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Indirect Sampling: The Foundations of the Generalized
Weight Share Method

Jean-Claude Deville and Pierre Lavallée !

Abstract

To select a survey sample, it happens that one does not have a frame containing the desired collection units, but rather
another frame of units linked in a certain way to the list of collection units. It can then be considered to select a sample from
the available frame in order to produce an estimate for the desired target population by using the links existing between the
two. This can be designated by Indirect Sampling.

Estimation for the target population surveyed by Indirect Sampling can constitute a big challenge, in particular if the links
between the units of the two are not one-to-one. The problem comes especially from the difficulty to associate a selection
probability, or an estimation weight, to the surveyed units of the target population. In order to solve this type of estimation
problem, the Generalized Weight Share Method (GWSM) has been developed by Lavallée (1995) and Lavallée (2002). The
GWSM provides an estimation weight for every surveyed unit of the target population.

This paper first describes Indirect Sampling, which constitutes the foundations of the GWSM. Second, an overview of the
GWSM is given where we formulate the GWSM in a theoretical framework using matrix notation. Third, we present some
properties of the GWSM such as unbiasedness and transitivity. Fourth, we consider the special case where the links between
the two populations are expressed by indicator variables. Fifth, some special typical linkages are studied to assess their
impact on the GWSM. Finally, we consider the problem of optimality. We obtain optimal weights in a weak sense (for
specific values of the variable of interest), and conditions for which these weights are also optimal in a strong sense and
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independent of the variable of interest.
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1. Introduction

To select the samples needed for social or economic
surveys, it is useful to have sampling frames, i.e., lists of
units intended to provide a way to reach desired target
populations. Unfortunately, it happens that one does not
have a list containing the desired collection units, but rather
another list of units linked in a certain way to the list of
collection units. One can speak therefore of two populations
U* and U? linked to each other, where one wants to
produce an estimate for U”. Unfortunately, a sampling
frame is only available for U“. It can then be considered to
select a sample s* from U” in order to produce an
estimate for U” by using the correspondence existing
between the two populations. This can be designated by
Indirect Sampling.

Estimation for a target population U” surveyed by
Indirect Sampling can constitute a big challenge, in
particular if the links between the units of the two popu-
lations are not one-to-one. The problem comes especially
from the difficulty to associate a selection probability, or an
estimation weight, to the surveyed units of the target
population. In order to solve this type of estimation
problem, the Generalized Weight Share Method (GWSM)
has been developed by Lavallée (1995) and Lavallée (2002),
and presented also in Lavallée and Caron (2001). The

GWSM provides an estimation weight for every surveyed
unit of the target population U”. Basically, this estimation
weight corresponds to a weighted average of the survey
weights of the units of the sample s*. The GWSM is an
extension of the Weight Share Method described by Ernst
(1989) in the context of longitudinal household surveys.

The purposes of this paper are to describe Indirect
Sampling-the foundations underlying the GWSM-and to
obtain optimal weights from the GWSM that provide
unbiased estimates with minimum variance. First, we will
describe Indirect Sampling together with the GWSM in a
theoretical framework that will use, for instance, matrix
notation. The use of matrix notation for the GWSM has
previously been presented by Deville (1998). Second, we
will use this theoretical framework to state some general
properties associated with the GWSM that include
unbiasedness and transitivity. Transitivity is to go from the
population U to a target population U, through an
intermediate population U”. Third, we will show the
correspondence between the matrix formulation and the one
that has been described in Lavallée (1995), Lavallée (2002),
and Lavallée and Caron (2001). Fourth, we will study the
effect of various typical link matrices between U and U”
on the precision of the estimates obtained from the GWSM.
Finally, we will assess the problem of optimality. We will
obtain optimal weights in a weak sense (for specific values
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of the variable of interest), and conditions under which these
weights are also optimal in a strong sense and independent
of the variable of interest.

2. Indirect Sampling

As mentioned in the introduction, with Indirect Sampling,
we select a sample s* from a population U* in order to
produce an estimate for a target population U”. For that, we
use the correspondence existing between the two popu-
lations. For example, assume that we want to produce esti-
mates for a population of children (collection units) while we
only have a sampling frame of parents. The target population
U? is the one of the children, but we need to select a sample
of parents before being able to interview the children. This is
illustrated in Figure 1.
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Figure 1. Population U# of parents and population U? of
children with the links between the two.

Let the population U* contain N* units, where each
unit is labeled by the letter ;. Similarly, let the target
population U? contain N? units, where each unit is
labeled by the letter i. The correspondence between the two
populations U* and U” can be represented by a link
matrix © ,, = [GfiB] of size N* x N® where each element
OfiB >0. That is, unit j of U" is related to unit ; of U”
provided that OfiB >0, otherwise the two units are not
related to each other. For the above example, the link matrix
is given by
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Obtaining the link matrix link matrix © ,; =[67] is a
critical issue in Indirect Sampling. For the case where two
units jeU" and ieU? are not linked, we simply set
OfiB =0. When there is a link between two units ; and i,
the choice of OfiB >0 is important. As we will see, it
influences the precision of the estimates issued from Indirect
Sampling. Now, in several applications, the values of OfiB
for the linked units are simply set to 1. Of course, the values
of OfiB for the linked units can be chosen to be different
from 1. Lavallée and Caron (2001) discussed the use of the
linkage weights obtained from a record linkage process
between U* and U” for assigning values to the 6;‘,.3 . The
linkage weights are proportional to the probability of two
units jeU" and i e U® being linked. Since the choice of
OfiB >0 for two linked units ; and i can affect the
precision of the estimates, it is natural to seek for those OfiB
that will minimize the variance of the estimates. This
optimization problem is considered in section 6 of the paper.

