Hra
| o T
Catalogue no.12-001-XIE

=
Survey SURVEY

M et h O d O | O g y METHODOLOGY

A JOURNAL

PUBLISHED BY
J u n e 2 006 STATISTICS CANADA

[T 83 Canadi

I*l Statistics ~ Statistique P
Canada Canada

Canada



How to obtain more information

Specific inquiries about this product and related statistics or services should be directed to: Business Survey Methods Division,
Statistics Canada, Ottawa, Ontario, K1A 0T6 (telephone: 1 800 263-1136).

For information on the wide range of data available from Statistics Canada, you can contact us by calling one of our toll-free
numbers. You can also contact us by e-mail or by visiting our website.

National inquiries line 1 800 263-1136
National telecommunications device for the hearing impaired 1 800 363-7629
Depository Services Program inquiries 1 800 700-1033
Fax line for Depository Services Program 1 800 889-9734
E-mail inquiries infostats @ statcan.ca
Website www.statcan.ca

Information to access the product

This product, catalogue no. 12-001-XIE, is available for free. To obtain a single issue, visit our website at www.statcan.ca and
select Our Products and Services.

Standards of service to the public

Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner and in the official language of
their choice. To this end, the Agency has developed standards of service that its employees observe in serving its clients. To
obtain a copy of these service standards, please contact Statistics Canada toll free at 1 800 263-1136. The service standards
are also published on www.statcan.ca under About Statistics Canada > Providing services to Canadians.



Statistics Canada
Business Survey Methods Division

Survey
Methodology

June 2006

Published by authority of the Minister responsible for Statistics Canada
© Minister of Industry, 2006

All rights reserved. The content of this electronic publication may be reproduced, in whole or
in part, and by any means, without further permission from Statistics Canada, subject to the
following conditions: that it be done solely for the purposes of private study, research,
criticism, review or newspaper summary, and/or for non-commercial purposes; and that
Statistics Canada be fully acknowledged as follows: Source (or “Adapted from”, if
appropriate): Statistics Canada, year of publication, name of product, catalogue number,
volume and issue numbers, reference period and page(s). Otherwise, no part of this
publication may be reproduced, stored in a retrieval system or transmitted in any form, by any
means—electronic, mechanical or photocopy—or for any purposes without prior written
permission of Licensing Services, Client Services Division, Statistics Canada, Ottawa,
Ontario, Canada K1A 0T6.

July 2006

Catalogue no. 12-001-XIE
ISSN 1492-0921

Frequency: semi-annual

Ottawa

Cette publication est disponible en francgais sur demande (n° 12-001-XIF au catalogue).

Note of appreciation

Canada owes the success of its statistical system to a long-standing partnership between
Statistics Canada, the citizens of Canada, its businesses, governments and other
institutions. Accurate and timely statistical information could not be produced without their
continued cooperation and goodwill.




4 Haziza and Rao: A Nonresponse Model Approach to Inference Under Imputation for Missing Survey Data

Vol. 32, No. 1, pp. 53-64
Statistics Canada, Catalogue No. 12-001

A Nonresponse Model Approach to Inference Under Imputation
for Missing Survey Data

David Haziza and Jon N.K. Rao !

Abstract

In the presence of item nonreponse, two approaches have been traditionally used to make inference on parameters of
interest. The first approach assumes uniform response within imputation cells whereas the second approach assumes
ignorable response but make use of a model on the variable of interest as the basis for inference. In this paper, we propose a
third appoach that assumes a specified ignorable response mechanism without having to specify a model on the variable of
interest. In this case, we show how to obtain imputed values which lead to estimators of a total that are approximately
unbiased under the proposed approach as well as the second approach. Variance estimators of the imputed estimators that
are approximately unbiased are also obtained using an approach of Fay (1991) in which the order of sampling and response
is reversed. Finally, simulation studies are conducted to investigate the finite sample performance of the methods in terms

of bias and mean square error.

Key Words: Bias-adjusted estimator; Deterministic regression imputation; Imputation model approach; Item
nonresponse; Nonresponse model approach; Random regression imputation; Variance estimation.

1. Introduction

Item nonresponse occurs in a survey when a sampled
element participates in the survey but fails to provide
responses on one or more of the survey items (Brick and
Kalton 1996). It is usually handled by some form of
imputation which involves “filling in” missing values for
each item. Imputation may achieve an effective bias
reduction, provided suitable auxiliary information is
available for all the sampled elements and appropriately
incorporated in the imputation model and/or the non-
response model.

Imputation offers the following desirable features, among
others: (i) it leads to the creation of a complete data file, and
(ii) it permits the use of the same survey weights for all
items which ensures that the results obtained from different
analyses of the completed data set are consistent with one
another, unlike the results of analyses from an incomplete
data set. However, imputation also presents the following
difficulties, among others: (a) marginal imputation for each
item distorts the relationship between items, and (b) treating
the imputed values as if they were true values may lead to
serious underestimation of the variance of imputed esti-
mators, especially when the nonresponse rate is appreciable.
Methods that address (a) and (b) have been proposed in the
literature.

In this paper, we focus on marginal imputation that is
commonly used in many surveys. We first consider deter-
ministic linear regression imputation that includes mean and
ratio imputation as special cases. In this method a missing
value is replaced by the predicted value obtained by fitting a

linear regression model using respondent values and
auxiliary variables collected on all the sampled elements.
We also consider the case of random linear regression
imputation that may be viewed as a deterministic regression
imputation plus an added random residual. It includes
random hot-deck imputation as a special case.

Let U be a finite population of possibly unknown size N.
The objective is to estimate the population total ¥ =2, y,
of an item y when imputation has been used to compensate
for nonresponse on the item values y,. For brevity, > ,
will be used for ¥°,_,, where 4 < U. Suppose a probability
sample, s, of size n is selected according to a specified
design p(s) from U. Under complete response to item y, a
design-unbiased estimator of Y is given by the well-known
Horvitz-Thompson estimator

Y= wy, (1)

with sampling (or design) weights w, =1/x,, where =,
denotes the inclusion probability of population unit 7 in the
sample s,i=1,..., N. Rao (2005) suggested that (1) should
be called the Narain-Horvitz-Thompson (NHT) estimator in
recognition of the fact that Narain (1951) also discovered
(1) independently of Horvitz and Thompson (1952).

