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Semiparametric model-assisted estimation for natural resource surveys

F. Jay Breidt, Jean D. Opsomer, Alicia A. Johnson and M. Giovanna Ranalli '

Abstract

Auxiliary information is often used to improve the precision of survey estimators of finite population means and totals
through ratio or linear regression estimation techniques. Resulting estimators have good theoretical and practical properties,
including invariance, calibration and design consistency. However, it is not always clear that ratio or linear models are good
approximations to the true relationship between the auxiliary variables and the variable of interest in the survey, resulting in
efficiency loss when the model is not appropriate. In this article, we explain how regression estimation can be extended to
incorporate semiparametric regression models, in both simple and more complicated designs. While maintaining the good
theoretical and practical properties of the linear models, semiparametric models are better able to capture complicated
relationships between variables. This often results in substantial gains in efficiency. The applicability of the approach for
complex designs using multiple types of auxiliary variables will be illustrated by estimating several acidification-related

characteristics for a survey of lakes in the Northeastern US.

Key Words: Regression estimation; Smoothing; Kernel regression; Lake chemistry.

1. Introduction

Post-stratification, calibration and regression estimation
are different design-based approaches that can be used to
improve the precision of estimators when auxiliary
information is available at the estimation stage. Model-
assisted estimation (Sirndal, Swensson and Wretman 1992)
provides a convenient framework in which to develop these
and related survey estimators. Under that framework, a
superpopulation model describes the relationship between
the variable of interest and the auxiliary variables. This
model is then used to construct sample-based estimators that
have improved precision when the model is correct, but
maintain key design properties such as consistency and an
estimable variance when the model is incorrect.

Until recently, the superpopulation models used in this
context were formulated as parametric models, most often
ratio or linear models. While reasonable in many practical
applications, there are also many situations in which such
relatively simple models are not good representations of the
relationship between the variable of interest and the
auxiliary variables. In Breidt and Opsomer (2000), a non-
parametric model-assisted estimator was proposed based on
local polynomial regression, which generalized the well-
established parametric regression estimators. With this
estimator, the superpopulation is no longer required to
follow a pre-specified parametric shape. Instead, the
relationship between the the variable(s) of interest in the
survey and the auxiliary variable is required to be smooth
(continuous), but is otherwise left completely unspecified.

In the current paper, we formally extend the theory of
Breidt and Opsomer (2000) to the semiparametric regres-
sion context, in which some variables are incorporated
linearly, and others are incorporated through smooth addi-
tive terms. This extension makes their results more useful in
practice, since auxiliary information is very often multi-
dimensional in nature, and almost always contains category-
ical variables that need to enter the regression model
parametrically (through the use of indicator variables). An
illustration of this is provided by a survey of lakes in the
Northeastern states of the U.S. conducted by the
Environmental Monitoring and Assessment Program of the
US Environmental Protection Agency. In that survey, 334
lakes were sampled from a population of 21,026 lakes
between 1991 and 1996. We will apply the semiparametric
model-assisted estimator to produce estimates of the mean
and distribution function of the acid neutralizing capacity
and other chemistry variables of interest. In this application,
we will include in the model both categorical and contin-
uous variables linearly and a continuous variable as a
smooth additive term.

In Opsomer, Breidt, Moisen and Kauermann (2007), the
nonparametric model-assisted estimation principle was
extended to generalized additive models (GAMs) and
applied in an interaction model for the estimation of
variables from Forest Inventory and Analysis surveys.
While GAMs also contained a mixture of categorical
(parametric) and nonparametric terms, a complete theo-
retical development is not possible in the case of GAMs,
and was therefore not provided there. The semiparametric
model considered in this article can be viewed as a special
case of a GAM with an identity link function. Unlike the
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“general” GAM, the semiparametric model allows for
formal derivation of the statistical properties of the model-
assisted estimator.

The remainder of the article is structured as follows. In
Section 2, the semiparametric model-assisted estimator is
defined. Section 3 states and proves the design properties of
the estimator. Section 4 describes the application of semi-
parametric model-assisted estimation to the Northeastern
Lakes data. Section 5 provides a conclusion.

2. Semiparametric model-assisted estimation

We begin by considering the superpopulation model with
a single univariate nonparametric term and a parametric
component; extension to several nonparametric terms is
addressed in Section 3.2. The parametric component can be
composed of an arbitrary number of linear terms. This
model is the semiparametric model studied by Speckman
(1988), among others. This superpopulation model, which
we denote by &, can be written down as

E, ) =g(x, z)=m(x)+z,P
Varé_ ) =v(x z3) (1)

with x, a continuous auxiliary variable to be modelled
nonparametrically and z, =(zy, ..., zp,) a vector of D
categorical or continuous auxiliary variables that are
parametrically specified. The functions m(-) and v(., -)
and the parameter vector B are unknown. For identifiability
purposes, we will assume that the vector z, contains an
intercept term, and that the function m(:) is centered
around 0 with respect to the distribution of the x,. We will
derive the model-assisted estimator that uses model (1) by
first defining population-level estimators for the unknown
functions and parameters, and then constructing sample-
based estimators. This is the same approach used for the
parametric case in Sarndal ez al. (1992, Chapter 6).

