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Spatio-Temporal Models in Small Area Estimation 

Bharat Bhushan Singh, Girja Kant Shukla and Debasis Kundu 1 

Abstract 
A spatial regression model in a general mixed effects model framework has been proposed for the small area estimation 
problem. A common autocorrelation parameter across the small areas has resulted in the improvement of the small area 
estimates. It has been found to be very useful in the cases where there is little improvement in the small area estimates due to 
the exogenous variables. A second order approximation to the mean squared error (MSE) of the empirical best linear 
unbiased predictor (EBLUP) has also been worked out. Using the Kalman filtering approach, a spatial temporal model has 
been proposed. In this case also, a second order approximation to the MSE of the EBLUP has been obtained. As a case 
study, the time series monthly per capita consumption expenditure (MPCE) data from the National Sample Survey 
Organisation (NSSO) of the Ministry of Statistics and Programme Implementation, Government of India, have been used 
for the validation of the models. 
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1. Introduction  
Local level planning requires reliable data at the appro-

priate level. The complete enumeration or large sample 
surveys with adequate sample size is expensive and time 
consuming. The censuses are usually carried out once in a 
decade, while the sample surveys are often planned to 
provide estimates at much higher level. One such large 
sample survey is socio-economic survey of National Sample 
Survey Organisation (NSSO). Here the direct survey 
estimates are available at small area (district) level as most 
of the districts are stratum in the sampling procedure 
adopted by the NSSO. However, the estimates are exceed-
ingly unreliable due to unacceptably large standard errors. 
This requires strengthening of such estimates with the use of 
information from similar small areas or with the help of 
some relatable exogenous variables, easily available and 
related to the variable under study. 

Various model based approaches have been suggested to 
improve the direct estimators. The model-based approach 
facilitates its validation through the sample data. The simple 
area specific model suggested is two stage model of Fay and 
Herriot (1979). 

,)|(Var,0)|(, 2
iiiiiiii Ey σ=θε=θεε+θ=  (1.1) 

.,,2,1,)(Var,0)(, 2 mivvEzvX viiii
T
ii K=σ==+β=θ  (1.2) 

Here iy ’s are direct survey estimators of iθ ’s, the 
characteristic under study. iθ ’s may be population small 
area means. T

ipii XXX ),,( 1 K= ’s are exogenous variables 
which are available and assumed to be closely related to 

iθ ’s and iz ’s are known positive constants. )1( ×β p  is the 
vector of regression parameters. 

The first equation (1.1) is the design model while the 
second (1.2) is the linking model. The iε ’s are sampling 
errors. Estimators iy ’s are design unbiased and the 
sampling variances 2

iσ ’s are known. Further the iε ’s and 

iv ’s are identically and independently distributed random 
variables. Normality of the random errors and random 
effects are often assumed. For this model, best linear 
unbiased predictor (BLUP) on the line of the best linear 
unbiased estimator (BLUE) has been suggested. The 
estimate is design consistent and model unbiased (Ghosh 
and Rao 1994). It is typically the weighted average of the 
direct survey estimator iy  and the regression synthetic 
estimator .βT

iX  The BLUP estimator depends on variance 
component 2

vσ  which is unknown in pratical applications. 
Various methods of estimating variance components in 
general mixed effects linear model are available (Cressie 
1992). By replacing 2

vσ  with an asymptotically consistent 
estimator ,ˆ 2

vσ  an empirical best linear unbiased predictor 
(EBLUP) has also been obtained. 

The main problem associated with the data in the Indian 
context is the non-availability of administrative or civic 
registration data at small area level. Often, it is difficult to 
find out the exogenous variables closely related (multiple 
correlation coefficient )5.02 >R  to the variable under 
study. 

In the present paper, the exploitation of spatial auto-
correlation amongst the small area units in the form of 
spatial model, has been considered for improving the small 
area estimators. Besides this, for the time series data, a 
spatial temporal model on the line of Kalman filtering has 
been utilised to further improve the estimators. Time series 
data on monthly per capital consumption expenditure 
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(MPCE) as estimated from a large sample survey carried out 
by the National Sample Survey Organisation (NSSO) has 
been studied. In the present paper, we propose suitable 
models in the framework of mixed effects linear model to 
provide better estimators of the MPCE at small area level. 