In the presence of nonresponse to item y, we use impu-
tation and define an imputed estimator ¥, as

?1 :Zwl.al.y,- +ZW,-(1_¢1,-)Y,-* :zwi.)/\;l" (2)

where y, denotes the value imputed for missing y,, a,
denotes the response indicator equal to 1 if unit  responds to
ittm y and O otherwise and 7 =a,y, +(1—a,)y,. The
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imputed estimator (2) can be implemented from the imputed
data file containing the survey weights w, and the ¥, only,
without the knowledge of response indicators «@,. However,
the response indicators will be required for variance esti-
mation. Let p, = P(a, =1) be the item y response proba-
bility for unit i. In this paper, we assume that the units
respond independently of one another, ie, p;=
P(a;=1,a;=1)=p,p;if i #j.

As for any method of compensating for missing data,
imputation requires some assumptions about the response
mechanism and/or the imputation model. In the presence of
imputed data, two different approaches are generally used
for making inference on totals, means and other parameters
of interest: (i) Imputation model (IM) approach; (ii) Non-
response Model (NM) approach. Approach (i) is also called
model-assisted approach (Sarndal 1992) and approach (ii)
design-based approach (Shao and Steel 1999). NM
approach is based on partitioning the population U into J
imputation cells and then imputing nonrespondents
y-values within each cell using respondent y—values within
the same cell as donor values, independently across the J
cells. The following assumption is made:

Assumption NM: Response probability for a given item
of interest is constant within imputation cells. That is,
p; =Pp,, say, where the subscript v denotes the imputation
cell.

In the NM approach, explicit assumptions about the
response mechanism are made. It follows that inference
under assumption NM is with respect to repeated sampling
and uniform response mechanism within cells. Approach
NM has been studied by Rao (1990, 1996), Rao and Shao
(1992), Rao and Sitter (1995) and Shao and Steel (1999),
among others. For simplicity, we assume a single impu-
tation cell so that p, = p under assumption NM.

IM approach is based on the following assumption:

Assumption IM: Item values are missing at random
(MAR) in the sense that the response probability does not
depend on the item value being imputed but may depend on
auxiliary variables used for imputation. Further, a model
that generates the item values y, is assumed.

In the IM approach, explicit assumptions about the
distribution of item values y; is made through a model
called the “imputation model”. It follows that inference
under assumption IM is with respect to repeated sampling
and the assumed model that generates the finite population
of y-values and nonrespondents to item y. Underlying
response mechanism is not specified, except for the MAR
assumption, unlike in the NM approach. The assumed
response mechanism under assumption IM is much weaker
than the uniform response within cells under assumption
NM, but inferences under assumption IM depends on the

assumed population model. IM approach has been studied
by Sarndal (1992), Deville and Sirndal (1994) and Shao and
Steel (1999), among others.

Under linear regression imputation, IM approach
assumes the following linear regression imputation model:

Em(yi):Z;’Y’ I/m(yi):GiZ :Gz(;"'zi)’
Cov,(y,»,)=0if i+ j, 3)

where y is k—vector of unknown parameters, z; is a k~vector
of auxiliary variables available for all i € s, A is a k—vector
of specified constants, ¢ is an unknown parameter and
E,.V,, and Cov,, denote respectively the expectation, the
variance and the covariance operators with respect to the
imputation model. The restriction . =c”()A'z,) does not
severely restrict the range of imputation models.

In this paper, we propose a third approach, called the
Generalized Nonresponse Model (GNM) approach. GNM

approach is based on the following assumption:

Assumption GNM: Item values are missing at random
(MAR) and response probability is specified as a function of
auxiliary variables, u;, observed on all the sample
elements, and unknown parameters 1.

In this paper, we assume that the probability of response,
p;, for unit i, is linked to an /-vector of auxiliary variables
u; according to a logistic model so that

p; = fuin) =exp(uin)/exp(l+u;m), (4

where 1 is the /-vector of model parameters. Model (4) is
the assumed nonresponse model. It can be validated from
the values a; and u; for i es. Note that ¢, and u; are
item specific. Also, note that assumption NM is a special
case of assumption GNM. As in NM approach, explicit
assumptions about the response mechanism are made and
inference under assumption GNM is with respect to
repeated sampling and the assumed response mechanism.
Recall that imputation is designed to reduce the non-
response bias, assuming that the available auxiliary
variables can explain the item to be imputed and/or the item
response probability. Hence, in practice, the choice of the
approach (IM or GNM) should be dictated by the quality of
the imputation model and the nonresponse model. The
choice between modeling the item response probability and
modeling the item of interest will depend on how much
reliance one is ready to place on the two models. Although
it may seem intuitively more appealing to model the item of
interest, there are some cases encountered in practice for
which it may be easier to model the response probability
(GNM approach). For example, the Capital Expenditures
Survey at Statistics Canada produces data on investment
made in Canada, in all types of Canadian industries. For this
survey, two important variables of interest are capital

Statistics Canada, Catalogue No. 12-001
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expenditures on new construction (CC) and capital
expenditures on new machinery and new equipment (CM).
In a given year, a large number of businesses have not
invested any amount of money on new construction or new
machinery. As a result, the sample data file contains a large
number of zeros for the two variables CC and CM. In this
case, modeling the variables of intrest (CC or CM) may
prove to be difficult.

Survey design weights are generally used in linear
regression imputation. The resulting imputed estimator of a
population total is “robust” in the sense that it is
approximately unbiased under either assumption NM or
assumption IM. However, the imputed estimator is
generally biased under assumption GNM. In this paper, we
propose a new method of linear regression imputation that is
robust in the sense of leading to approximately unbiased
estimators under either assumption GNM or assumption IM.