Let U={l, 2, ..., N} represent the ordered labels for a
finite population of interest. As the population estimator for
g(x,, z,), we will use the backfitting estimator described
in Opsomer and Ruppert (1999). We first introduce the
required notation. Let K(-) represent a kernel function used
to define the neighborhoods in which the local polynomials
will be fitted (assumptions on K are specified in the
Appendix). The population smoother vector for local
polynomial regression of degree p at x, is defined as

szT/k = e1T (XZCk Wi XUk)_1X5k Wi

with e, avector of length p+1 with a 1 in the first position
and Os elsewhere, W,, =diag{h"'K((x, —x,)/h), ...,
'K ((xy —x,)/h)} and
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I x—x,
Xy =1:

I xy-—x,

(x, —x; )’

(xy — xk)p

The smoother s, can be applied to the vector ¥, =
(5 -ees yN)T to produce the nonparametric regression fit
with respect to the variable x at observation x,. It can also
be applied to any of the columns of Z, =(z/, ..., z,)" to
smooth those with respect to x. This will be done in the
derivation of the properties of the semiparametric estimator
(Section 3).

In addition to the smoother vector at x,, s;,, we also
need to define the smoother matrix at all the observation
points x;, ..., Xy,

Son

S, = |

Sux
and the centered smoother matrix S,, =(I-11"/N)S,,.
When the smoother matrix is applied to ¥, it produces the
vector of nonparametric regression fits at all the observation
points. The centered smoother matrix S, produces
centered fits, i.e., the overall mean of the fitted values is
subtracted from each fitted value. The centering is used to
maintain identifiability of the estimators, as explained in
Opsomer and Ruppert (1999).

For any observation x,, a possible estimator of m(x,)
could be defined as s,, Y,, with or without a centering
adjustment. This estimator would generally be poor, since it
does not take into account the fact that the y, contain a
parametric component that depends on the z,. A more
efficient estimator is provided by jointly estimating both
m(-) and B, as is done by the following set of estimators

B=(Z;(I-8,)Z,)"Z;(I-S,)Y,
m,=s,, (Y, —Z,B) k=1, .., N. 2

In these estimators, B is calculated first, and then the
“residual vector” ¥, — Z, B is smoothed with respect to x.
The estimators in (2) are identical to the backfitting
estimators for additive models described in Hastie and
Tibshirani (1990) and implemented in gam in S-Plus, R or
SAS. As a population estimator for E.(y,) =g (x |k, z,),
we use —

g =m + 7, B.

We now explain how to construct a model-assisted
estimator based on the semiparametric regression approach.
Let 4 c U be asample of size n drawn from U according
to sampling design p(4) with one-way and two-way
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inclusion probabilities wt, =X ,,, p(A4), Ty =2 451, P (A),
respectively. If the g,, k=1, .., N were available, it
would be possible to construct a difference estimator for the
population mean of the y,, ¥, =, v, /N, as

L1 L 5= &
G =— +— ) S 3
Vit N %:gk N ZA: T, 3)
which is design unbiased and has design variance

Vi =8k Vi~ &
T LY

R 1
Varp (Paie) = _zzz (y —m7,)
N U

(Sérndal et al. 1992, page 221). The design variance is small
if the deviations between y, and g, are small. This
estimator is not feasible, since it requires knowledge of all
the x,, z, and y, for the population to calculate. Instead,
we will construct a feasible estimator by replacing the g,
by sample-based estimators. The sample-based estimators
corresponding to the population estimators in (2) are
constructed as follows. The design-weighted local poly-
nomial smoother vector is

SZZ = e1T (Xjk m XAk)_lXjk Wi “)

with X ,, containing the rows of X, corresponding to the
ke A and

X;—X
W, =diag 1 L Eljedl.
T h h

The matrix X', W, X, in (4) will be singular if, for
some sample A, there are less than p+1 observations in
the support of the kernel at some x,. This issue can be
avoided in practice by selecting a bandwidth large enough to
make that matrix invertible. However, this situation cannot
be excluded in general and we need an estimator that exists
for every sample A for the theoretical derivations of
Section 3. Hence, we will consider the following adjusted
sample smoother vector

sZk = e1T (Xﬁk Wy Xy + diag (5N ))_lXjk Wy (5

for some small &>0, as done in Breidt and Opsomer
(2000). The sample smoother matrix and its centered
version are

S, =[s",:ked] S,=I-11"1II'/N)S,

with II , =diag{m, : k€ 4}. The design-weighted esti-
mators for B and the m, are

B=(Z,/U-S)Z)'Z,L;I-S)Y, (6)

S sZk(YA —Zﬁ B), (7
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where Z, and Y, denote the sample versions of Z,, and
Y, respectively. Note that the estimator s, is defined for
any x, in the population, not only those appearing in the
sample. As for the population estimators, these estimators
can again be written as the solution to backfitting equations,
so that they can be calculated by appropriately weighted
versions of the existing algorithms.The estimator for g, is
g =y +z,B.