With Indirect Sampling, we select the sample s of n”
units from U* using some sampling design. Let n} be the
selection probability of unit j. We assume />0 for all
jeuU™ For each unit ; selected in s”, we identify the
units i of U® that have a non-zero correspondence, i.e.,
with 657 >0. Let Q" be the set of the n” units of U”
identified by the units jes?, ie, Q¥ = {icU?|3jes”
and OfiB >0}. For each unit ; of the set Q°, we measure
a variable of interest y, from the target population U”. Let
Y={y, ..., ¥,»} be the column vector of that variable of
interest. In a practical view point, it is important to mention
that although the sample size n* is usually determined in
advance, the number of units n® is difficult to control
because it depends on the selected sample s* and the link
matrix @ ;. As a consequence, it turns out to be difficult in
general to establish a budget for measuring the variable of
interest y,. Fortunately, in most applications (e.g., the
parents-children case above), the number of links that start
from a given unit ; of s is somewhat predictable (for
example, a parent typically has one, two, or three children),
which helps to assess how many units ;i of U” will finally
be measured.

We assume that for any unit ;j of s”, the correspon-
dences for i =1, ..., N can be obtained. That is, we can
identify all the links between the two populations by direct
interview or by some administrative source for any sampled
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unit j. Also, for any identified unit ; of U”, we assume
that the links for j=1, ..., N* can be obtained (as men-
tioned by Lavallée (2002), there are cases where this last
constraint can be difficult to satisfy in practice. Referring to
the example of parents and children, it might not be easy for
a very young child, selected through his mother, to mention
back his father, when the two parents are divorced. In order
to simplify the discussion, such a problem of identification
of links will be assumed to be negligible). Therefore, the
values of the links need not to be known between the entire
populations U# and U”. In fact, we need to know the links
(and consequently the values of OfiB ) only for the lines j
of ®,, where jes”, and also for columns i of @
where i € QF.

Suppose that we are interested in estimating the total Y”
of the target population U® where Y* = Zf\j v,. We can
also write Y” =1, Y where 1, is the column vector of 1’s
of size N® (note that we use for simpliﬁcation the notation
1, instead of 1,,). Now let 0" = ZN OAB and let
057 =077 /077, We have T’ "0, =107 . eAB ). We
then deﬁne the standardized link mamx 0,=
0 ,, [diag(1’,0 ,,)]"", where diag(v) is the square matrix
obtained by putting the elements of the row-vector (or
column-vector) v in the diagonal, and 0 elsewhere. Note
that in order for the matrix @ ,, to be well defined, we must
have [diag(1/,® ,,)]"' to exist, which is the case if and only
if Off >0 for all i=1, .., N° For the parents-children
example, this means that every child must be linked to at
least a parent.

Result 1:
The link matrix @ .z 18 a standardized link matrix if and
only if

@.1)

0 ,1,=1,

The proof of Result 1 follows directly from the definition
of a standadized link matrix. Using Result 1, we directly
obtain Result 2 that can also be found in Deville (1998):

Result 2:
Y?=1,Y

BAB

0,,Y= ZZ o7 Vi

Jj=1i=1

2.2)

Let us define the column vector Z =@ Y of size N*.
Considering each line of Z, the variable z, = A OAB v, 1s
defined for each unit j of the population U* and measured
for each unit j e s*.

For estimating Y”, we want to use the values of y,
measured from set Q. For this, we will use an estimator of
the form:
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NB
=2 W, (23)
i=1
where w, is the estimation weight of the unit i of Q”, with
w, =0 for igQf Let W= {w), ..., ws}. The estimator
(2.3) can be rewritten as

Y8 =W'Y. (2.4)

Usually, to get an unbiased estimate of Y”  one can
simply use as the weight the inverse of the selection
probability n” of unit i. As mentioned by Lavallée (1995)
and Lavallée (2002), with Indirect Sampling, this probability
can however be difficult, or even impossible, to obtain. It is
then proposed to use the GWSM, which is defined as
follows.

Let n* = {n/, ..., n;,,}' and let T, = diag(n”) be the
diagonal matrix of size N*x N* containing the selection
probabilities used for the selection of sample SA.
Accordingly, let t* = {#/, ..., N,,} where t =1if jes’
and 0 otherwise. Let T, = diag(t”) be the dlagonal matnx
of size N*xN* contalmng the indicator variables t
Starting from ¥* =1/,0,,Y =1/,Z, we can directly form
the following HorV1tz-Th0mpson estimator in terms of the
vector Z :

Y =1,T,II)Z (2.5)

Using the fact that Z=©,Y, we have Y’=
1,T,I,®,Y and therefore we can define the column
vector W of weights:

wW=0,TI/1, (2.6)

The vector W is of size N2 and for each i =1, ..., N,
we have w, = ZN it OAB /n The weights w, of that
vector are said to be obtamed from the GWSM, as described
by Lavallée (2002).

3. Properties of the GWSM

3.1 Unbiasedness

As mentioned by Ernst (1989), to get an unbiased esti-
mator, we only need to have E(W)=1,. By construction,
because the estimator (2.5) is a Horvitz-Thompson estimator,
this condition is directly satisfied and therefore, the GWSM
produces unbiased estimates.

From this discussion, we can in addition obtain the
following result:

Result 3:

The vector of weights W given by (2.6) provides
unbiased estimates if and only if the matrix @, is a
standardized link matrix.
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Proof:
Starting from (2.6), we have
E(W)=0',1, 3.1

Using Result 1, we directly get £(W) =1, and therefore
we have unbiased estimates. Now, assume that £(W) =1,.
From (3.1), we must have @’,,1, =1, and therefore, © ,
is a standardized link matrix.