Rest of the paper has been organized as follows. In 
Section 2, we consider a Spatial Model on the line of 
general mixed effects linear model with the introduction of 
spatial autocorrelation among the small area units. The 
BLUP and EBLUP of the mixed effects have been 
presented. A second order approximation to the MSE of the 
EBLUP and to the estimator of the MSE has also been 
obtained. Section 3 deals with the time series extension of 
Spatial Model in form of Spatial Temporal Model, using the 
Kalman filtering approach. The BLUP and the EBLUP of 
the mixed effects along with a second order approximation 
to the MSE of the EBLUP and to the estimator of the MSE 
have been discussed. Section 4 presents and analyses 
estimates of the MPCE from a large sample survey carried 
out periodically in India. The conclusions of the data 
analysis are reported in Section 5. All the proofs have been 
provided in the Appendix. 

 
2. Spatial Model  

The small area characteristics usually have the spatial 
dependence in terms of neighbourhood similarities. Cressie 
(1990) used conditional spatial dependence among random 
effects, in the context of adjustment for census undercounts. 
Here, we use simultaneous spatial dependence (Cliff and 
Ord 1981) among the random effects which has certain 
advantage over conditional dependence (Ripley 1981). We 
have thus tried to explain a portion of the random error 
unaccounted for and left over by explanatory variables 
which makes it possible to improve the direct survey 
estimators. The proposed model is a three stage area specific 
model (Ghosh and Rao 1994). 

),,0(~, RNy mεε+θ=  (2.1) 

,uX +β=θ  (2.2) 

),,0(~, 2INvvuWu vm σ+ρ=  (2.3) 

where θ  is a m – component vector (corresponding to 
number of small areas) for the characteristic under study and 
y is its direct surevy estimator obtained through small 
sample data. In the above model, the first equation (2.1) 
shows the design (sampling) model, the second equation 
(2.2) shows regression model and the third one (2.3) shows 
spatial model on the residuals, the later two are linked in the 
first equation. The above model can be expressed as  

,)(, 1−ρ−=ε++β= WIZvZXy  (2.4) 

where )( pmX ×  is the design matrix of full column rank p, 
)1( ×β p  is a column vector of regression parameters and 

)( mmZ ×  represents the coefficients of random effects v. 
)( mmW ×  is a known spatial weight matrix which shows 

the amount of interaction between any pair of small areas. 
The elements of ][ ijWW ≡  with iWii ∀= 0  may depend 
on the distance between the centers of small areas or on the 
length of common boundary between them. As a simple 
alternative, it may have binary values 1=ijW  (unscaled) if 

thj area is physically contiguous to thi  area and ,0=ijW  
otherwise. The matrix has been standardised so as to satisfy 

11 =∑ = ij
m
j W  for .,,2,1 mi K=  The constant ρ  is a measure 

of the overall level of spatial autocorrelation and its 
magnitude reflects the suitability of W for given y and X. 
Further v and ε  are assumed to be independent of each 
other. R is a diagonal matrix of order m which may be 
expressed as ),,,(diag 22

2
2

mlR σσσ= K  where 2
iσ ’s are 

known sampling variances corresponding to the thi  area. 
The parameter vector T

v ],[ 2σρ=ψ  has two elements. 
In this model the strength is borrowed from the similar 

small areas through two common parameters viz. regression 
parameter β  and autocorrelation parameter .ρ  Note that the 
present model is a more general model and the model of Fay 
and Herriot (1979) can be obtained from this by taking 

.0=ρ  
By adopting the mixed effects linear model approach 

(Henderson 1975), the best linear unbiased predictor 
(BLUP) of ZvX +β=θ  and the mean squared error 
(MSE) of the BLUP may be obtained as  

),(ˆ)()()(

)](ˆ[)()(ˆ)(ˆ

1112 ψβψΣ+ψΣψσ=

ψβ−ψΛ+ψβ=ψθ
−−− XRyA

XyX

v

 
(2.5)

 

),()(]))(ˆ)()(ˆ[(

])(ˆMSE[

21 ψ+ψ=θ−ψθθ−ψθ

=ψθ

ggE T
 

(2.6)
 

,)()()( 1
1 RRRRg ψΣ−=ψΛ=ψ −  (2.7) 

,)())(()()( 1111
2 RXXXXRg TT ψΣψΣψΣ=ψ −−−−

 
(2.8)

 

).()()(),()()(

,)()(

,)(])([)(ˆ

112

12

111

WIWIAA

RA

yXXX

T
v

v

TT

ρ−ρ−=ψψΣψσ=ψΛ

+ψσ=ψΣ

ψΣψΣ=ψβ

−−

−

−−−

 