The semiparametric model-assisted estimator is then
constructed by replacing the g, in(3) by the g,:

N 1 1 Vi — 8k
= — 6, + — —==. 8
Y reg N %: 8k N ZA: T, ( )
Defining y, =%, y,/n, and similarly for 7, an
equivalent expression for J,., is given by

Vg =V + Ty —zn)l?+%§ 7ty —%Z ’:—;‘ ©)
which shows that the semiparametric estimator can be
interpreted as a “traditional” linear regression survey
estimator using the parametric model component z[3, with
an additional correction term for the nonparametric
component of the model. This estimator also shares some
desirable properties with the fully parametric regression
estimators. It is location and scale invariant, and it is
calibrated for both the parametric and the nonparametric
model components, in the sense that £, =X, and
%,e = Zy- The calibration for the variables in the parametric
term can be checked directly by using expressions (6) and
(7), while the calibration for the nonparametrically specified
variable x, follows from the fact that s’, X, =x,, where
X,=(x;:ked) (we are ignoring the effect of the
adjustment diag (SN ") in (5), because that adjustment can
be made arbitrarily small). In addition, the estimator can be
written as a weighted sum of the y,, k € 4, so that a set of
weights w, can be obtained and applied to any survey
variable of interest.

3. Properties and extensions
3.1 Design properties

In this section, we explore the design properties of the
semiparametric estimator (8). In particular, we prove that
Preg 18 design Jn -consistent, and we derive its asymptotic
distribution, including an estimated variance. This will be
done in the design-asymptotic context used in Isaki and
Fuller (1982) and in Breidt and Opsomer (2000), in which
both the population and the samples increase in size as
N — oo, All proofs and the necessary assumptions are in
the Appendix.
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In the following theorem, we prove the design
consistency of the semiparametric estimator. We also show
that the convergence rate is /n, the usual rate for design
estimators.

Theorem 3.1 Under the assumptions Al— A8, the esti-
mator P,., in (8) is design consistent with rate Jn, in the
sense that

1
Ve =Yy +O, | — |.
g N P ( \/; j
The following theorem proves that a central limit

theorem for 7., exists whenever it exists for the expansion
estimator y,.
Theorem 3.2 Under the assumptions Al- A8, if
Y =Dy
VP ()

—> N (O, 1),

with

N 1 Ty — T Ve Vs
PI) =52, kel
N? ZZA: Ty T, T,

Jfor a given sampling design, then we also have

yref—_yN_> N(0, 1),
VYV )
with
N 1 Ty~ V=8 Vi— &
V(e = —5 Mk . (10)
¢ N? z ZA: Ty T, T,

3.2 Semiparametric additive model

The results in Theorems 3.1 and 3.2 use the semi-
parametric model (1), which contains a single univariate
nonparametric term m(-). In many practical applications,
several auxiliary variables will be available that could be
included in the nonparametric portion of a model, but the
curse of dimensionality makes it often difficult to combine
several variables into a single multi-dimensional non-
parametric term. Instead, the variables that are to be
included nonparametrically will be treated as univariate
components. This results in the semiparametric additive
model, which is written as

E. () =g(x z) =m(x,) +...+my(xy) + 2, B
Var&_ ) =v(x, z,)
where the m, (), ¢g=1, .., QO and v(,-) are unknown
smooth functions.

When QO =2, expressions similar to (6) and (7) can be
developed, using the additive model decompositions of
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Opsomer and Ruppert (1997), and for Q> 2, recursive
expressions can be derived using the approach of Opsomer
(2000). The estimator would then be written as in equations
(6) and (7), but with the smoother vectors s,, and smoother
matrix §, replaced by complicated higher-dimensional
additive model smoothers (see Opsomer (2000) for details).
Because of this, formally proving the properties of the
model-assisted estimator for the case with arbitrary QO
would be a challenging task beyond the scope of the current
article.

