignorable
nonresponse assumption are then biased. We propose an unbiased estimator of the population mean by imputing or
reweighting within each sampled cluster or a group of sampled clusters sharing some common feature. Some simulation
results are presented to study the performance of the proposed estimator.
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1. Introduction

Nonresponse exists in most survey problems. The proba-
bility of having a nonrespondent in a survey item (variable)
v typically depends on the unobserved value of y, which
creates a great challenge in handling nonrespondents. Com-
monly used procedures for handling nonresponse (such as
reweighting and imputation) are all based on the assumption
that nonresponse is ignorable conditional on an auxiliary
variable. More precisely,

P(yisarespondent| y, z) = P(yisa respondent|z), (1)

where z is an auxiliary variable whose values are observed
for all sampled units in the survey. That is, conditional on z,
the value of y and its response status are statistically
independent. Assumption (1) is referred to as the uncon-
founded response mechanism by Lee, Rancourt and Sérndal
(1994). Using the terminology in Rubin (1976), non-
response under (1) is ignorable conditional on z.

There are situations in which it is difficult to find a
variable z to satisfy (1). The purpose of this article is to
study a method of handling nonresponse when cluster
sampling is used, assuming that a variable z satisfying (1) is
not available. In cluster sampling, sampling is carried out in
two stages; the first stage sampled units are clusters
containing units that are sampled in the second stage.
Cluster sampling is used because of economic consider-
ations. It is necessary when no reliable list of the second
stage units in the population is available (for example, there
is no complete list of people but a list of households is
available). Under cluster sampling, the variable of interest y
may be decomposed as y=p+b+e, where p is an
unknown overall mean of y,b is a cluster level random
effect (all units in the same cluster share the same random
effect b), and e is a within-cluster random effect. In many
cases, the dependence of the value of y and its response

status is through the unobserved cluster level random effect
b:

P(yisarespondent| y, b)= P(yisa respondent | b), (2)

i.e., if b were observed, then we would have assumption (1)
with z=5. For example, suppose that clusters are house-
holds and a single person completes survey forms for all
sampled persons in a household. It is likely that the response
probability depends on the household level variable b, not
on the within household variable e.

Assumption (2) was first used by Wu and Carroll (1988)
in a health problem where the clusters have a longitudinal
(repeated-measure) structure. They called (2) informative
censoring (missing) and proposed a method under some
parametric assumptions on the probability P(y is a
respondent |[b) and the distribution of y. Later, Little
(1995) called this type of missing mechanism the non-
ignorable random-coefficient-based missing mechanism.
Thus, assumption (2) will be referred to as nonignorable
random-effect-based response mechanism. Since b is not
observed, response mechanism (2) is actually nonignorable.

For survey data, it is difficult to impose any parametric
model on the distribution of y. Furthermore, it is also
difficult to fit a parametric model for the response mech-
anism under (2), since b is not observed. After introducing
some details on the sampling design and our assumptions,
we propose in Section 2 a method for the estimation of the
population mean of y under response mechanism (2),
without requiring a parametric model for the response
mechanism. It is assumed that y follows a random (cluster)
effect model, but there is no parametric assumption on the
distribution of y. Results from a simulation study are
presented in Section 3 for examining the performance of the
proposed estimator. Some discussions are given in the last
section.
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2. Main results

Let S be a sample of clusters of size n from a population
P. Within the i™ sampled cluster, let S, be the second
stage sample of size m, >2 from a population P. For
sampled unit je S, a survey weight w; is constructed
(from the specification of the sampling design) so that when
there is no nonresponse, ¥ =Y, (3 Jes, Wy 18 an unbiased
estimator of the population total Y on any variable y, i.e.,
E, (Y —Y) =0, where ¥; 1s the y-value of unit j in cluster i
Y =%,p2jep¥;» and E_ is the expectation with respect to
repeated sampling.