3.2 Variance

Because the estimator (2.5) is a Horvitz-Thompson
estimator, we directly obtain the following result:

Result 4:

The variance of ¥* is given by
Var(Y?)=Z'A ,Z
=Y'AY (3.2)

A A4 A_A : _ :
where A, —[(njj, chnj,)/njnj,]N,,xN,1 1S a non-negative

definite matrix of size¢ N* x N* and where nfj, is the joint
selection probability of units ; and ;' from U”, and
where A, =0',A O ..

For a proof of the variance of the Horvitz-Thompson
estimator, see Sdrndal, Swensson and Wretman (1992).

3.3 Transitivity

Let us suppose that we are interested in producing
estimates for a target population U® that can only be
reached through the population U”. We assume that the
target population U contains N units, where each unit is
labeled by the letter k. The correspondence between the
two populations U” and U can be represented by the link
matrix @ ,. =[0.°] of size N® x N© where each element
02¢ > 0. That is, unit ; of U” is related to unit & of U
provided that ©2° >0, otherwise the two units are not
related to each other.

We can now use Indirect Sampling by transitivity. For
this, we select a sample s* from the population U* and
first identify the set Q® of U”. From this set Q°, we then
identify the units of U that are associated in order to form
the set Q° = {ke U |3ieQ” and 02 >0} of units to be
measured from the target population US. An important
question is to see if the GWSM, when applied in the context
of Indirect Sampling by transitivity, is also transitive. That
is, is applying the GWSM from U* to U”, and then from
U® to UC, is equivalent to directly applying the GWSM
from U to U ?

First, consider using Indirect Sampling from U directly
to the target population U°. By going from the population
U” to U®, and then to U, this can relate to having the
link matrix @ ,=[6%"] of size N* x N defined as @ ,.=
0 ,,0,.. For each unit ; selected in s, we identify the
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units & of U® that have a non-zero correspondence, i.e.,
with Gfkc >0, to obtain the set Q° ={kcU |3 jes” and
Gfkc > 0}. We measure the variable of interest y, from the
target population U < Applying the GWSM, we obtain from
(2.6) the following weights:
WC = (:)LICTAHZIIIA

where © ,. =0 . [diag(1,0 ,.)] "

Let us now consider using Indirect Sampling in two
steps. For each unit ; selected in s”, we identify the units
i of U? that have a non-zero correspondence, i.e., with
OfiB >0. As before, we have Q° ={icU” |3 es” and
OfiB >0}. For each unit ;i of the set Q”, we then identify
the units k& of U® that have a non-zero correspondence,
ie, with 05 >0. We then have the set Q° = {ke
US|3ieQ” and02° >0}. From (2.6), we have the
column vector W, of weights associated to the units of
population U” :

(3.3)

wW,=0',TI 1, (3.4)

For each unit i of the set QF, we then have a non-zero
weight w”. Now, the set Q” can be seen as a sample of
units that are used in an Indirect Sampling process to
identify the set Q€. By similarity with Indirect Sampling
from the sample s to the target population U”, applying
the GWSM in the context of Indirect Sampling from the set
Q" to the target population U produces the following
weights:

W, =0, T, diag(W,)1, (3.5)

where @,. =0, [diag(1,0,.)]"" and T, =diag(t,)
with tB:(tlB, - tf,g)' and tl.le if ieQ®f and 0
otherwise. Because the weights w’ =0 for i¢Q”, we

have T, diag(W;) = diag(W;). Therefore, we obtain

W, =0, diag(W,)1,. (3.6)
Replacing W, by (3.4) in equation (3.6), we get
W, =0} diag(®, T, 11, 1)1,
=00/, T, /1, 3.7)

Since 0,,.0',1,=0,.1,=1., from Result 1, the
matrix @ ,,0,. is a standardized link matrix. Because of
this, the GWSM is therefore transitive, at least in some
sense. That is, the weights W, can be obtained in a single
step by using the standardized link matrix @ ,,0 . into the
GWSM. Now, for the GWSM to be perfectly transitive, the
weights W, provided (3.7) would need to be exactly the
same as the weights W,. provided by (3.3). By comparing
equations (3.3) and (3.7), we obtain the following result:

Result 5:

Applying the GWSM from U* to U”, and then from
U? to UC, is transitive if and only if
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(:)AC = (:)AB(:)BC' (3-8)
Unfortunately, condition (3.8) does not hold in general.
In fact, it is relatively easy to construct examples where

OAC * OABOBC'

4. A Structural Property of the GWSM

In the present section, we stress the fact that with Indirect
Sampling, the sampling process depends only on the links
between the two populations U* and U”. The values of
the OfiB themselves, apart from being zero or not, do not
interfere in the sampling process. On the other hand, the
values of the OfiB do have a role in the weights, and
therefore the estimator, issued from the GWSM. We extend
this idea in the following paragraphs.

Indirect Sampling associates to each sample s* in U* a
sample Q° in U®, namely Q°={icU”|3jes’
and 6;1,.3 > 0}. Thus, a function f:s* — QF that maps the
sample s” to the sample Q° is uniquely determined by the
set of couples (j, i) with OfiB >0. Let lﬁB =1if OfiB >0,
and 0 otherwise. These are the elements of the incidence
matrix of the graph linking U to U”.