In practice, the backfitting algorithm formulation
provides a much more efficient and simple way to calculate
the semiparametric estimator. Let s, represent the sample
smoother vector, as defined in (5), for the variable x, at the
observation x, and S, is the corresponding smoother
matrix for the variable x,. Also, i, denotes the sample-
weighted backfitting estimator for m, (x,) and m,, =
(11, k € A). The backfitting algorithm for a model
including QO nonparametric terms consists of the following
set of equations, iterated to converge:

. 0
B =Z'iw)z)'z\1m} {YA —Z;ﬁAq]
q=1

q#1

Ht 4 :SAI(YA _Zﬁl}_z ’i'qu

h =8, {YA -Z\B-Y ;ﬁAq].
970
These equations provide weighted fits at the sample
locations &k € A only. For the remaining locations k € U
not in A, an additional smoothing step is required after
obtaining the m,, q=1,.. Q:

~ T T H N
i, —sAqk(YA -Z\B-Y mAq,J.

q'#q

The sample-based estimators for the mean function at all
keU are then defined as g =, +... 41y, + 2B,
which are used in expression (8) to construct the model-
assisted estimator.

4. Application to Northeastern Lakes survey

In this section, we will show the applicability of the
semiparametric regression estimator on a dataset of water
chemistry samples. As will be illustrated, once a set of
auxiliary variables and a model has been selected,
computing survey estimators for the semiparametric model
is as easy as for linear models, and hence can lead to
improved precision for relatively little cost.
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The National Surface Water Survey (NSWS) sponsored
by the U.S. Environmental Protection Agency (EPA)
between the years of 1984 and 1986 estimated 4.2 percent
of the lakes in the northeastern region of the United States to
be acidic (Stoddard, Kahl, Deviney, DeWalle, Driscoll,
Herlihy, Kellogg, Murdoch, Webb and Webster 2003).
Acid-sensitive Northeastern lakes were among the concerns
addressed by the Clean Air Act Amendment (CAAA) of
1990, which placed restrictions on industrial sulfur and
nitrogen emissions in an effort to reduce the acidity of these
waters. A common measurement of acidity is acid
neutralizing capacity (ANC), which is defined as a water’s
ability to buffer acid. An ANC value less than zero peq/L
indicates that the water has lost all ability to buffer acid.
Surface waters with ANC values below 200 peq/L are
considered at risk of acidification, and values less than 50
peq/L are considered at high risk (National Acid
Precipitation Assessment Program (1991), page 15).

Between 1991 and 1996, the Environmental Monitoring
and Assessment Program (EMAP) of the U.S. Environ-
mental Protection Agency conducted a survey of lakes in
the Northeastern states of the U.S. These data were collected
in order to determine the effect that restrictions put in place
by the CAAA had on the ecological condition of these
waters. The survey is based on a population of 21,026 lakes
from which 334 lakes were surveyed, some of which were
visited several times during the study period. Multiple
measurements on the same lake were averaged in order to
obtain one measurement per lake sampled. Lakes to be
included in the survey were selected using a complex
sampling design commonly employed by EMAP based on a
hexagonal grid frame (see Larsen, Thornton, Urquhart and
Paulsen (1993) for a description of the sampling design).

Let y, represent the (possibly averaged) ANC value of
the k™ sampled lake. A very simple estimate of the ANC
mean of the lakes is represented by the expansion estimator
¥.. In this as in many surveys, a better choice is the Hajek
estimator,

. 1 y
yH=ﬁZ =+ (11)

keA Tck

which applies a ratio type adjustment for the estimation of
the population size through N =%, ,1/m,. However,
auxiliary variables are available for each lake in this
population, so that it should be possible to further improve
upon the efficiency of the Hajek estimator. The following
variables are available for each £ € U:

x, = UTMX, x-geographical coordinate of the
centroid of each lake in the UTM coordinate
system,

z;, = indicator variable for eco-region j =1, ..., 6,

39

z;, = UTMY, y -geographical coordinate,
Zg, = elevation.

There are seven different eco-regions included in the
population, thus dummy variables z,, are constructed for
j=1, ..., 6. A semiparametric regression estimator for the
variable y will be constructed by treating the UTMX
variable x as a nonparametric term and the remaining
variables z —z; as a parametric component. Model
selection was used to determine that treating the other two
continuous variables as nonparametric did not improve the
model fit. For comparison purposes, we also computed a
regression estimator that treats all terms as parametric. This
estimator is therefore identical to the semiparametric
estimator, except that the x-geographical coordinate is
modeled linearly. We will denote this fully parametric
regression estimator by 9.

In order to determine the estimated efficiency of survey
estimators, we need to compute the variance estimates.
However, second order inclusion probabilities were not
available, thus we cannot evaluate V(f/reg) as in (10). In
order to come up with appropriate variance estimates, we
treat the complex sampling design as a stratified sample
taken with replacement. The 14 strata we selected
correspond to groups of spatial clusters of lakes that
appeared in the original design, and that were used to ensure
spatial distribution of the sampled lakes over the region of
interest. Larsen efal. (1993) provide details on the
construction of the spatial clusters.