Let y be the variable of interest. We adopt an imputation
model approach, ie., we assume that each y, in the
population is a random variable with

Vi =l +b +ey, 3)

where p, is an unknown parameter, b, is an unobserved
cluster level random effect with mean O and a finite
variance, e; is an unobserved within cluster random effect
with mean 0 and a finite variance, and b,’s and ¢, ’s are
independent. Note that the distribution of y; may vary with
@ ).

Let 8, be the response indicator for y, (6, =1 if y; is
a respondent and 8, =0 if y, is a nonrespondent). We
adopt the approach in Shao and Steel (1999), ie., §; is
defined for every unit in the population and nonresponse
mechanism is part of the model. Let 8, be the vector
containing §;, j€S;, and y, be the vector containing
Vy» J € S;. We assume the following nonignorable random-
effect-based response mechanism: for every sample,

B,(8:b,y)=F,@:|b), i€S, (4)

where P, is the probability with respect to the model and
P (&|m) denotes the conditional distribution of & given n.
That is, conditional on b, y, and §, are independent.
(Unconditionally, they may be dependent.) We assume that
the stochastic mechanism with respect to the model is
independent of the sampling mechanism so that
EE (X)=E,E (X) aslongas.Xis integrable, where E,,
is the expectation with respect to P, .

Furthermore, we assume that

for anyie S, at least one 9, is 1. 5

That is, each cluster has at least one respondent. Without
this assumption (or some other assumption), the population
total ¥ may not be estimable. More discussion is given in
Section 4.

If we assume ignorable nonresponse, ie., B, (3, =
1| y;)=F,(5; =1), then a commonly used procedure is to
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impute each nonrespondent by the mean ¥, 5% 58, w; 7,/
Yies 2 jes, 8;W;» which leads to the following estimator of
Y:

V=20 2 8y wy

ieS jes;
:WU{ZZWU/ZZ Sy.w,.j}. (6)
ieS jes, ieS jes;
Under assumptions (3)-(5),
EE,(Y))
= EvEm {z Z 6[/' Wy(ul + bi + e[j)J
ieS jes;
:ESEm z z 6ij‘»ij”’i +ESEm z ZSUWUbi}’ (7)
ieS jesS; ieS jes;

where the last equality follows from

E,(8,wye,) =E,[E, (3, w;e, | b)]
:Em[Em(SyWy|b1)Em(ey |b1)]:0 (8)

under (4). The first term in (7) is equal to

ES Em

ieS jeS; ieS jes; ieS jeS;

DL

s a2

which is approximately equal to (when # is large)

ES Em

> ZSUW:J‘“

ieS jes;

i ESEm

)} ZW,-,}

ieS jes;

> Fom,

ieS jes;

ES Em

E, {z Zwij“'iEm (SU)JES

ieS jes,

E, {Z ZWUEM (SU)J.

ieS jes;

]

ie§ jes;

Note that

ESEm(Y):Em(Y):Z z H’i :ES

ieP jeP,

PIPIRTHT?

ieS jes;

Hence, either w, =p for all i or E,(5,) does not
depend on (i, j) implies that the expectation of the first
term in (7) is approximately equal to the expectation of Y.
However, E, (6;w;b,)# 0 in general, because §, and b,
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are dependent. Thus, the second term in (7) is not 0 and,
hence, };r defined by (6) is biased under the nonignorable
random-effect-based nonresponse. This bias does not go
away asymptotically as n — co and/or m, — oo for all i.

Recognizing that the problem with }i is that imputation
is done over the entire sample whereas the nonresponse
depends on a cluster level random effect, we can find an
unbiased estimator by performing imputation within each
cluster. This would have been a natural way of imputing if
the cluster random effect 5, were observed. If we impute a
nonrespondent y; in cluster i by the cluster mean
Y jes, 0;W; Y/ L jes, 8,;W;» then the resulting estimator is

EDIDIL I

ieS jes;

with

WU:WU{ZWU/ZSUWUJ' ©))

JES; JES;

Assumption (5) ensures that iy, is well defined. Note that

EE (y)=EE, +FE

s m

228wk,

ieS jes,

ZZWU i

ie§ jes,

=E, (),

Tt

ieS jes,

= Equ + E

s m

»ay

ieS jes,

where the first equality follows from assumption (3) and the
fact that, under assumption (4), result (8) still holds with W,
replaced by 1w, the second equality follows from the
definition of ), and the fact that p, and b, do not depend
on j, and the last equality follows from £ (b,)=0. Hence,
Y. is an unbiased estimator of Y.