Section 2 develops a new method of deterministic linear
regression imputation as well as random linear regression
imputation, and demonstrates the robustness property in
estimating a population total Y. Results of a simulation study
on the finite-sample performance of the imputed estimator
under the new method of imputation are reported in
section 3. Variance estimators are derived in section 4, using
the ‘reverse’ approach of Fay (1991) in which the order of
sampling and response is reversed:

Population — census with nonrespondents — sample
with nonrespondents.

Simulation results on variance estimators are also given.
Finally, the case of domain means is investigated in
section 5.

2. Estimation of a Total

In this section, we study the bias of the imputed estimator
Y,. The total error, ¥, — Y, may be decomposed as

Y, -Y=(-Y)+(,-7). (5)

The term Y —Y in (5) is called the sampling error,
whereas the term Y, —Y is called the nonresponse/
imputation error. Note that there is no imputation error
under deterministic imputation. Since the sampling error
does not depend on nonresponse and imputation method, we
focus on the nonresponse/imputation error ¥, —¥ and
evaluate its properties conditionally on the sample s. Under
the NM or GNM approach, the conditional nonresponse
bias is defined as E, (¥, —Y |s), where E.(.) denotes the
expectation with respect to the response mechanism. Under
the IM approach, the conditional nonresponse bias is
definedas £ E, (Y, —Y|s) under MAR assumption.

r m
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2.1 Deterministic Regression Imputation

Deterministic regression imputation uses the imputed
values

*

yi =27, (6)

for missing y,, where
1
= (z w,a,2,Z; /(N'z; )J z wa,z,y,/(N'z,)  (7)

is the weighted least squares estimator of y in the model
(3), based on the sample elements responding to item y.
Using (6), the imputed estimator (2) can be written as

Y, =¥, +(Z-2,)7,. ®)
where Y. =Y wa,y,Z=Y wz, and Z, =Y waz,.
Note that the imputed estimator (8) is similar to a regression
estimator in the case of two-phase sampling.

Under assumption NM, E, (¢, |s)=p and the condi-
tional nonresponse bias, E.(Y,—Y|s), is approximately
equal to 0. Furthermore, under assumption IM and
regression model (3), the conditional nonresponse bias

EE, (Y —Y|s), is equal to 0. However, under assumption
GNM, the conditional nonresponse bias is given by

E.(Y,-Y|s)~-Y. w(-p)(, -2, =B, |s), (9
where
- (z W, D,2,Z; /(k'zi)j z w.pz,y, [(M'z;).  (10)

This result follows from the fact that under assumption
GNM, E (a,|s)= p,. Hence, the choice of imputed values
(6) is, in general, not suitable under assumption GNM. For
the special case of assumption NM with p, = p, the last
term in (9) vanishes, noting that (X, wz{)¥, =
M wizzg /(;\"Zi))’?p =M (X, wzy, [(Mz) =2, Wy,
2.2 A Bias-Adjusted Estimator

We assume for now that the response probabilities p,
are known. A natural approach for eliminating the bias of
Y, under assumption GNM is to consider a bias-adjusted
estimator of the form

Yo=Y, = B(¥,19), (11)
where B(Y, |s) is an estimator of B(Y, | s):
B, I5)= Zwa L2) iy g5y (2
pi

Note that Er[B(Y,|s)|s]zB(Y,|s) under assumption
GNM. Substituting (12) in (11), we get a bias-adjusted
estimator as

f,“zZ—ay, (sz—Z—asz (13)

K i s i
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Note that (13) is also in the form of a two phase regression
estimator.

In practice, response probabilities p, are unknown.
Suppose we can obtain estimators p, of p; by modelling
p,; according to the nonresponse model (4). Then, a bias-
adjusted estimator is obtained by replacing p, in (13) with
p;. This estimator is also approximately conditionally
unbiased under assumption IM. Hence, the bias-adjusted
estimator (13) is robust in the sense of validity under either
assumption IM or assumption GNM. However, unlike the
imputed estimator Y, given by (2), the bias-adjusted
estimator ¥, cannot be computed without the knowledge of
the response identifiers, a;, and the estimated response
probabilities, p,. Hence, both the response indicators and
the estimated response probabilities must be provided with
the imputed data file to implement ¥, which may not be
the case in practice. This drawback of ¥;* can be eliminated
by using the new imputation method, given in section 2.3,
that leads to an approximately unbiased estimator under
either assumption GNM or assumption IM without the
knowledge of ¢; and p, onthe imputed data file. However,
for variance estimation, access to @, and p, is needed.

2.3 Modified Deterministic Regression Imputation

We assume for now that the response probabilites p, are
known. We then use the imputed values
v =2, (14)
for missing y, and obtain the form of ¥, that leads to an
approximately unbiased estimator under assumption GNM.

2.3.1 Approximately Unbiased Estimator

The following lemma gives the form of ¥, that leads to
an approximately unbiased estimator under assumption
GNM.

Lemma 1: Under assumption GNM, the choice of ¥, that
leads to E,(?, ~Y|s)=0 is given by

7s,N = |:z Wi(l - pi)ZiZ;/(;"'Zi):|_

s

zwi(l_pi)ziyi I(\z;). (15)

s

Proof: The conditional nonresponse bias of ¥, with

*

¥; =2;7, under assumption GNM is given by
E.(Y, =Y |5)==3 w(- p); ~K7,).
Noting that (A'z;)/(M'z;)=1, it follows that

E.(Y,-Y|s)=0 if ¥, satisfies

;"'|:z w,(1=p)z;(y, _Zgys)/(;\"zi):|:0' (16)

s

The choice ¥, =7, y satisfies (16).