Let H be the number of strata, n, the number of
observations within stratum /4, and 4, the set of sampled
elements that fall in stratum /. Define p, =n,' n,. Using
this notation and the assumption of a stratified sample with
replacement, we rewrite the semiparametric estimator as

N 1 .
Vg = 7 z 8 (x;, zk)

N keU
1l ¢ 1 D =8 ) (12)
N heH Ny, ked, Py

and the variance estimator as
A A 1 2
V (yreg) = 2 z Sh b
N heH

where S; is the estimated within-stratum weighted residual
variance for stratum 4. Assuming the strata are sampled
with replacement, Sarndal etal (1992, page 421-422)
suggest S; can be calculated as
. 2
Vi =8 (X 2p)
1 Pr
S; = ———— X . (13)
' n,(n, —1) k;:,, _ z v —&(x, )

led, T,
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Similarly, we estimate V' (,,) through

A

V(i)

2

heH Ny (nh _1) ked,

and the expression for ¥ ( Ppar) 18 obtained completely
analogously as for V(9 Prg) e€xcept that &(x;, z,) is
computed by linear regression.

This setup allows us to obtain the following estimates of
mean ANC for the Northeastern lakes, together with
variance estimates and approximate 95% confidence
intervals (CI). A local linear fit has been employed for the
nonparametric term with bandwidth set at one tenth of the
range of UTMX.

Preg =558.0 peq/L V(D) =2534.6 Cl=(459.3;656.6)

Ppar =577.3 peq/L V(P,,)=3239.6 CI=(465.8;688.9)

$, =555.9 peq/L V($,) =43133 CI=(427.2;684.7)

The confidence interval constructed using the Hajek
estimator is about 31% wider than that constructed using the
semiparametric estimator, while the interval for the fully
parametric regression estimator is 13% wider. These results
show evidence of an improvement in efficiency provided by
accounting for the auxiliary information in both a
parametric and nonparametric way in the mean estimation
procedure, with the nonparametric estimator able to capture
some additional efficiency beyond that of the parametric
estimator.

As mentioned above, an important goal of this
application is the assessment of how many lakes are at risk
of acidification or are acidified already. That is, we are
interested in estimating the proportion of Northeastern lakes
with ANC values smaller than some specific threshold
values. We can determine such proportions by estimating
the finite population distribution function,

_z st}

keU

Fy(@) =

at specific threshold values 7, where 7, ., denotes the
indicator function taking a value of 1 if y, < ¢ and 0
otherwise. Because all three estimators can be expressed as
weighted sums of sample observations, the weights obtained
for each can be applied directly to the /,, _,, for the sample
to estimate Fy () for any desired ¢. Let us denote by
F (1), F () and F, (¢) the H4jek, semiparametric and

reg par
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probability
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parametric regression estimators of the distribution function,
respectively. Estimates for their design variances are
computed by plugging the indicator variables in equations
(13) and (14).

Figure 1 shows estimates of the ANC cdf produced by
E, @), pdr(t) and Freg(t) evaluated on a grid of 1,000
equally spaced values for ¢. Included are their respective
pointwise 95% confidence intervals calculated at each grid
point. All three estimators are similar, but the confidence
bands for the parametric and semiparametric regression
estimators tend to be narrower. Averaged over all 1,000
grid points, the widths of the confidence bands are 0.093

for £, (¢), 0.084 for pdr(z‘) and 0.075 for reg(t)
respectively.
2 - ———————
= i

B S

" M
oo —.':;:f"'"" it
S ’p._‘.‘,--r_,,.—-"-—-

Tl
Nolae
S
g A ;4 q— Hajek
Parametric
----- Semiparametric
N -
=
o A
=3 T L] L] L]
0 1,000 2,000 3,000
ANC

Figure 1

Estimates of the population cumulative distribution function for
ANC and confidence bounds produced by Hajek, parametric
and semiparametric regression estimators

Along with ANC, the EMAP survey of Northeastern
lakes measured the concentration of multiple chemistry
variables including sulfate, magnesium and chloride, so that
the survey weights obtained for ANC can also be applied to
these concentrations as well as their respective cdfs. As
another illustration of the semiparametric estimation
approach, it is possible to “invert” Freg (t) to obtain quantile
estimators éreg (a)=min{¢: F, ()= a} of these addi-
tional chemistry variables. Table 1 displays semiparametric
estimates of the first, second, and third quartiles of sulfate,
magnesium, and chloride measured in (peq/L). Variance
estimation for these quantiles could be handled using
asymptotic results of Francisco and Fuller (1991), but will
not be explored further here.