Since imputation is done within each cluster, the esti-
mator defined by (9) seems inefficient when some cluster
sample sizes m, are very small. This worry, however, is not
necessary in the case where w; =w, for all j (eg., the
second stage sampling is with equal probability). When
w; =w; for all j, imputation leading to Y. in (9) is actually
done in a much larger class, a group of clusters sharing
something in common. Let §,=m 'Y jes,8; be the
response rate within cluster i and let

Glz{ieS:ml.zm,S,:k/m}, I=(k,m),k<m. (10)

For each /= (k,m),G, in (10) is the group of sample
clusters having the same m, =m and §,=k. If w; =w,
for all j, then, for i € G, with [ = (k, m),
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wii =W [zjeS, Wi /ZjeS, By.w,.jj
D NRT)

=w/3;
=w,/(k/m)

=W [ZieG, miw"j/{z"eg r]:lmiWiJ

=W [zieG, miwij/[ZiEG’ 3 miwjj

G [zieG, Z:/'ES, Wij/[ZiEG’ ZjeS, SUWJ
=Wy [zieG, ZjeS, WUJ/[Z’EG' zjes’ SUWUJ'

Therefore, imputation leading to ¥, in (9) is actually done
within each group G, when w;, =w, for all j, ie, a
nonrespondent in S, is imputed by the sample mean of the
respondents in G, X;cq, 2 jes, 8, Wy Vy/ Zieg, 2 jes, 05 Wy-

When w; varies with j for some i’s, some additional
conditions are needed in order to combine clusters. A
discussion is given in Section 4.

We end this section with a discussion of variance
estimation, since most surveys require a variance estimator
for each point estimator. A variance formula or its
approximation (as n — ) for ¥, can be derived, which
may require more details on the sampling design. When the
first stage sample size # is large, m, < m for all i and a fixed
integer m, and n/N is small, where N is the size of P, we
can apply the adjusted jackknife method as described in Rao
and Shao (1992). More precisely, we can follow the
following steps.

1. Create n jackknife replicates, where the ™

replicate is obtained by deleting the i™ cluster and
adjusting the weights to w,({?, k#i,i=1,...,n,
according to the sampling design. For example, if
the first stage sampling is a stratified sampling,
then w,({? =w,, if k and i are not in the same
stratum and w,({? =m,w; /(n, —1) if k and i are in
the same stratum 4, where n, is the stratum size.

2. Re-impute the nonrespondents in the i™ jackknife
replicate using the respondents in the i™ jackknife
replicate, i =1,..., n.

3. Compute }i,i the same as ¥ but based on the i"™
re-imputed jackknife replicate, i =1, ..., n.

4.  Compute the jackknife variance estimator for }76
using a standard jackknife formula (e.g., Shao and
Tu 1995, Chapter 6). For example, if the first stage
sampling is a stratified sampling with H strata, then
a jackknife variance estimator is
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a 1

2
nh - n 1 n
v=2 =2 P2 Ve |
=1 My es, N kes

where S, is the sample from the 4™ stratum and
n, is the size of §,.

3. Simulation results

We now present some results from a simulation study to
examine the performance of the estimators ?r and ?C

We create a finite population similar to the elementary
school teacher population in Maricopa County, Arizona
(Lohr 1999, pages 446-447). The finite population contains
311 clusters (schools). In each cluster, the second stage units
are teachers. The cluster size (the number of teachers) varies
from 6 to 59 and, hence, the first stage sampling is an
unequal probability sampling with probability proportional
to cluster size. The first stage sampling is with replacement
and the sample size is 31. The second stage sampling is a
simple random sampling of size 6 (for any cluster) without
replacement.