Suppose we are given a function ¢ from the set of
subsets of U into the set of subsets of U”. Like f,
suppose that ¢ satisfies the “Union Property”:
o(s Usi)=d(s)Ud(s)), where SlA and S; are two
subsets of U

Result 6:

The function ¢ is determined unequivocally by a zero-
one link matrix.

Proof:

This can be shown as follows: Take sf ={j} for some
unit j in U”. Then, d)(sf) isasetin U”. Let lﬁB =1if
unit ; of U”? belongs to d)(sf), and 0 otherwise. By the
Union Property, ¢(s™) =U,-ESA¢(S;-1) and the set of l;f.B
defines the zero-one link matrix L, =[! ;:B ] of size
N*x N*®, which precisely defines the function ¢.

This provides us an equivalence relation between link
matrices, associated with a deeper property. Let p* be a
sampling design on U* (i.e., a probability distribution on
the set of subsets of U"). The function f induces a
sampling design on U? by p®(Q°)= ZSA:Qs:f(SA)pA (s™).
As the design is induced by f, it does not depend on the
particular link matrix © ,; defining the function, but is
rather a characteristic of the equivalence class through the
zero-one link matrix L ,,. As a consequence, the Horvitz-
Thompson estimator in U® depends only on this class. It is
therefore of some interest to choose in this class a matrix
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® ,; having, in some sense, an optimal characteristic (see
section 6).

5. Special Link matrices

As it can be seen from the previous sections, the link
matrix @ ,, drives the form of the estimator (2.4) obtained
from the GWSM. In this section, we present some special
link matrices @ ,, that correspond to extreme cases.
Although not all such cases are likely to be seen it practice,
they illustrates the effect of the link matrix on the estimator
2.4).

5.1 Identity Matrix

Assume that the link matrix © ,, is given by the identity
matrix I. In practice, this means that the population U*
and the target population U” have a one-to-one relation-
ship. Of course, this implies that N* = N® =N and that
the identity matrix I is of size N x N.

As a first result, we have @ ,, =I. As a consequence,
the vector of weights (2.6) is given by W'=(t"/n/, ...,
t;l,,, /n;,, ) and we also have Z =0 ,,Y =Y. Therefore, the
estimator ¥® given by (2.5) turns out to be nothing else
than the Horvitz-Thompson estimator ¥* =1, T,IT}'Y.

5.2 One for All (Within Clusters)

Consider the case where the population U? is divided
into I" clusters where each cluster y is of size NYB . Theses
clusters are such that each cluster y from U? is associated
to exactly one unit j of U”. Because of this, we can use
the letter y for both the units j from U* and the clusters
from U”. Note also that ' = N

This situation corresponds to a link matrix @ ,, being
block diagonal where each submatrix contains only one line.
Let the row vector 13, be of size NYB and containing only
1’s. The link matrix @ ,; is then defined as

(1, 0 - 0]

©,=|0 1, 0 (5.1)

0 .. 0 1

We can also write @ ,, =diag({l},, ..., 15-}). Using
this, we have diag(1,® ,,) = diag(1, diag({L},, ..., 1 })) =
diag({1),, ..., 1,.}) and hence © ,, =® ,,. From equation
(2.6), we obtain the column vector of weights W'=
' /n' 1y, ., ! /nf 1,). Aswe can see, the elements of
the column vector W have the values tYA /n;1 repeated
within each cluster y of U”. From (2.4), we obtain

Statistics Canada, Catalogue No. 12-001
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r A
= ZLA (5.2)
=1 Y
where YYB = Z,AZ Vi
5.3 All for One (Within Clusters)
Consider the case where the population U* is divided

into I' clusters where each cluster y is of size NYA. Theses
clusters are such that each cluster y from U is associated
to exactly one unit i of U”. Because of this, we can use the
letter y for both the clusters from U* and the units ; from
U”. Note also that ' = N*.

This situation corresponds to a link matrix @ ,, being
block diagonal where each submatrix contains only one
column. Let the column vector 1, be of size NYA and
containing only 1°s. The link matrix @ ,; is then defined as

1, 0 -0

(5.3)

We can also write O ,, =diag({l,, ..., 1,+}). Using
this, we have @ ,, = diag({l/N;'1,,, ..., I/N/1,.}). From
equation (2.6), we obtain the column Vector of weights

W =(1/N'% ,1, /Jr oy 1/ N/ Z, it /Jr ). Thus, the
elements y (or l) of the column vector W have the aver-
aged values Z s 4/ ; N y—l , I. From (2.4), we
obtain ¥* = Zl;lyy/N Z t! /n

J=LY
5.4 Inefficient Sampling

Suppose that some rows of the link matrix ® ,; contain
only zeros. This means that some units of the population
U* are not associated to any unit of the target population
U”. Then, if such units are selected in the sample s”, this
will lead to the identification of no unit from U”. This can
be seen as inefficient in a sampling point of view. In a more
formal way, assume that each of the first N'* rows of the
link matrix @ ,, contains at least one 6, >0, and that they
form the submatrix @,. Assume that the other N°* rows of
®,; have 0, =0 for i =1, .., N®. We therefore have

As a first result, we obtain

0, = {Ol[diag 148, )]_1} = Pl} (54)
0 0
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where 1,, is the column vector of 1’s of size N'*. From
equation (2.6), we obtain the column vector of weights
W=[0; 01T, I;'1,. Let I, =diag({n], ..., m}..}) be
the diagonal matrix of size N'* x N'* and accordingly, let

T, , = diag({t/", ..., N”}) be the diagonal matrix of size
N"xN'". We then get

W =[O 0T, 11,1,

=0T, 1,1, (5.5)

As we can see from (5.5), the weights only depend on the
probabilities of selection 7} of the units of U* that have at
least one 0, >0 for i=1, .., N®. From (2.4), we finally
obtain ¥ =1/, T, ,I1,,0,Y.