Table 1 Quartile estimates of chemistry variables

a Sulfate  Magnesium Chloride
0.25 73.3 63.8 27.4
0.50 104.3 127.0 162.2
0.75 201.4 221.9 462.2




Survey Methodology, June 2007
5. Conclusion

In this article, we have described a model-assisted
estimator that uses semiparametric regression to capture
relationships between multiple population-level auxiliary
variables and the survey variables. We have developed
asymptotic theory that shows the resulting estimator is
design consistent and asymptotically normal under mild
conditions on the design and the population. This
generalizes the results of Breidt and Opsomer (2000), who
had proved similar results for a univariate nonparametric
model-assisted estimator. The semiparametric estimator was
applied to data from a survey of lakes in the Northeastern
U.S., where it was shown to be more efficient than an
estimator that does not take advantage of the auxiliary
variables and than a fully parametric regression estimator.

In addition to its theoretical properties, the semi-
parametric model-assisted estimator has attractive practical
properties as well. As noted earlier, it is fully calibrated for
the auxiliary variables, whether used in the parametric or
nonparametric model components, and it is location and
scale invariant. The estimator can be expressed as a
weighted sum of the sample observations, so that it
conforms to the traditional survey estimation paradigm and
a single set of weights can be applied to all the survey
variables, hence preserving relationships between variables.

One issue which was not addressed in the current article
is the selection of the smoothing parameter for the
nonparametric component of the regression model. This is a
challenging topic in the model-assisted context, further
complicated by the just mentioned fact that a single set of
survey regression weights is applied to all the survey
variables: because the optimal bandwidth choice depends on
the variable being smoothed, no single bandwidth (and
hence set of weights) will be optimal for all variables in the
survey. This topic is currently being explored by the
authors.

Acknowledgments

The research for this article was supported by National
Science Foundation grants DMS-0204531 and DMS-
0204642, and by STAR Research Assistance Agreements
CR-829095 and CR-829096 awarded by the U.S.
Environmental Protection Agency (EPA) to Colorado State
University and Oregon State University. This manuscript
has not been formally reviewed by EPA. The views
expressed here are solely those of the authors. EPA does not
endorse any products or commercial services mentioned in
this report.

41

Appendix
Technical assumptions and derivations

We begin by stating the necessary assumptions, which
extend those used in Breidt and Opsomer (2000) to the
semiparametric model.

Assumptions:

A1 Distribution of the errors under &: the errors €,
are independent and have mean zero, variance
v(x,, z,), and compact support, uniformly for all N.

A2 Distribution of the covariates: the x, and z, are
considered fixed with respect to the superpopulation
model & The z, are assumed to have bounded
support, and the x, are independent and identically
distributed F(x)= | * f©dt, where f(-) is a density
with compact support [a ., b and f(x)>0 for all
x€la,, b

A3 Nonparametric mean and variance functions: the
mean function m(-) is continuous, and the variance
function v(-,-) is bounded and strictly greater than 0.
A4 Kernel K: the kernel K(-) has compact support
[-1, 1], is symmetric and continuous, and satisfies
' K@)du=1.

AS Sampling rate nN~' and bandwidth h,: as
N — o, nN"' > me(0, 1), hy >0 and
Nh, /(loglog N) — oo,

A6 Inclusion probabilities m, and m,: for all N,
min,; T, 2A >0, min, ;. T 2 A >0 and

limsupp max |m, —m,m, | < 0.
N—o k, €Uy,
A7 Additional assumptions involving higher-order
inclusion probabilities:
lim »’
N—ow

max
(ky by, ks, ky)€Dy

|E, (I —m ) 7 )L —m ), —m )|
< oo,

where D,  denotes the set of all distinct t -tuples
(kla k2’ LRE) kt) from UNa

},im

G b }g’liﬁellJEp(lk1 Ikz_nklkz)([k3 [k4_nk3k4)| =0,
and
limsupn
N—w
2
max |Ep(1kl_nkl) (Ikz_nkz)([k3_nk3)|<°o'

(ki by k)€ Dy y
A8 The matrix N"'Z}, (I -S8,))Z,, is invertible for all
N with model probability 1.
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Assumption A8 is required so that the population
estimator B is well-defined. The invertibility of the matrix
in A8 depends on the combined effect of the bandwidth %
and the joint distribution of the x, and z,. While it would
in principle be possible to write down sufficient conditions
for this, we opted for this simpler and more explicit
approach.

Before giving the proofs of Theorems 3.1 and 3.2, we
state and prove a number of lemmas.

Lemma 1 Under the assumptions A1-A7,
(@) forall keU and d=1, ..., D

1 T
N; Ep(sAk

Y,-s; ¥,) =
and

_ZE (sAk dA sUk dU) —O(th

(b) the s, Y, and s Z, are uniformly bounded over all
keU.