For each teacher, the variable of interest is the minutes
spent per week in school on preparation. The values of y;,
for this variable in the simulation are generated according to
model (3), where ., is the mean minutes spent per week in
school on preparation for the i™ school, b, is a random
effect of the i™ school, and e, is a random effect of the
7™ teacher in the i™ school. The values of p.’s are the
sample means in the data set in Lohr (1999, pages 446-447),
which vary from 25.52 to 42.18 with a mean of 33.76 and a
median of 33.47. The value of b, is generated according to
b, =8.31(X; —2), where X, has the gamma distribution
with shape parameter 2 and scale parameter 1. The value of
e; is generated from the normal distribution with mean 0
and standard deviation 2.27. The b,’s and e¢;’s are
independently generated. The values of y, =p, +b, +e¢;
are generated in each simulation run so that we can evaluate
the biases and standard errors of estimators using joint
probability under sampling and models (3)-(5).

For sampled units, nonrespondents are generated
according to (4) and (5). That is, each sampled cluster has
one respondent and the response status of the rest of the
sampled units in each cluster are independently determined
by P(y; is missing |b,) = e"7/(1+¢"™). The mean non-
response probability is 33.76%.

For the estimation of the finite population mean, a
simulation of 1,000 runs shows that, when f’r is used, the
bias, standard error, and root mean squared error are -2.89,
1.32, and 3.17, respectively, and the relative bias
E(};r -Y)/E(Y) is -8.5%; when ?C is used, the bias,
standard error, and root mean squared error are 0.12, 1.81,
and 1.82, respectively, and the relative bias E (};C -Y)/E(Y)
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is 0.3%. This simulation result supports our theory, i.e., Y,
is approximately unbiased but f’r is biased. In this case, ?C
has a larger standard error than ¥, but ¥, has a much larger
root mean squared error than ?C due to its large bias.

4. Discussions

Without the assumption that each sampled cluster has at
least one respondent, the population total may not be
estimable unless some other assumption is added. Under the
nonresponse mechanism (4), when all observations in a
cluster are nonrespondents, no information in that cluster
can be recovered from observed data in other clusters unless
some additional assumption is made. For example, one may
assume that the population of clusters with no respondent is
similar to that of clusters with 1 respondent, in which case
one can collapse clusters by distributing the weights of
clusters with 0 respondent to the weights of clusters with 1
respondent. Another approach is to assume a model so that
we can extrapolate results to clusters with no respondent.

The results in Section 2 are given for mean imputation.
Extensions to some other imputation methods are straight-
forward. For example, if random hot deck imputation is
considered, then our result leads to imputation within
clusters (or G, ’s). When there is a covariate x whose values
are all observed, our result can be extended to regression
imputation with model (3) modified to y,=a+
Bx; + b, +e;. For unit nonresponse, our result can also be
applied to re-weighting, ie., adjusting weights within
clusters (or G, ’s).

Our method is imputation model based. We assume
random-effect model (3) and random-effect-based response
mechanism (4). If model (4) does not hold, then
E,(8;w;e;)#0 and our estimator Y. has a bias with a
magnitude Adepending on the size of [E,(5;w;e;)|-
Similarly, Y, is not valid if model (3) does not hold.

It is shown in Section 2 that the condition w;, = w; for all
j ensures that imputation is done within each G, that is the
group of clusters with the same size and response rate. For
two-stage sampling, this condition is satisfied when the last
stage sampling is with equal probability (e.g., simple
random sampling without replacement). For three-stage
sampling, model (3) should be replaced by y; =
w; +b; +e; and b, in (4) should be replaced by b;. The
survey weight w;, satisfies w;, =w, as long as the last
stage sampling is with equal probability and our result still
holds. In two-stage sampling with w, varying with j, we
may perform imputation within a group of clusters that have
the same £, (y,|8§,). For example, suppose that, in addition
to (3)-(5), u,=u,b’s are independent and identically
distributed (iid), and conditional on b,, the components of
8, areiid. Then E, (b, |5;) = E,, (b, | 5,) depending only on
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the size of the cluster m, and §,. Hence we can perform
imputation within each G, defined by (10).
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