Note that ¥, 5 is unknown since the y—values are only
observed for ies, and the response probabilities p, are
unknown. An estimator of ¥, ,, based on the responding
units and estimated response probabilites p,, is given by

-1
7, =| e, L iy

K i

S wa, P gy 0y, (17)
We have E.(Y,|s)~7,, so that ¥, is conditionally
approximately unbiased for ¥, , under assumption GNM.
Hence, using the imputed values
v =71, (18)
in (2) with ¥, given by (17), leads to an approximately
unbiased estimator of the total ¥ under assumption GNM.
Note that ¥, is a weighted least square estimator of y with
respect to a new set of weights, Ww,/(A'z;), where
w, =w,((1- p,)/ p,). Hence, the procedure increases the
weights w; for those units with p, <1/2 and decreases the
weights for those units with p,>1/2. The imputed
estimator can be implemented from the imputed data file
containing the sampling weights w, and the 7, only;
response identifiers @, and estimated response probabilities,
p;, are not required. However, a;, and p, are needed for
variance estimation. Note that the producer of the imputed
data file uses the information on a;, and u; to fit the
response model (4) and generate the imputed values y;
given by (18).

The use of imputed values (18) also leads to an
approximately unbiased estimator of Y under assumption
IM. First, under the regression model (3), noting that
E,(,l9) =2y and E,(,|s)=7. we have E,(¥,~
Y]s)=0 and E.E, (¥, -Y|s)=0 without specifying the
underlying MAR response mechanism. Hence, the use of
imputed values (18) leads to a robust imputed estimator in
the sense of validity under both approaches. Finally, it is
interesting to note that the imputed values (18) can also be
obtained using the method of calibration imputation
(Beaumont 2005). Calibration imputation consists of finding
final imputed values as close as possible to original imputed
values according to some distance function, subject to the
calibration constraint.

Two particular cases of modified regression imputation
(18) are of interest: (i) modified ratio imputation with
z; =z, and A'z; = z;; (ii) modified mean imputation with
z; =1 and A'z, =1. In case (i), the imputed values (18)
reduce to

. ZS wa;y; -

O T (19)

Statistics Canada, Catalogue No. 12-001
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In case (ii), the imputed values (18) reduce to

y; - B 0)
z s Wil
Under uniform response p, = p, the imputed values (19)
and (20) reduce to (X, wa,y, /2 waz)z, and ¥, =
2. w.a,y, /2 wa, respectively, which are the usual values
that survey practioners use for ratio and mean imputation
(Rao and Sitter 1995).

2.3.2 Optimal Choice of ¥

We now turn to the “optimal” choice of ¥, by mini-
mizing the conditional mean square error of the imputed
estimator ¥, with y, = z]¥,. The conditional mean square
error of the imputed estimator ¥, is given by

MSE, (Y, | s)=V.(Y, | s) +[Bias(?, | s)]’
= z Wizpi(l -p) i — Zi"ys)z

{Z w (1= p)(; —ZI?S)} ; 2D

where ¥ (.|s) denotes the conditional nonresponse
variance with respect to the response mechanism, given the
sample s. We search for ¥, that minimizes MSE (Y, | s).

The optimal choice, ¥,,, of ¥, is complex, but in the
special case of ratio imputation, ¥, reduces to

:st,-(l—p,-)y,-zsw,-(l—p,.)z,.+zswl_2pi(1_pl_)yl_zl_
" [zswi(l_pi)ziJz"‘zS W,-zpl-(l—pl.)zl.2

. (22)

Assume that the sampling weights w, satisfy max(n/
Nw,)=0(1) and that a positive constant C exists such that
C < p;. Then,

Yone = ZS w; (1= p;)z

= 7S,N + O(l)
n

Hence, for large sample sizes, the choice ¥, , is nearly
optimal for ratio imputation. Similarly, ¥, , is nearly
optimal for mean imputation which is a special case of ratio
imputation.

~ zswi(l_pi)yi+0(1J

n

2.4 Random Regression Imputation

Random imputation can be viewed as deterministic
imputation plus a random noise. Let s, and s, denote the
sets of sample respondents and nonrespondents respectively,
and let ej.:(yj—zg?r)/(k'zj)”2 be the standardized
residuals for the respondents jes, under deterministic

Statistics Canada, Catalogue No. 12-001

regression imputation. Further, e, =e ', with P(e =e )=
w; /2, w,a, independently for each i€ s, . Then, rand*om
regression imputation uses the imputed values y, =
7y, +e,,ies,, where €, =(1'z,)"* (e, —€,) with &, =
X wiae; /2 wa;. Let E.(.) denote the expectation with
respect to the random imputation process. We have
E*(e:):o and E.(Y,) equals (8). Hence, the imputed
estimator ¥, is approximately unbiased under either
assumption NM or assumption IM. It may be noted that
random regression imputation covers random (weighted)
hot-deck imputation as a special case. To see this, consider
the mean imputation model £, (y,)=v,V,(y,)= c° and
Cov,(y,¥y;)=0,i=j. We have 7,=% way,/
2, wa;, =y,, the weighted mean of the respondent y-
values, and e, =y, —y,. Therefore, y, =y, +€ =y f
corresponds to the respondent value y; drawn at random
with probability w; /X w,a,.

The imputed estimator based on random regression
imputation is asymptotically biased under assumption
GNM. To obtain an approximately unbiased estimator for ¥,
we propose modified random regression imputation. Let
¢ =(y,-z}¥,)/(Wz))""? and & =2, with P(g  =¢,)=
W, /2, W,a, independently for each ies,, where ¥, is
given by (17) and W, =w,(1-p,)/ p,. Then, modified
random regression imputation uses the imputed values
y, =z,§, +&, where & =(0'z,)"*(¢ —¢&) with ¢ =
X, Wae; /2 wa; We have E.(e,)=0 and E.(Y))
equals the imputed estimator under modified deterministic
regression imputation. Hence, the imputed estimator Y, is
approximately unbised under either assumption GNM or
assumption IM. For the special case of mean imputation
model, we have ¥, =X Way, />, Wa, and y, =y,
corresponds to the respondent value y; drawn at random
with probability W, /2 W,a;.

m?