Proof of Lemma 1: Since both the y, and z, are
bounded by assumption, part (a) can be shown using an
identical reasoning as in Lemma 4 of Breidt and Opsomer
(2000). While that lemma did not include a rate of
convergence, that rate is readily derived by noting that

NZ g _O{ hj

in the notation of Breidt and Opsomer (2000) and then
proceeding as in that proof.

Part (b) was proven directly in Lemma 2 (iv) of Breidt and
Opsomer (2000).

Lemma 2 Under assumptions A1-A8,
B=B+0,(1/\nh),
with the rate holding component-wise, and B is bounded

forall N.

Proof of Lemma 2: Write 7 =s/ ¥, and ' =
s, Y, for the population and sample smoothed versions of
v, and similarly, z\"'=s/, Z, and Z'=5,2Z, We
rewrite expression (6) as a function of sample-weighted
terms £, /=1, ..., 6:

where
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N A Uy N
. (N
t _ZT[T (ﬁj
. 1 T 1 T sls4] 1 sls4]
t4__z zkzk__z X vzl — Lk
N A T, N A T, N A T
Z yEf N
I N
oLy Ly an ﬁ;[f
) >

NT =m, N T,

The sample-weighted estimator B will be expanded around
-1
| 7 -
B=| , | |7V, (15)
Iy U I

1

:W%: 27, —
1

_W%: A

and the remaining #, can be found in (15). The existence
and continuity of the derivatives of B with respect to the 7,
and evaluated at ¢, follow from Lemma 1(b) and the
existence of the inverse in (15), which is assumed by AS8.

The result will follow from a Oth order Taylor expansion
if we can show that 7, —#, =0, (1/~/nh) for all I (eg.,
Fuller (1996), Corollary 5.1.5). For 7, and £, this follows
directly from A2 and A6. The remaining terms contain sums
involving smoothed quantities z*) and ™. We
demonstrate the reasoning for one of those terms in 7#,. We
have

where

Z zT slsu] + zN _Z slsu]
1
z zT ~[sy] —T N 5}1[{%]

U

T ~[s4] 1

T

N7 T,

b Ly b s e
N7 T,
and the first term is O, (1/~/n) by A6 and Lemma 1(b),
using the same argument as in Lemma 4 of Breidt and
Opsomer (2000). For the second term, use Schwarz’s

inequality

1 T ~fs,] w~[sy] I
z 4l _ U
NEU: v (7 Yk )nk
1 ZTIk 1 Ssal _ sSlsu1y2
< =2 >, (T =,
\/NU LN g
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where zi”) denotes that the squares are computed

component-wise. The first term is bounded by A2 and A6,
and the second term is O, (1/+/nh) by Lemma 1(a) and
Markov’s inequality. The desired result then follows by
applying the same reasoning to the remaining terms in
i, &, I, L.

The boundedness of B follows directly from assumption
A8, Lemma 1(b) and the boundedness of the z,.

Lemma 3 Under the assumptions A1-A8, we have

N . 1
yreg = Vaie +0p (ﬁj

Proof of Lemma 3: Given expression (9), we need to

show that
o 1
7. -7)(B-B)=0 | — 16

I
%; (mk—rhk){l—éjzop(%j. (17)

Lemma 2 and assumptions A2, AS and A6 show that
Zy—7,)(B -B)= O,(1/nh). In order to prove (17), we
can rewrite it as

_z(m" m’f){l__j— Z(y“b o) { I_kj

T

_ slsul ~[? I_k B
TG  (
NG

The first term on the right hand side has been proven to be
0,(1/+/n) in Lemma 5 of Breidt and Opsomer (2000); this
same Lemma and boundness of B provide the same rate
for the second term. Assumptions A5-A6, Lemma 1(b) and
Lemma 2 show that the third term is O, (1/ n/h) and the
desired rate is achieved.

- I—’fj (B-B).

T

Lemma 4 Under assumptions A6 and A8,
E p Faie) =Ty

. 1 Vi~ & Vi—&
Var, (§g) :Fz z (T4 _7'%71/)%4

kleU k Wi

o)

Proof of Lemma 4: The properties of the difference
estimator are readily computed. The rate of the design
variance follows from the stated assumptions using the same
reasoning as in Lemma 4 of Breidt and Opsomer (2000).