Here Σβ,ˆ  and A, all are the functions of ψ  and usually 
have been expressed as )(),(ˆ ψΣψβ  and )(ψA  respect-
ively. However, sometimes due to brevity, the suffix ψ  has 
been omitted. The first term, )(1 ψg  in the expression for 
the MSE, shows the variability of θ̂  when all the 
parameters are known and is of order ).1(O  The second 
term, ),(2 ψg  due to estimating the fixed effects ,β  is of 
order )( 1−mO  for large m. Further, with ,0=ρ  the above 
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model reduces to the standard mixed effects linear 
regression model while for ,μ=βX  we obtain a purely 
spatial scheme with only intercept term. 

In practice parameter ψ  is unknown and is estimated 
from the data. The maximum likelihood estimator (MLE) of 
the parameter, ψ  is obtained by maximizing the following 
log likelihood function of ψ  

])(ˆ[)(])(ˆ[ 
2

1

]|)([|log 
2

1
const

1 ψβ−ψΣψβ−−

ψΣ−=

− XyXy

l

T

 
(2.9)

 

with respect to the parameter .ψ  The empirical best linear 
unbiased predictor (EBLUP), )(ˆ ψθ  and the naive estimator 
of  the MSE are obtained from the equations (2.5) and (2.6) 
respectively, by replacing the parameter vector ψ  by its 
estimator .ψ̂  

),ˆ(ˆ)ˆ()ˆ()ˆ(ˆ)ˆ(ˆ 1112 ψβψΣ+ψΣψσ=ψθ −−− XRyAv  (2.10) 

).ˆ()ˆ()ˆ(and

)ˆ(ˆ)ˆ(where

),ˆ()ˆ()]ˆ(ˆMSE[
12

21

WIWIA

RA

gg

T

v

ρ−ρ−=ψ

+ψσ=ψΣ

ψ+ψ=ψθ
−  

(2.11)

 

This expression for the MSE of the EBLUP severely 
underestimates the true MSE as the variability due to the 
estimation of the parameters through the data has been 
ignored. We obtain a second order approximation to the 

 ])ˆ(ˆMSE[ ψθ  in case ψ̂  is the maximum likelihood esti-
mator (MLE) or the restricted maximum likelihood 
estimator (REMLE) of ,ψ  with the assumption of large m 
and by neglecting all the terms of the order ),( 1−mo  under 
the following regularity conditions. The approximation has 
been worked out along the lines of Prasad and Rao (1990) 
and Datta and Lahiri (2000) which are heuristic in nature.  
Regularity Conditions 1  
(a) The elements of X are uniformly bounded such that 

,])([)(1
pp

T mOXX ×
− =ψΣ  where =ψΣ )( +ψσ − )([ 12 Av  

];R   
(b) m is finite;  
(c) ,])1([)( pmOX ×=ψΛ  ,])1([)])/()([( pmd OX ×=ψ∂ψΛ∂  

mmed O ×=ψ∂ψ∂ψΛ∂ ])1([)])/()([( 2  for ;2,1, =ed   
(d) ψ̂  is the estimator of ψ  which satisfies =ψ−ψ̂  

p
p RhyxhyyymO ∈∀ψ=+ψψ=−ψ− )(ˆ)(ˆ),(ˆ)(ˆ),( 2/1  

and .y∀   
These regularity conditions are satisfied in this case. The 

special standardised form of the weight matrix W satisfies 
the condition (c) for 1|| <ρ  as it has only a finite number of 
nonzero elements and its row sum is equal to 1. It may be 
mentioned here that the matrix 112 −− Σσ Av  has finite number 

of nonzero elements and the order of ),(, WIW ρ−  
1,),( −ΣΣρ− WIW  or any sum or product combination of 

these and their derivatives mentioned in condition (c) do not 
increase. The MLE and the REMLE, in addition satisfy the 
condition (d). A second order approximation to the MSE of 
the EBLUP has been shown in Theorem A.1 of the 
Appendix as 

).()( )()(

]))ˆ(ˆ)()ˆ(ˆ[()]ˆ(ˆ[MSE
1

321
−+ψ+ψ+ψ=

θ−ψθθ−ψθ=ψθ

moggg

E T

(2.12)
 