5.5 Biased Estimator

Suppose that some columns of the link matrix @
contain only zeros. This means that some units of the
population U” are not associated to any unit of the target
population U”. Recall that in order for the matnx 0 5 1O
be well defined, we must have diag(1,® ,,)”" to exist. As
we will see, the present case does not satisfy this condition.
This results in a biased estimator for the total Y.

In a more formal way, assume that each of the first N'”
columns of the link matrix @ ,; contains at least one
0, >0, and let them form the submatrix @®,, different
from the one of the previous section. Assume that the other

N°® columns of @ ,, have 0,=0 for j=1, .., N We
therefore have ® ,, =[0,, 0].
From this definition, we directly have
[diag(1,© )] =[diag([1,©,.1/,0)]"
-1
diag(1',@,) 0
_ g(1,0,) ' (5.6)
0 0
Since this matrix is singular, [diag(1,,® ;)] does not

exist. As a solution to this problem, it could be possible to
use a generalized inverse. Recall that for a given square
matrix A, the matrix A~ is a generalized inverse of A
provided that AA"A =A (Searle 1971). One possible
generalized inverse of (5.6) is

[diag(1,©,)]"
ol

. (5.7)

[diag(1',© ;)] {

With this generalized inverse, we have the following
standardized link matrix ©_ =0 , [diag(1,® ,)] =
[©,,0]. Starting from equation (2.6), we can obtain the
column vector W_ of weights:

' -1
W = {OITAHA IA}. (5.8)

0!



Survey Methodology, December 2006

As we can see from (5.8), the weights are null for the
units i of the target population U” that @ ,, have 0
for j=1, .., N”. From (2 4) and using W_ instead of W
we obtain Y_B 1,T,IT,OY, where Y, ={y, ..., AT
is the subvector constructed from the N'? first elements of
Y. Since in general E(Y’)=1,0,Y,=1,Y=Y", this
estimator is biased for the total Y.

6. Optimality

Optimality is an important aspect of the GWSM. As it
has been shown in Result 3, the estimator Y* obtained by
the GWSM will provide unbiased estimates provided that
the matrix © ,, is a standardized link matrix. Now, given
that the variance (3.2) of this estimator depends on this
matrix, there should be at least one matrix © , B.op Such that
the variance of the estimator ¥* will be minimum. That is,
for the OAB that are greater than 0, we are interested in
finding the values that these OAB should have to obtain the
most precise estimator Y. &

This optimality problem was first assessed by Kalton and
Brick (1995). They obtained results based on the simplified
situation where N“ =2 and with s* obtained through
equal probability sampling. Their conclusions suggested the
use of 057" =1 when 6% >0, and 67" =0 when
OAB =0. Lavallee (2002) and Lavallée and Caron (2001)
obtamed results along the same lines by the use of
simulations. In the present section, we present new results
on the optimality of the GWSM.

6.1 Factorization

Factorization is the reverse problem of transitivity. It
consists in finding a population U and standardized link
matrices @ ,,and @, such that © ,,=0,.0,, This
leads to an important simplification in searching for an
optimal standardized link matrix © , Bopt-

The population U® can be taken as being one of
clusters, the factorization being achieved in the context of
“one for all (within clusters)” (from U* to U) and “all
for one (within clusters)” (from U to U?), as presented in
sections 5.2 and 5.3. This can be described in a very general
way as follows. Consider a population U containing as
many units as there are links starting from the units ; of
U". The population size N is then given by the number
of OfiB of ® ,, that are greater than 0. Each unit g of U°
can be seen as the extremity of an “arrow” starting from
some unit j of U”. From this graph, there is only one link
matrix @, of size N?xN® keeping unbiasedness,
namely O ,. :[Ong] where Gng =1 if there is a link (or an
“arrow”) leaving unit j of U” to unit g from U, and
Gng =0 otherwise. Note that by construction, each unit g

171

from UY is linked to at most one unit j from U* and
therefore @ ,, =@ .. This corresponds to the “one to all
within clusters” situation presented in section 5.2. Indirect
Sampling from U* to U is in fact standard Cluster
Sampling and leading the GWSM to the usual Horvitz-
Thompson estimator (see Lavallée 2002). For the parent-
children example, the result of this factorization would be
given by Figure 2.
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Figure 2. Result of the factorization of the parents-children
populations.

Considering the graph from U¢ to U”, we can
construct the link matrix @, of size N° x N* as follows.
Because of the definition of the population U, each unit
g of U is linked to exactly one unit ; of U”. Note that
Indirect Sampling in this context can be seen as sampling
clusters (i.e., the units i of U”) from their elements (i.e.,
the units g of U®). It can also be seen as the “all to one
within clusters” presented in section 5.3. Let O, =
0 ,[diag(1,©_,)]" be the standardized link matrix ob-
tained from @, We have diag(1;,0.;)= diag(1,0 ,;),
and therefore ©, = ® ,[diag(1’,® )]

Now,

(:)AG(:)GB = OAG(:)GB
= @AGOGB[diag(l'A@AB )]"1
=0 ,[diag1,0 ;)]

6, (6.1)

Therefore, using this construction, the standardized link

matrix @ ,, from U* to U” can always be factorized into
the two matrices @ ,. and O,
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6.2 Strong Optimality: Statement of the Problem

As mentioned before, the optimality problem that we
consider here is to minimize the variance (3.2) with respect
to the standardized link matrix ©,,. Now, using the
factorization presented in section 6.1, we have

Var(Y?)=Y'®' ;A 0 .Y
= Y'O'GBOLIGAA@AG@GBY
=Y'O,A0O.,Y

where A, =0, A O .