Lemma 5 Under assumptions A1-A8,

43
. . 1
V(yreg) = Varp (ydif) + Op (;j

Proof of Lemma 5: The reasoning for this proof will
closely follow that of Theorem 3 of Breidt and Opsomer
(2000). We write

VA(.)}reg) - Va’rp (.)’>djf) = (VA(.)}reg) - V(.)}djf )
+ (V(Par) - Var, (94¢)) (18)

with

N 1
V(Par) = FZZA: T

T Vi =8 Vi~ &
Ty T LY

:, (yk gk) < .
N U

by assumptions A1-A3 and from Lemmas 1(b) and 2, the
approach used for the term A, of Breidt and Opsomer
(2000) can be used to show that

8 . 1
Ep|V(ydif)_Varp(ydif)| =0 — |,
n

which provides the desired consistency by the Markov
inequality.
For the first term in (18), note that

&&= - -@ -5 (B-B)
+ (-5 B-B) - (& -z B,

so that
(V(yreg) - V(.)?dif )) =

2)’k 8k g, 8

e e T, — T,
k i WY
11,
LS8k 8, & — &k g, 8 T

T LY

1
VT

can be decomposed into variance terms involving sample
and population smooths and parameter estimators. Each of
these terms can be shown to be o,(1/7). We demonstrate
the approach on one of the terms:

%Zz Vi 8k & — % Ty — T4 Ty IkI/(E_B)
U Tk T T

C Sy Sy D
S(Wl—kszaxmk,—nkn,j ZH I—zV|B-B|
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where C,, C, <o summarize the bounded terms (by
assumptions Al1-A3 and A6 and Lemma 1(b)), and the rate
of convergence is the result of assumption A6 and Lemmas
I(a) and 2.

Proof of Theorem 3.1: In Lemma 3, we show that

N N 1
yre :yj +to Bk
g dif p(\/;j

where J,. is the difference estimator (3). The result
immediately follows from assumption A5 and Lemma 4.

Proof of Theorem 3.2: Note that . can be written as the
sum of a population constant and an expansion estimator of
the form ¥, by defining a new variable y, — s, ¥, +
sy ZyB—7,B for keU. As is the case for the original
¥;, this new variable has bounded support by Lemma 1(b)
and a variance of order O(1/n) by Lemma 4. Hence,
existence of the CLT for y_ implies existence of the CLT
for Pye. Also, Py, = Py +0,(1/+/n) by Lemma 3, so that
Jn P, and </n Py have the same asymptotic distribution.
Applying Slutsky’s Theorem and Lemma 5 complete the
proof.

References

Breidt, F.J., and Opsomer, J.D. (2000). Local polynomial regression
estimators in survey sampling. Annals of Statistics, 28, 1026-1053.

Francisco, C.A., and Fuller, W.A. (1991). Quantile estimation with a
complex survey design. Annals of Statistics, 19, 454-469.

Fuller, W.A. (1996). Introduction to Statistical Time Series (2" Ed.).
New York: John Wiley & Sons, Inc.

Hastie, T.J., and Tibshirani, R.J. (1990). Generalized Additive
Models. Washington, D.C.: Chapman and Hall.

Statistics Canada, Catalogue No. 12-001

Isaki, C., and Fuller, W. (1982). Survey design under the regression
superpopulation model. Journal of the American Statistical
Association, 77, 89-96.

Larsen, D.P., Thormton, K.W., Urquhart, N.S. and Paulsen, S.G.
(1993). Overview of survey design and lake selection. EMAP -
Surface Waters 1991 Pilot Report. Technical Report EPA/620/R -
93/003, U.S. Environmental Protection Agency. (Eds. D.P Larsen
and S.J. Christie).

Opsomer, J.D. (2000). Asymptotic properties of backfitting
estimators. Journal of Multivariate Analysis, 73, 166-179.

Opsomer, J.D., Breidt, F.J., Moisen, G.G. and Kauermann, G. (2007).
Model-assisted estimation of forest resources with generalized
additive models. Journal of the American Statistical Association.
To appear.

Opsomer, J.-D., and Ruppert, D. (1997). Fitting a bivariate additive
model by local polynomial regression. Annals of Statistics, 25,
186-211.

Opsomer, J.D., and Ruppert, D. (1999). A root-n consistent estimator
for semiparametric additive modelling. Journal of Computational
and Graphical Statistics, 8, 715-732.

Sarndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted
Survey Sampling. New Y ork: Springer-Verlag.

Speckman, P.E. (1988). Regression analysis for partially linear
models. Journal of the Royal Statistical Society, Series B, 50, 413-
436.

Stoddard, J.L., Kahl, J.S., Deviney, F.A., DeWalle, D.R., Driscoll,
C.T., Herlihy, A.T., Kellogg, J.H., Murdoch, P.S., Webb, J.R. and
Webster, K.E. (2003). Response of surface water chemistry to the
Clean Air Act Amendments of 1990. Technical Report
EPA/620/R-03/001, U.S. Environmental Protection Agency,
Washington, DC.

U.S. National Acid Precipitation Assessment Program (1991,
November). 1990 Integrated Assessment Report. Technical report,
Washington, DC.