Here the third term )(3 ψg  comes from estimating the 
unknown parameter vector from the sample data and it is of 
the same order )( 1−mO  as that of ).(2 ψg  Further )(3 ψg  
may be expressed as 

),(])()([)()(
1

3 ψψΣ⊗ψψ=ψ
−

ψ LILg T  (2.13) 

where  

][)(.2,1,
)(

)(

,)](),([])([Col)(

2

21
2

T
d

d

T
d

d

l
EIdL

LLLL
v

ψ∂ψ∂
∂−=ψ=

ψ∂
ψΛ∂=ψ

ψψ=ψ=ψ

ψ

σρ≤≤

 

is the information matrix and ⊗  represents Kronecker 
product. Further )(3 ψg  may also be written as  

)).(()(where

)()()()()(

11

1
2

1

2

1
3

ψ≡ψ

ψψψΣψ=ψ

−−
ψ

−

==
∑∑

de

de
T
ed

ed

II

ILLg
 
(2.14)

 

It is common practice to estimate the MSE of the EBLUP 
by replacing the unknown parameters including components 
of the variance by their respective estimators. This proce-
dure can lead to severe underestimation of the true MSE 
(Prasad and Rao 1990, Singh, Stukel and Pfeffermann 
1998). We obtain the estimator of the MSE of the EBLUP 
in Theorem A.2 of the Appendix for large m neglecting all 
terms of order ).( 1−mo  As a result we have the expressions 

),()()]ˆ()ˆ()ˆ()ˆ([ 1
15431

−+ψ=ψ−ψ−ψ+ψ mogggggE  (2.15) 

),()()]ˆ([and

)()()]ˆ([
1

33

1
22

−

−

+ψ=ψ

+ψ=ψ

moggE

moggE
 

(2.16)
 

and finally the estimator of the MSE of )ˆ(ˆ ψθ  as 

).()]ˆ(ˆMSE[))]ˆ(ˆ[mse(where

),(])ˆ()ˆ()ˆ(2)ˆ()ˆ([

)]ˆ(ˆmse[

1

1
54321

−

−

+ψθ=ψθ

+ψ−ψ−ψ+ψ+ψ

=ψθ

moE

moggggg  (2.17) 

Obviously the additional terms, )ˆ(),ˆ( 43 ψψ gg  and 
)ˆ(5 ψg  are the contributions, due to estimation of unknown 

parameter vector ψ  by .ψ̂  The expressions for )(4 ψg  and 
)(5 ψg  up to order )( 1−mo  are given by 
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,
)(

)(TraceCol)(
2

1
)(

,
)(

])([)(

β1
β

21

1
ψ̂ψ̂

1
ψ̂4

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

ψ∂
ψ∂

ψψ=ψ

ψ∂
ψ∂

⊗ψ=ψ

−

≤≤

−

dd

m
T

I
IIb

g
Ibg

 
(2.18)

 

.
]))(()([

)(

]))(([

Trace
2

1
)(

11
ψ

2

1
2

5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψΣ⊗ψ
ψ∂ψ∂
ψΣ∂

ψΣ⊗
=ψ −−

−

RI

RI

g
T

m
 (2.19) 

Here )(ψ̂ ψb  is the bias of ψ̂  i.e., ψ−ψ)ˆ(E  up to order 
)( 1−mo  and )/())(( 1 ψ∂ψ∂g  is a partitioned matrix 

T
vg ])/())((,)))/((g[( 2

11 σ∂ψ∂ρ∂ψ∂  of order )2( mm×  
having 2 matrices of order mm ×  in a column. In the same 
way )/())(( 2 Tψ∂ψ∂ψΣ∂  is a partitioned matrix of order 

)22( mm ×  having 2 partitions, row and column wise with 
)/())(( 2

ed ψ∂ψ∂ψΣ∂  being a general sub matrix of order 
mm ×  therein. ,)(Trace 2

1 ddd BB =∑= where B is a square 
partitioned matrix with square sub matrices of similar order. 
In addition )(4 ψg  and )(5 ψg  may also be written as 

,
)()(

)(Trace)(
2

1

)(

11
2

1

1
2

1

4

ede
de

d

gI
II

g

ψ∂
ψ∂

⎥
⎦

⎤
⎢
⎣

⎡
ψ∂

ψ∂
ψψ

=ψ

β−
β

=

−

=
∑∑

 
(2.20)

 

.)()(
)(

)(
2

1

)(

11
2

1
2

1

2

1

5

⎥
⎦

⎤
⎢
⎣

⎡
ψψΣ

ψ∂ψ∂
ψΣ∂ψΣ

=ψ

−−−

==
∑∑ de

eded

RIR

g

 
(2.21)

 

The expression (2.17) gives the matrix of the estimator of 
the MSE of EBLUP, )ˆ(ˆ ψθ  and the MSE of the individual 
small area estimators may be obtained as the respective 
diagonal element. In case of simple model without the 
spatial autocorrelation, similar expressions can be obtained. 
In this case ),(5 ψg  however, becomes zero. 