3. Simulation Studies

We performed two simulation studies to investigate the
finite sample performance of the proposed deterministic
modified regression and modified random regression impu-
tation methods in terms of relative bias and relative root
mean square error. The first simulation study compares the
performance of the traditional deterministic regression
imputation and the proposed modified deterministic regres-
sion imputation when the imputation model and/or the non-
response model are not correctly specified. The second
simulation study compares the performance of the imputed
estimator obtained by using imputation classes based on the
estimated response probabilities and weighted mean impu-
tation (traditional) with the imputed estimator obtained by
using the proposed modified deterministic regression impu-
tation method.
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3.1 Simulation Study 1

We generated a finite population of size N =1,000
containing 3 variables: a variable of interest y and two
auxiliary variables z, and z,. To do so, we first generated
z, and z, independently from an exponential distribution
with mean 4 and 30 respectively. Then the y—values were
generated according to the regression model

Yi=Yo T V12 T V22 T €,

where the €,’s are generated from a normal distribution
with mean 0 and variance o°. The values of the parameters
Yo,v; and vy, were respectively set to 20, 2 and 0.1 and the
variance o> was chosen to lead to a model R’-value
approximately equal to 0.75. The objective is to estimate the
populationtotal Y =%, y,.

We generated R =5,000 simple random samples with-
out replacement of size n =100 from the finite population.
In each sample, nonresponse to item y was generated
according to the following response mechanisms:

Mechanism 1: Response probability p,, for unit 7 is given
by the logistic regression model

P
— P
Mechanism 2: Response probability p,, for unit 7 is given
by the logistic regression model

L Ao+ Ay,
— P

The values of A, and A, were chosen to give an overall
response rate approximately equal to 70%. The response
indicators a,, and a,, were generated independently from a
Bernoulli distribution with parameters p,, and p,,,
respectively. Note that in the case of the nonresponse
mechanism 2, the response mechanism is nonignorable in
the sense that the probability of response depends on the
variable of interest y.

To compensate for the nonresponse to item y, we used
the traditional deterministic regression imputation for which
the imputed values are given by (6) and the modified
deterministic regression imputation for which the imputed
values are given by (18). Imputations were based on the
models for y and for p listed in Table 1 as y), vy,
Yay» Yoy ad py), Py P3)- Note that p, corresponds to
response mechanism 1 and y,,, to the model generating the
population.

From each simulated sample, we calculated the imputed
estimator ¥, given by (2) with the imputed values (6) and
(18), based on selected combinations of the models y,,, and
Papysa=L....,4b= 1: 2,3. As a measure of the bias of an
imputed estimator Y,, we used the percent simulated
relative bias (RB) given by

log =Ny + A2y

log

9
RB(F,) = 218U | 00, (23)
where
(P - LY P
Blas(YI):EZYI -Y (24)
r=1

and Y\ denotes the value of ¥, for the r—th simulated
sample. As a measure of variability of an imputed estimator
Y,, we used the percent simulated relative root mean square
error (RRMSE) given by

. JMSE(Y))
RRMSE(Y,) = Txloo, (25)
where
> 1 & s 2
MSE(Y1)=EZ(Y1 -Y)~. (26)
r=1
Table 1
Models Used for Imputation
Models for y Intercept zZ oz,
Yy Yes Yes Yes
Y Yes No Yes
Y3 Yes Yes No
Y No Yes Yes
Models for p, Intercept zZ oz,
Py Yes Yes No
P2) Yes No Yes
D(3) No Yes No

Results on relative bias and RRMSE are shown in Table
2 for the the samples generated by reponse mechanism 1
and in Table 3 for the samples generated by the response
mechanism 2. From Table 2, it is clear that, when the
imputation is performed according to the correct model (i.e.,
Yqy)» traditional deterministic regression imputation leads
to an approximately unbiased estimator and it is more
efficient than the modified deterministic regression impu-
tation in terms of RRMSE. As noted by a referee, modified
deterministic regression imputation can lead to more
efficient estimators than traditional deterministic regression.
That is, there are scenarios (not considered here) for which
the proposed modified deterministic regression imputation
method may be more efficient than the traditional deter-
ministic regression imputation method.

When the imputation model is incorrectly specified (e.g.,
Y@ and y ), deterministic imputation leads to biased
estimators whereas the bias of the modified determinisic
imputation is small to negligible, provided the nonresponse
model is correctly specified (i.e., p,). As aresult, RRMSE
for the deterministic imputation is larger than that for the
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modified deterministic regression imputation. When both
imputation and nonresponse models are not correctly
specified (e.g., ¥4, — P(2)), all the estimators are biased.

From Table 3, it is clear that, for the case of mechanism
2, the imputed estimator obtained under modified regression
imputation performs equally or better than the imputed
estimator obtained under traditional regression imputation in
all the scenarios. This result is not suprising since achieving
an effective bias reduction in the case of nonignorable
nonresponse requires the use of all the appropriate auxiliary
information available. The auxiliary information used in the
case of the proposed modified regression imputation is
richer than the one used in the case of regression imputation
since it uses the auxiliary variables that are related to both
the variable of interest y and the response probability
whereas regression imputation uses only the auxiliary
variables related to the variable of interest y.

Table 2
Relative Bias (%) and RRMSE (%) of Imputed Estimators
Under Response Mechanism 1

Scenario Bias Bias RRMSE RRMSE
(traditional) (proposed) (traditional) (proposed)
Yay — Py 0.19 —0.01 1.85 2.33
Y©) — Pq) 5.20 0.16 5.60 2.66
Y3) ~ P@) 0.17 —0.04 1.87 2.37
Y4y~ Pq) —14.80 -3.50 15.00 6.70
Yy —P@) 0.19 0.12 1.85 1.86
Y4~ P2) —14.80 —14.80 15.00 14.60
Yy —P@3) 0.19 0.05 1.85 1.88
Table 3

Relative Bias (%) and RRMSE (%) of Imputed Estimators
Under Response Mechanism 2

Scenario Bias Bias RRMSE RRMSE
(traditional) (proposed) (traditional) (proposed)
Yy — Py 1.84 1.83 2.55 2.54
Y2 ~ Py 446 1.84 4.89 2.65
Y@3) ~ Pqy 2.03 2.02 2.70 2.70
Y@y — Py —4.58 -3.04 5.07 3.81
Yy — P2) 1.84 1.84 2.55 2.55
Y(4)~ P2) —4.58 -1.70 5.07 2.88
Yy —P3) 1.84 1.84 2.55 2.55