For any standardized link matrix @ ,,, the factorization
presented in section 6.1 always produces the same first
factor @ .. Therefore, if we seek for some optimal matrix
0, B.op that minimizes the variance (3.2), it is sufficient to
optimize the second factor ®,. We would also like the
optimal matrix @ , B.opt 10 produce unbiased estimates.

Let U be the subpopulation of U containing the N,
links to the unit i of U”. Note that the subpopulations U
are disjoint. Thus, without loss of generality, we can order
the links from U* to U? so that, for every i, the links to
unit i in U” are indexed consecutively. Now, let 0, , be
the /™ column vector of the matrix O, i=1, .., N° By
construction, the vector @, contains non null elements
only for the N links to the unit i of U”. Hence, letting
05, be a column vector of size N¢ containing the non
null elements of 0, ,, we have

(6.2)

Similarly, let 1;, be the column vector of size N¢
containing 1’s for N elements, and 0’s elsewhere. Letting
1;,; be a column vector of size N¢ containing 1’s, we
have

<

Now, for the GWSM from U to U? to be unbiased, we
need to have 0, 1;,=1 for all i, or equivalently
0,1, =1. All this together leads to the following opti-
mization problem: ~ B

Find a matrix Oy ., = {065 o1 - S~ satis-
fying 0, 16, =1 forall i=1, ..., N°, and minimizing
the quadratic form Var(Y”)= Y'O,,A .0 Y.

This problem turns out to be nothing else than the
minimization of a positive quadratic form under linear
constraints. This is a relatively standard and simple problem
to solve. It is well known that a solution always exists and is
unique if the form (6.2) is positive definite, or if the null

subspace of @, is not included in the null-space of A;.

Statistics Canada, Catalogue No. 12-001

The above optimization problem can be rewritten in a
different form. Let A, be the submatrix of A,
corresponding to the elements in positions g and g’ if g
has a link with unit ; and g’ has a link with unit ;. These
matrices constitute a partition of A,. Note that the matrices
A ; are symmetric, positive definite, and A(; , =Ag .
With these notations, the optimization problem can be
written as:

Minimize

N® N®

z z Vi yi’g'GB, iAG, ii’gGB, i

i=1i'=1

(6.3)

under the constraints 0, 1, =1 forall i=1, ..., N%.
Minimization is achieved for vectors 0, . ; satisfying

NB

yiz AG, ii'OGB, opt, i' Vit = /11'16,[

i'=1

(6.4)

for all i=1,.., N®° and where 4 are the Lagrange
multipliers entering into the constrained minimization of
(6.3). As we can see from (6.4), the optimal choice GGB,OPE ;
(and therefore @5 ) will depend in general explicitly on
the vector Y, which is not useful in practice. Observe that
the set of 4, depends also of the variable Y. This will appear
more explicitly in section 6.3. This is the reason why we will
seek, instead of a strong optimization, for a weaker form of
optimality that will lead to the existence of an “optimal”
solution (:)GB,Opt (and O opt) DOt depending on Y.

6.3 Weak Optimality

Equations (6.4) must be valid for any vector Y. In
particular, a necessary condition is to hold for a particular
variable of interest, such as y, =1 for a unit i of U” and
y, =0 for all other units i of U”® (i’ #i). This leads to the
necessary conditions (one for each of those particular
variables) A 055 opti = 41 - Assuming that A;, is
invertible, we then have 0, ., = 4Ag 15, It can be
shown that this is also a sufficient condition. Now, because
0050016, =1, we have 4 =1/1; ;A7 .1, . Therefore, a
necessary and sufficient condition for equation (6.4) to be
satisfied is when

~ AEr‘liilGi
T ATl 65)
G,i i~ G, i

LGl

0 GB, opt, i

This result corresponds to weak optimization in the
following sense. The weight w, given by (2.6) satisfies
E(w,)=1 and moreover E(w,|ieQ”)=1/n" where n’
is the inclusion probability of unit ; in QF, which is
generally difficult or even impossible to compute in practice.
Now, note that the Horvitz-Thompson estimator is charac-
terized by Var(w,|ieQ”)=0. The weak optimization
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obtained here consists in minimizing Var(w, |i € Q%) over
all possible standardized link matrices @, or equivalently
© ,,. This variance is strictly positive for the cases where
unit ; of U? is in position to receive more than a unique
weight for different sample s*. Moreover, using (6.3), the
multiplier A, appears to be the variance of the weight w,
and is, therefore, always strictly positive (except, a case that
we exclude, when unit i is selected with a weight equal to
one).

6.4 Strong Optimality Independent of Y

Weak optimality is a necessary condition for strong
optimality independent of the vector Y of a variable of
interest. It provides the necessary form of the vectors
055 ot 10 (6.4). To get sufficient conditions for strong
optimality independent of Y, we go back to the equations
(6.4). These equations need to be satisfied for all vectors Y
and they must therefore be satisfied for a particular variable
of interest such as y, =1 for a unit i of U”, y, =1 for
another unit i’ of U”, and y, =0 for all other units ;" of
U® (i" #i' #i). In that case, to satisfy equations (6.4), it is
necessary to have the following relations for any ; and i':

- - i
A i96s.opi T A6.i0ca opr =4 g (6.6)

- i
AG 1968 opi T A6 1968 0pi = 4 16

1

As we must necessarily have weak optimality, we have

Ag 065 op.i = 41, Considering the first line of (6.6), we
then get
AG, ii'GGB, opt, i’ (’11'17 _7\’[)16,[
= (Dii'lG,i' (6.7)

Multiplying both sides of (6.7) by 0(;; opt.i» WE Obtain
= (D[i'e'GB, opt,[lG,[
=0,

~, ~
9GB, opt, [AG, [i'eGB, opt, i’

since é'GB, opti 1 =1. Let @ be the matrix with elements

,» Off the diagonal and @, =4, on the diagonal. Using
again (6.2), it can be shown that the optimal variance
(whenever it exists) has the expression Y'®Y.