 
3. Spatial Temporal Model  

In this section, State Space Models via Kalman filtering 
have been used to take the advantage of the time series data 
along with the common regression parameter and common 
autocorrelation parameter to strengthen the direct survey 
estimators at any point of time. This is especially 
advantageous in the case where the past survey estimates are 
more reliable. The models used in this category are the 
following 

,)(),,0(, 1
ind

~ −ρ−=εε++β= WIZRNZvXy tmttttt  (3.1) 

.othereachoftindependenareand

and,,2,1),0(, 2
ind

1 ~
tt

vmtttt TtINkvv

ηε
=σηη+= − K

 (3.2)
 

 
Here the parameters have usual meaning as explained in 

the previous section. Weight matrix )( mmW ×  and design 
matrices )( pmX t ×  are known, )( mmZ ×  is a matrix of 
coefficients of random effects and ρ  is an unknown 
autocorrelation coefficient. tR  is a diagonal matrix of order 
m which may be expressed as ),,,(diag 22

2
2
1 mttttR σσσ= K  

where 2
itσ ’s are known sampling variances corresponding 

to the thi  small area and tht  time point. β  is unknown 
vector of fixed effects and T

v k],,[ 2σρ=ψ  is a vector of 
three unknown parameters. These parameters are 
independent of time t. It may be noted that the random 
effects tv  have been allowed to change in accordance with 
(3.2) and k is temporal autoregressive parameter. For 
stationarity .1|| <k  

The estimators of fixed and random effects and the MSE 
of these estimators are obtained in stages, starting with 
assumption of mixed effects linear model approach at time 

,1=t  and by taking ),0(~ 2
1 INv vm σ  (Sallas and Harville 

1994). In the standard form we write the model as  

,],[diag,, 1 mpttttttt kIITTUy =ζ+α=αε+α= −  (3.3) 

.],[],,[

],0[diag),,0(~ 2

T
ttttt

mvpmpt

vZXU

IQQN

β=α=

σ=ζ +
 

(3.4)
 

Here mI  and m0  are the unit and zero matrices of order 
m and by ],[diag mp kII  we mean the matrix  

.
0

0
⎥
⎦

⎤
⎢
⎣

⎡

××

××

mmpm

mppp

kI

I
 

In case β  is assumed fixed but dependent on time, there is 
no change in the model except that ].,0[diag mp kIT =  

The initial estimates of the effects tα  and their variances 
(based on 1=t ) are obtained as 

,,

),ˆ(ˆ,)(ˆ

2221

1211
1

12
11

111
1

1
2

11
1

11
1

1
1

111

⎥
⎦

⎤
⎢
⎣

⎡
ΣΣ
ΣΣ

=Σσ=

β−σ=ν=β

−
ν

−
ν

−−−

ARH

XyHZyHXXHX TTT

 

.)(

)(and

)()(

,)()(

1
11

1
1

1
111

1
1

4

1
1

42
22

1
11

1
1

1
11

2
2112

1
1

1
1111

ZHXXHXXHZ

ZHZImm

ZHXXHXmp

XHXpp

TTT

T
m

TTT

T

−−−−
ν

−
νν

−−−
ν

−−

σ+

σ−σ=×Σ

σ−=Σ=×Σ

=×Σ

 

The recurring Kalman filtering equations for updation of 
the estimators at subsequent stages are 
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1|
1

1|1|

1|
1

1|1|

1|11|11|

),ˆ(ˆˆ

,,ˆˆ,

−
−

−−

−
−

−−

−−−−−

ΣΣ−Σ=Σ

α−Σ+α=α

Σ+=α=α+Σ=Σ

tttt
T
tttttt

ttttt
T
tttttt

T
ttttttttt

T
ttt

UHU

UyHU

UURHTQTT

 

 
where 1|ˆ −α tt  are the estimators of the effects tα  given the 
observations ],,,[ 121 −tyyy K  and the 1| −Σ tt  are the mean 
squared errors of .ˆ 1| −α tt  tH  are the conditional variance 
covariance matrix of ty  given ].,,,[ 121 −tyyy K  With the 
help of the above recurring filtering equations, the best 
linear unbiased predictor (BLUP) of ,ttt vZX +β=θ  and 
the mean squared error (MSE) of the BLUP may be 
obtained as  