3.2 Simulation Study 2

We generated a finite population of size N =1,000
containing 3 variables: a variable of interest y and three
auxiliary variables z,,z, and z,, by first generating z,, z,
and z, independently from an exponential distribution with
mean 100 and then generating the y—values according to the
regression model

2
Yi=Yo V12 T Y22y T 732, T €,
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where the €,’s are generated from a normal distribution
with mean 0 and variance 6. The values of the parameters
Yo» V1> Y, and y; were respectively fixed to 20, 10, 0.5 and
10. The variance o> was chosen to lead to a model R*
approximately equal to 0.66. The objective is to estimate the
population mean Y =3, y,/N. In order to focus on the
nonresponse/imputation error, we considered the case of a
census, i.e., n=N =1,000. From the simulated population,
nonresponse to item y was generated according to the
following response mechanisms:

Mechanism 1: Response probability p,, for unit 7 is given
by the logistic model

40
— P

Mechanism 2: Response probability p,, for unit 7 is given
by the logistic model

P
— Pai
The values of A,, A, and A, were chosen to give an overall
response rate approximately equal to 70%. Response
indicators a,, and a,, were then genrated independently
R=1,000 times from a Bernoulli distribution with para-
meters p,;, and p,,, respectively.

To compensate for nonresponse, two strategies were
used: The first strategy consisted in dividing the sample, s,
into imputation classes s, s,,..., S- based on the auxiliary
variables z;,z, and z;. To form the classes, we used the
score method which may be described as follows: Using the
auxiliary information, we first estimated the response
probabilites, p,, to obtain p, for both the respondents and
the nonrespondents using logistic regression on z, z, and
z,. Using the p, ’s, we then partitioned the population into
C classes using the procedure FASTCLUS of SAS (that
uses the k-means classification algorithm). The score
method leads to a partition of the population in such a way
that, within classes, units (respondents and nonrespondents)
are homogeneous with respect to p,-values. The second
strategy used the proposed modified regression imputation
method based on the auxiliary variables z,z, and z,. The
goal of the simulation study is to compare the performances
of two imputed estimators of the population mean Y: (a)
Imputed estimator based on the C imputation classes:

log =ho+A .z, +A,z5,.

log =ho+A Yy +A,zs,.

¢ & N,
V=2 Ve @27
c=1 N

where

o *
o= | X way + X owmi-a)y |

and N, =Y, w,. We used weighted mean imputation
within classes; i.e., y; =%, wa,y, /2, wa,.
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(b) Imputed estimator based on the proposed modified
regression imputation, denoted y, :

_ 1 .
Vi :ﬁ|:z w,a;y; +z w,(1-a;)y, :|, (28)

where the imputed values y, are given by (18) using
z,=(z,,2,) and N=Y_ w. For mechanism 1, the
response probabilities p, were correctly estimated using the
variable z, and z, whereas the variables z,,z, and z,
were used to estimate p; for mechanism 2.

Note that w, =1 in this simulation study for all i e U
because no sampling is involved. Finally, Table 4 compares
these estimators in terms of relative bias, given by (23) and
RRMSE, given by (25). From Table 4, it is clear that the
proposed imputed estimator (28) performs considerably
better than the estimator (27) based on imputation classes in
terms of RRMSE for both mechanism 1 and mechanism 2.

Table 4

Relative Bias (%) and RRMSE (%) of Imputed Estimators
Imputed estimator®*  Number of classes RB ~ RRMSE

7¢ (mechanism 1) 1 14.4 14.5

5 —-0.02 4.26

10 —-0.85 7.33

20 -0.20 8.61

30 —-0.03 8.61

40 0.03 9.09

50 0.06 9.44

¥, (mechanism 1) - 1.11 1.90

7¢ (mechanism 2) 1 200 291

5 214 214

10 21.0 21.1

20 20.9 21.0

30 20.9 21.0

40 21.0 21.0

50 21.0 21.0

¥, (mechanism 2) - 10.9 10.9

* 3¢ given by (27)and 7, given by (28).

4. Variance Estimation

In this section, we derive a variance estimator of the
imputed estimator Y,, using the reverse approach of Fay
(1991). The total variance of 7Y, 7 under a particular
deterministic imputation method, is given by

VY, -V)=EV,(Y,-Y|a)+V,E,(V,-Y|a), (29)

where a =(qa,,...,a,)" is the vector of response indicators,
(Shao and Steel 1999). An estimator of the overall variance
V(¥, —Y) in (29) is given by v, = v, +v,, where v, is an
estimator of V, (Y, =Y |a) conditional on thg response
indicators a;, and v, is an estimator of V,[E (Y, —Y |a)].
The estimator v, does not depend on the response
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mechanism or the imputation model, and hence v, is valid
under either assumption GNM or assumption IM.

Under the corresponding random imputation, the
variance of the imputed estimator Y, is given by

V¥, =Y)=E,V,E.(Y, =Y |a)+ E, E,V.(Y, =Y |a)
+V,E, E.(Y, =Y |a), (30)

where V.(.) denotes the variance operator with respect to
random imputation. We assume that E.(Y, |a) agrees with
the imputed estimator for the deterministic case. Hence,
EVVPE*(? T —Yl|a) is estifnated by v, for the deterministic
case. Similarly, V,E E.(Y, =Y |a) is estimated by v, for
the deterministic case. The additional contribution to
variance due to random imputation comes from the
component EFE pV*(?, —Y|a), which is estimated by
v, =V.(Y; —Y |a). Hence, it follows from (30) that the
overall variance V' (Y, —Y) is estimated by v, = v, +v, +v,.
The term v, is absent for deterministic imputation.

4.1 Known p;

In this section, we assume that the reponse probabilites
p;, are known. We first consider the case of modified
deterministic regression imputation in section 4.1.1. The
case of modified random regression imputation is studied in
section 4.1.2.