Let us show that this set of conditions is also sufficient.
Assume that (6.7) holds. Note that for i =i', condition (6.7)
is nothing else than (6.5) which gives the necessary values
for the 04, opti+ 1t 18 now straightforward to verify that (6.4)
holds whatever the value of Y and that we have obtained
the strong optimality. Now, the values of A, depend on Y,
as well as the variance Var(Y”), but we have that
equations (6.4) always have the same solution (6.5) that
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does not depend on Y. We therefore have the following
result:

Result 7:

The conditions A ; 6@3 opt.it = Pirlg,; are necessary
and sufficient for the existence of a standardlzed link matrix
Os o> OF equivalently 0, o> that achieves strong
optimality independent of the vector Y of the variable of
interest. The values in the columns of this strong optimal
matrix are given by (6.5), which are the vectors 0

GB, opt, i
obtained from weak optimality.
It should be noted that since Ag 0, opti = 4ilg, (6.7)
can be written in an equivalent way as
(DZ* 6GB, opt,i AE;},-,-AG, ii’éGB, opt, i (6.8a)
or
(D:: Ig: = AG,n'AZ:l,i'i'lG,i' (6.8b)
W}:ere ~ T (BGB othAG i’ 0GB opt, 1 )(1 Glu 1G 1) and
(Dii' = (OGB, opt, tAG, ii 0GB, opt, i’ )(1 AE; i’ 1G i ) In some

situations, these can proved to be easier to use that the
expresssion (6.7) stated in Result 7.

6.5 Two Examples

We now present two examples that illustrate the
preceding theory on weak optimality and strong optimality
independent of Y.

Example 1: Poisson Sampling

Let us suppose that the sample s is selected using
Bernoulli or Poisson Sampling. In that case, the N* x N*
matrix A, is given by A, = diag(l/n;1 —1). Considering
the factorization of section 6.1, we have AG =
OAG A OAG = ®AG [dlag(l/n -1]6 AG —[dlag((l/n -
N1 Ly, )] where 1, . is a square matrix of size N w1th
N belng the number of links (or “arrows”) startmg from
umt j of U”. From A, we extract the submatrices Agi
that are, in the present case, dlagonal Each submatrix AG, i
is given by Ag ;= dlag(l/n —1), which is of size N’.
Note that each value (1/ n —1) simply corresponds to a
unit j of U* that has prev10us1y been linked to the unit g
of U, which is in turn linked to the unit ; of U”. Now,
from (6.5), we directly obtain the optimal values 0, opt, i
that minimize Var(Y”), in the weak sense. These values
are given by the vectors

A
NG

2
(1-m3e) T

A T
=, T

(1-mHt’’

GB,opt,i —

where
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G NP
T _z g=1

ng l(l-n), i=1, ..., N°.

The 0y, opti are used to construct the vectors 0 6B, opt.i» and
then the matrix @)GB’OPt = {(-)GB’OW, ves (-)GB o)+ Finally,
after computing the optimal matrix @ 5 = AGOGB, opt>

we obtain the optimal weights W using (2.6).

It should be noted that if the inclusion probabilities nf

are equal, we get
B 1] 1
- W, ceey F _FIGB,I’

1 1 1

055 0pt.i
where N is nothing else than the number of units of U*
linked to unit i of U”. In other words, in the context of
Bernoulli Sampling (i.e., Poisson Sampling with equal
probabilities), to minimize the variance Var(Y”), the
choice of the values (9fpL ;i should be given by 1 if there is a
link between unit j of U* and i of U”, and 0 otherwise.
This corresponds to the results obtained by Kalton and
Brick (1995), Lavallée (2002), and Lavallée and Caron
(2001).

Using Result 7, we now verify if conditions (6.7), (6.8a)
or (6.8b) are satisfied for the optimal matrix @ ,, ,, that we
obtained through weak optimization. If it is the case, this
matrix also provides strong optimality independent of the
variable of interest y,. First, we have

A
T
Ay, =diag| —5— |.
’ l-m,

Also, each submatrix A ;, of size N x N has somewhat
a diagonal structure, but “padded” with zeros. That is, a
typical element of A ;. is given by (1/ n; —1) ona part of
the diagonal if both ; and i’ are linked to the same unit j
of U” (that is linked to unit g of U® coming from the
same j of U"), and 0 otherwise. Because of this, if two
units i and i’ are not linked to the same units of U*, then
Ag i 18 a matrix of zeros, and then the conditions (6.7),
(6.82) and (6.8b) are automatically satisfied. Referring to
Figure 1, children i =2 and i’ =3 of U” are not related to
the same parents j of U”. If the selection of the parents is
done using Poisson or Bernoulli Sampling, the 2 x 2 matrix
A »; will then contain only zeros, ie.,

W [0
G,23_00'

Because if this, the relations (6.7), (6.8a) or (6.8b) will be
satisfied with @,, =0, expressing the fact that the weights
of i and ;' are not correlated.
If two units i and ;' are linked to the same unit j of
U, then, using (6. 7) the column Vector AG p HGB opt. 7
contains the scalar (7)™ :[ ln /(1 - T, D for its first
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N/ components, and 0 for the remaining N/ — N/ ones
(assuming N? > N”). Because the quantity A ii'éGB, opt. 7
must be equal to @;1;; to satisfy (6.7), it must contain
only the value @,.. Since @, =0y, opt i G,.,.VGGB,OPL,, this
will occur only if the vector OGB, opt.i =[], which means
that there is only one link to unit i of U”. As we can see,
this is not a condition that will be satisfied in general and
therefore, it can be said that in the case of Poisson Sam-
pling, strong optimality independent from Y will not occur
in general.