),()()(ˆ)(

])(ˆ)([) (

)(ˆ)()(ˆ

1|

1|
1

ψψΛ+ψαψ=

ψαψ−ψ−=
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It may be noted that )(12 ψtg  is the spatial counterpart of 
).()( 21 ψ+ψ gg  As usual in practice, the parameter vector 

ψ  is unknown and its restricted maximum likelihood 
estimators (REMLE) can be obtained by maximizing the 
following log likelihood function, based on the sample data 
covering all time points 
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with respect to the parameter .ψ  With the help of the above, 
the estimator, ψ̂  is obtained and the EBLUP of tθ  and the 
naive estimator of the MSE of the EBLUP are given by 
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).ˆ()ˆ()ˆ()ˆ(])ˆ(ˆ[MSE 12 ψψΣψ=ψ=ψθ T
ttttt UUg  (3.9) 

As explained earlier in section 2, the MSE of the EBLUP 
underestimates the true MSE as it does not take care of the 
variability due to replacing parameters by their estimates. A 
second order approximation to the ])ˆ(ˆMSE[ ψθt  for large 
m and neglecting all the terms of order ),( 1−mo  has been 
obtained in Theorem A.3 of the Appendix, under the 

following regularity conditions satisfied by our model. 
These conditions are analogous to the regularity conditions 
1.  
Regularity Conditions 2  
(a) The elements of TtX t ,,2,1, K=  are uniformally 

bounded such that ,])([)(1
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The second order approximation to the MSE of the 
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Here )(3 ψtg  is the bias due to the estimation of the 
parameters from the sample data and is of the order )( 1−mO  
and it is given by 
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The expression for the information matrix involved here, 
may be given as 
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Estimator of the MSE of the EBLUP has also been obtained 
with the assumption of large m and neglecting all terms of 
order )( 1−mo  in Theorem A.4 of the Appendix as 
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4. Analysis of the NSSO Data  

National Sample Survey Organisation (NSSO) of the 
Ministry of Statistics and Programme Implementation (Gov-
ernment of India) conducts quinquennial large sample 
surveys (QS) on household consumption expenditure and 
employment, almost every five years in India. The surveys 
cover more than hundred thousand households spread over a 
number of villages and urban blocks. In order to fill the gaps 
in data between the successive QSs, the NSSO conducts 
annual consumer expenditure survey (CES) in almost every 
round (equivalent to six months or one year duration). The 
annual series covers only 10 – 30 thousand households 
depending on the number of villages and urban blocks 
surveyed all over the country. Each round of NSS normally 

has more than one subject of enquiry. The annual series has 
a different principal subject of enquiry. However schedule 
1.0 of the annual surveys is designed to collect data on 
household consumption expenditure among other character-
istics on employment. 

The NSSO adopts two stage stratified sampling design, 
the first stage units being census villages in the rural sector 
selected through circular systematic sampling with proba-
bility proportional to size (PPS) and the ultimate-stage units 
being the households selected circular systematically with 
independent random starts. India has been divided into 
States and the Districts are the second level administrative 
units in the States. There is not much difference between the 
annual and quinquennial surveys excepting that normally in 
annual series, a small sample of four households per first 
stage units are surveyed while in the case of quinquennial 
survey, ten to twelve households per first stage units are 
surveyed. Besides this, in NSSO surveys, we have two 
samples viz, the first one as central sample surveyed by the 
investigators of the NSSO, and the second one as state 
sample surveyed by the State authorities. Regarding the 
estimation procedure, the first stage units are selected in the 
form of two independent sub-samples. The estimate of the 
population mean and its variance based on the two sub-
samples are separately obtained. The pooled mean =iy  

2/)ˆˆ( 21 ii yy +  and 4/)ˆˆ( 2
21 iii yyR −=  for ,,,2,1 mi K=  

where ii yy 21 ˆ,ˆ  are the sub-sample means, estimate respect-
ively the population mean and its variance for a particular 
district (small area). In case of round 55, first stage units are 
selected in the form of eight independent sub-samples and 
the estimate of the population mean and its variance are 
based on these sub-samples. In view of the problems related 
to the estimates of iR ’s with 1 d.f., the iR  for each small 
area were analysed and compared over time. In case of any 
abnormal ,iR  it was smoothed out by taking the average of 

iR ’s over neighboring time points and in some cases, over 
neighboring small areas also. The survey estimates iy ’s are 
the direct estimates, and the smoothed iR ’s are the diagonal 
elements of the sampling variance covariance matrix R, in 
our model equations (2.1), (2.4) and (3.1), referred in this 
paper.  