4.1.1 Modified Deterministic Regression Imputation

Under modified deterministic regression imputation, the
imputed estimator with known p, may be written as

Y, => way +(Z-2,)7,, (31)
where

-1
Vo = |:z w4, Mziz; /(;"'Zi):|
s Pi

1

{z wa, L2y, /(x'zi)} (32)

To obtain v,, we use standard Taylor linearization which
leads to

Y=Y =3 wE,, (33)
where
Eip = aiyi + (1 - ai)Z; 7rp

AA e~ 1-p) 1 -
+(Z-7.)T ‘a.(—'—z. i
( r) p i pi (;\,'Zi) l(yl 1er)

with Tp =2 . wa,(1-p,)/ p;)z;z;/(X'z;). Denoting the

1

variance estimator of the full sample estimator as
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Y =3, wy, as v(p), it follows from (33) that an estimator
of Vp(};l —Y|a) is given by N

v =v(&,), (34
which is obtained by replacing y, by E,.p

v(»)-
To obtain the second component v,, first note that

E,(Y,-Y|a)~Y ay,+> (1-a)y,-7,
K U

in the formula for

where
Tp =

{zUai(l;—p")zizi'/(k'zi)} a4 pp’)z . /(Mz,).

i i

Using Taylor linearization, it can be shown that

VIE,(Y,-Y|a)l~Y p(-p)C, (35)
where
(1_ [) 1 -1 '
¢, {Hp—f’ma—zr) T, zi}(y,- -77,)

with Z=2,2,,Z, =2, a;z; and T, =% a,((1-p;)/p;)
.Z;/(M'z;). The component v, is then obtained by esti-
mating the unknown quantities in (35), which leads to

=Y wa,(1-p)E&;, (36)
where

éi: 1+(1

A=r) Lz 7,58,

o vz )( e ;=
An estimator of the total variance v, is obtained as the sum
of (34) and (36): v, =v,+v,. In practice, the response
probabilities are unknown. As a result, it is not possible to
calculate the variance estimator v,. A simple solution
consists in replacing p, by the estimated response proba-
bilities p, in (34) and (36) and use the resulting v, as the
variance estimator of ¥,. As we show in a simulation sudy
in section 4.3, this simple method gives acceptable results.

Z;?rp)'

4.1.2 Modified Random Regression Imputation

e X L =

and Cov*(y,. , yj) =0,i# j. Hence, from (2) the
component v., due torandom imputation, is given by

vo=Y wil=a)V.(y)) =D wi(l-a)5. (37

We first note that
V.(y)=

(LZ)ZW

An estimator of the total variance is obtained as the sum of
(34), (36) and (37): v, =v, +v, +v.. Once again, since the
response probabilities p, are unknown, it is not possible to
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compute v, in (37). We propose to replace p, in (37) by
the estimated response probabilities p,.

4.2 Unknown p;

We use Binder’s method (Binder 1983) to derive the
component v, when the response probabilities p, are esti-
mated. We assume that p, = f(u;n), where n is 1-vector
of unknown parameters, u; is a 1-vector of auxiliary vari-
ables available for all i es. For example, in the case of
logistic regression, f(u;n)=-exp(u;n)/exp(l+u;n). The
estimated response probabilities are given by p, = f(u),
where 1] is a consistent estimator of m. Let 0=
My, vy,Y), where n, and y, are census parameter
corresponding to m and vy, respectively. An estimator of 0
given by 0 = (i, ¥.,Y,)" can be expressed as a solution of
the sample estimating equations

S(0)=0,
where §(0) = ($,(0).$,(0). 5,(®)) with

$:0)=> wula, - f(ujny)]=

& (1_f(“'7|1v)) ' l;
S,(0)= iii+ i_iN/;"i:O
0) gwal 7ame) (v —ziyy)/(M'zy)

and
$:0)=Y =Y wzyy =2 wa (v ~2iyy) = 0.
Let j(ﬂ)z(@S(ﬂ)/@ﬂ) be the (k+[+1)x(k+/+1)

matrix of partial derivative. We have
V(0)=[I"(0)1Z(0)[J " (0)],

where X(0) denotes the (k+/+1)x(k+1+1) symetric
matrix whose ij element is the covariance between S, (0)
and S () with respect to sampling given the vector of
response indicator a. If X(0) is replaced by a consistent
estimator 2(0), say, we obtain a consistent variance
estimator v(0) given by

vO) =[I O)IZ®)[TO)].
Since we are interested in the variance estimator, v, of Y, T

we need the final row, b, say, of J ~1(0), evaluated at @ = 0.
It follows that

v, =bX(0)b’. (38)
To obtain the component v,, we assume that the

sampling weights w, satisfy max(n/Nw,)=O(1) and that

there exists a positive constant C such that C < p,.
-1/2

Furthermore, we assume that § —m=0,(n"""). By Taylor
linearization, we have
. . B - u;
= Y1p +(M- n)z D; 1(y,. - ya)é—f(ann) + OP (N /n),

where
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¥, = {Z (1-a,)z2,2, /(k'zi)}_ {Z (-a)zy; /(k'zi)}

Assuming that f(uin)/0m is uniformly bounded, we

have
E,(Y)=E,(Y,)+0,(N/n'").

Hence, the component V,[E, (7, » — Y |a)] is approximately
given by (35) and v, is given by (36) with p, replaced by
p;. In the case of modified random regression imputation,
the component due to random imputation will be estimated
by (37) with p, replaced by p,.

4.3 Simulation Study

We performed a limited simulation study to assess the
performance of the variance estimators considered in
sections 4.1 and 4.2. We generated a population of size
N =2,500 containing two variables y and z. First, the
variable z was generated from a Gamma distribution with
scale parameter equal to 4 and shape parameter equal to 10.
The y-values were then generated according to the ratio
model

Yi=vz; +€;,
where the €,’s are generated from a normal distribution
with mean 0 and variance o*. The value of the parameter y
was set to 2 and the variance 6> was chosen to lead to a
model R”-value approximately equal to 0.81. The
objective is to estimate the population total ¥ =2, y,.