As a conclusion, we might say that with Poisson or
Bernoulli Sampling, the conditions (6.7), (6.8a) or (6.8b)
will be satisfied in practice only when the units of U* are
linked to a single unit of U”, as in the case of sampling
households using a frame of individuals. In the other cases,
the optimal matrix © ot Obtained through weak
optimality will not likely lead to strong optimization
independent of Y.

Example 2: Simple Random Sampling

Let us suppose that the sample s is selected using
Simple Random Sampling. In that case, the N*xN*
matrix A, is given by

N* (N* - A){I 1A1'A}
AT a1 4 |
n' (N'-1) N

Considering the factorization of section 6.1, we have
Ag = (:)LIGAA@AG

A A A ’
:N_A(NA_—")X@'AG {IA _ﬂ}@m
n' (N'-1) N

N4 (NA _nA) . 1.1
:n_Amx diag(1, ;) - ;AG (6.9)
where 1, is a square matrix of size NJA, with Nf being

the number of links (or “arrows”) starting from unit j of
U?. From A, we extract the submatrices Ag ;- Each
submatrix A ; is given by

N (N ) 1,15,
A .. ——,
Gt = nA (N -1) |: @ N

which is of size N”. Then, using a matrix result that can be
found, amongst others, in Jazwinski (1970), we get

A (N -1 n

1
= x| I 1 15, |
G,ii ( )N |: G,i (NA—NiG) G,i G,l:|

Now, from (6.5), we directly obtain the optimal values

~ 1

-1
GB, opt, i G G
N;
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that minimize Var(¥”), in the weak sense, i=1, .., N®.
These values are used to construct the vectors 0 6B, opt.i» and
then the matrix @)GB’OPt = {(-)GB’OW, s (-)GB yo - Finally,
after computing the optimal matrix O 45 . =0 ;05 s

we obtain the optimal weights W using (2.6).

Again, this result is an important one because it goes
directly in the direction of the results of Kalton and Brick
(1995), Lavallée (2002), and Lavallée and Caron (2001).
That is, with Simple Random Sampling, the optimal choice

of Gf}i ;i should be 1 if there is a link between unit j of
U* and i of U”, and 0 otherwise.

Using Result 7, we now verify if the conditions (6.7),
(6.8a) or (6.8b) for strong optimality independent of y, are
satisfied for the optimal matrix @ ot that we obtain
through weak optimization. First, each submatrix A, of

size N7 x Ny is given by
lG,il'G,i'
|:HG,ii’_ A }
N

where Hg, is a N’ xN; diagonal matrix of ones,
“padded” with zeros. Exactly on the same pattern as in
example 1, a typical element of H ;. is given by 1 if both
i and ;' are linked to the same unit j of U” (that is linked
to unit ¢ of UY), and O otherwise. Therefore, we can
easily see in which cases the conditions (6.7), (6.8a) or
(6.8b) can be satisfied. In fact, because all components of
055 e Areequal, Ag ; OGB opt.i/ 18 @ vector proportional to
the sum of the lines of A; ;. ie., the sum of the lines of

1G il'G,i'
|:HG,ii’ - A }
N

But (6.7) says that this vector must have the same
components. This is possible if and only if the matrix H ,;
contains only zeros, or if it is of dimension 1x1, which
occurs when both i and i’ are each linked to only one
element of U*. Therefore, as for Poisson Sampling, strong
optimality independent of Y does not occur in general for
Simple Random Sampling.

N* (N*=n")
G,ii’ I’lA (N )

7. Conclusion

In the present paper, we discussed the use of Indirect
Sampling together with the method developed to obtained
estimation weights: the Generalized Weight Share Method
(GWSM). We then showed the following properties of the
GWSM: unbiasedness, the wvariance computation and
transitivity. We presented after a section on the use of the
GWSM when the links between the populations U* and
U*® are expressed by ones and zeros, i.e., there is a link or
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there is not. The section after was devoted to results that are
obtained with different forms of link matrices. Finally, we
assessed the problem of optimality, i.e., the choice of optimal
values to express the links between U# and U? in order to
minimize the variance of the estimates issued from the
GWSM. We have distinguished two kind of optimization:
weak and strong optimization.

Weak optimization consists in finding the values of the
links to be used in order to minimize, for each unit, the
variance of the weights provided by the GWSM. The
solution is always uniquely defined, easy to compute and to
implement in practice. Weak optimization is also a necessary
condition for strong optimization. Strong optimization
consists in finding the values of the links in order to
minimize the variance of estimation for the total of any
variable of interest y. It does not exist for all sampling
designs and type of links between the populations U* and
U®. Tt also depends on somewhat complicated relations.

We recommend the use of weak optimization because of
its flows naturally and the fact that it is very easy to use.
Moreover, if our estimation problem can be as well
optimized in the strong sense, we will have achieved it
through weak optimization, even if it was not demonstrated!
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