We generated R =10,000 simple random samples
without replacement from the finite population using the
following sampling fractions n/N :0.05; 0.1 and 0.25. In
each sample, nonresponse to item y was generated
according to the following response mechanism: Response
probability p, for unit i is given by the logistic model

log =k + Mz,
The values of A, and A, were chosen to give an overall
response rate approximately equal to 70%. The response
indicators a, were then generated independently from a
Bernoulli distribution with parameters p,.

To compensate for the nonresponse to item y, we used
the modified deterministic ratio imputation for which the
imputed values are given by (19). From each simulated
sample, we calculated the imputed estimator Y, given by
(2) with the imputed values (19). As a measure of the bias of
a variance estimator v, we used the relative bias
[E(v) = MSE(Y,)]/MSE (Y,). Let v,,.. denotes the total
variance estimator obtained by summing (34) and (36) when
the response probabilties p, are replaced by the estimated
response probabilities p, and v, denotes the total
variance estimator obtained by summing (38) and (36) with
p, replaced by p,. Table 5 gives the relative bias (in %) of
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the two variance estimators. It is clear from Table 5 that
both variance estimators lead to underestimation, but v,
is slightly better in terms of underestimation. Also, both
variance estimators performed well with a relative bias less
than —-10%. Hence, the simpler variance estimator v
might be suitable in practice.

naive

Table 5
Relative Bias (%) of the Variance Estimators
f RB(vnaive) RB(vcorrect)
0.05 -6.3 -5.1
0.10 -5.8 —4.1
0.25 —4.3 =32

5. Estimation of Domain Means

In practice, estimates for various domains (subpopu-
lations) are often needed. For example, in the Canadian
Labour Force Survey, estimates of unemployment are
required by age-sex group and by industry at the provincial
level. To compensate for item nonresponse, the proposed
modified regression imputation may be used. However, the
domains must be specified in advance at the imputation
stage. In other words, the domain indicators must be part of
the imputation model. In practice, domains are generally not
specified at the edit and imputation stage and domain
estimates are obtained from imputed data based on imputa-
tion models without the domain indicators. As a result, the
imputed estimators for domains are generally biased. We
propose a bias-adjusted estimator, along the lines of section
2.2, to remedy this problem. The bias-adjusted estimator can
be obtained at the estimation stage and does not require the
specification of the domains at the imputation stage.

A vector of domain means may be expressed as

Yo = (Z X, X; j > Xy (39)

where x=(x,;,..., X, ...,Xp;) 18 @ vector of domain indi-
cators, x,, suchthat x, =1 if i € domaind and x, =0,
otherwise. We assume that x is known for all the units
ies. In other words, only item y may be missing. In the
absence of nonresponse, an approximately unbiased esti-
mator of V( 4 1s given by

(d) (z w;X :J zwixiyi' (40)

In the presence of nonresponse to item y, an imputed esti-
mator of Y, is given by

I(d)—T |:2waxly,+2w(1 a,)x; yl}
:T"12waxly,, (41)
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where T=3, wx,x|. Note that the imputed estimator
Yl(d) in (41) does not require the response identifiers, a;.
Haziza and Rao (2005) showed that the imputed estimator
Yl(d) is biased under assumption NM. They proposed a
bias-adjusted estimator which is approximately unbiased
under either assumption NM or assumption IM. In this
section, we propose an extension of the Haziza-Rao bias-
adjusted estimator which is approximately unbiased under
either assumption GNM or assumption IM.

It is easily seen that, under assumption GNM, the
conditional nonresponse bias of the imputed estimator (41)
that uses the modified deterministic regression imputation

(18) is given by
Bias(vl(d) | s)z —T-{z w,(1— p,)x,(y; —zﬁs,N)}, (42)

where ¥,y is given by (15). An approximately condi-
tionally unbiased estimator of the bias in (42) is given by

A

é(vl(d) | S)z -1 |:z wa;x; (y; _Z;,’Yr):|’ 43)

where ¥, is given by (17). A bias-adjusted estimator,
Y4, is then obtained as Y; 4, — B(Y,q | 5), which leads
to

Yia)= T_1|:z ﬁaixi(% —Z;¥,)+ z Wixizgyr:|' (44)

The bias-adjusted estimator (44) is approximately
unbiased under either IM or GNM. Hence, it is robust in the
sense of validity under both assumption IM or assumption
GNM. However, it requires both the response identifiers q,
and the estimated response probabilities p,, unlike the
imputed estimator Y; 4, in (41).

It is possible to obtain a bias-adjusted estimator of the
form (44) if we use the traditional deterministic regression
imputation instead. It is interesting to note that the bias-
adjusted estimator is identical to the estimator obtained
using calibrated imputation (Beaumont 2005). The latter
estimator does not require the knowledge of o, and p, in
the imputed data file but the domains must be specified at
the imputation stage, which may not be feasible in practice.

If the nonresponse model (4) contains only the intercept,
we have p,=p, where p denotes the overall response
rate. In this case, the bias-adjusted estimator (44) reduces to

?ﬁd) = ﬁ_l?l(d) +(1- ﬁ_l)T_lz WX Zi¥ s (45)

noting that ¥, =7,, where, under deterministic regression
imputation,
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i :(z WiZiZ;/()"'Zi)j_

ies

X|: W, a4, Z; ), /()"'Zi)"'z w; (1_ai)ziyi*/()"'zi):|
=7,
Haziza and Rao (2005) obtained the bias-adjusted estimator
(45).

Concluding Remarks

For simplicity, we focussed on a single imputation class
but our GNM method readily extends to multiple imputation
classes by using separate imputations across classes. For
example, we could use weighted mean imputation within
classes using our modified weights #,. Also, our method
can be extended to the case of composite imputation (Sitter
and Rao 1997; Shao and Steel 1999 ) which uses different
imputations for missing item values depending on the
auxiliary information available. For example, ratio impu-
tation is used when an auxiliary variable x is observed and
some other imputation when x is not observed. In this case,
the IM approach based on the ratio model relating y to x
will not be applicable unlike in the case where x is observed
on all the sampled units.
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