In this paper, we have used data from central sample 
only. The estimates of monthly per capita consumption 
expenditure (MPCE) and of the standard errors(SE) of the 
estimators have been obtained under various mixed effects 
models for the rural 63 districts (small areas) of a large state 
in India, namely, Uttar Pradesh. We have used data from the 
six rounds of the NSSO viz round 50 (July 1993 – June 
1994), round 51 (July 1994 – June 1995), round 52 (July 
1995 – June 1996), round 53 (January – December 1997), 
round 54 (January – June 1998) and round 55 (July 1999 –

 June 2000). Out of these rounds 50 and 55 are based on 
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quinquennial surveys. The selected exogenous variables 
used in the models are i) number of households, ii) gross 
area sown and iii) per capita net area sown in the districts. 
The agricultural data are available on annual basis while the 
estimates of the households and the population were 
obtained  through the interpolation techniques based on the 
1971, 1981 and 1991 decennial census data. These 
exogenous variables have been selected from a host of 
variables ranging from 1991 census to annual agricultural 
data through the covariate analysis. Different weight 
matrices such as length of common boundary between a pair 
of districts, distance between centres of two districts and the 
binary weights were considered. Binary weights give larger 
estimate of spatial autocorrelation coefficient, therefore they 
(standardised by making row sum of the weight matrix as 
one) have been used for further analysis in this paper. In the 
whole exercise, maximization of log likelihood function and 
the estimation of the parameters have been carried out by 
using the Nelder and Mead simplex method on the software 
MATLAB. 

Various mixed effects models, used for finding out 
improved estimates of MPCE are given in Table 1. The 
parameters in the models have usual meaning as shown in 
sections 2 and 3. Further, in case of each model, sampling 
variance R or tR  (in case of temporal model) are assumed 
to be known.  

Table 1 
Mixed Effects Models 

 

Model – 1 Direct Estimates  
Model – 2 Regression Model ε++β= vXy  
Model – 3 Spatial Model ε++β= vZXy  
Model – 3A Spatial Model (intercept) ε++μ= vZy  
Model – 4 Regression Temporal ttttttt kvvvXy η+=ε++β= −1,  
Model – 5 Spatial Temporal ttttttt kvvZvXy η+=ε++β= −1, 

Table 2 presents the round wise estimates of the para-
meters for the simple mixed effects regression and spatial 
models. The value of the multiple correlation coefficients 

2R  between MPCE estimates and the auxiliary variables, in 
case of each round has also been shown here. The figures in 
bracket show the Standard Errors (SE) of the parameter 
estimates. Note that ),( 21 λλ=λ  is the likelihood ratio test 
(LRT) statistics defined as ,~log2 2

kL χ−  where L is the 
ratio of nested likelihoods at the hypothesised parameter 
values for two competing models under different hypotheses 
and k is the difference between the number of parameters 
under two models. Here 1λ  compares regression model and 
spatial model, under 0:0 =ρH  against 0:1 ≠ρH  and is 
distributed as 2

1χ  under ,0H  and 2λ  compares spatial 
model and spatial (intercept) model, under 0:0 =βH  
against β≠β [0:1H  does not include intercept term ]0β  
and is distributed as 2

3χ  under .0H  
On comparison of the simple regression model (Model 2) 

and spatial model (Model 3) through LRT, we find that 
under ),0(0 =ρH  the spatial autocorrelation ρ  for Model 3 
has been found highly significant for the two rounds 52 and 
55, obviously for these rounds, use of spatial model results 
in much improvement in the estimates of MPCE. On the 
other hand, in case of rounds 50 and 53, and for these only, 
the regression coefficients β  have been found nearly 
significant for the Model 3 in comparison to Model 3A 
which shows that the spatial model with intercept term may 
improve the estimates for these rounds without any help of 
the exogenous variables. 

Table 3 presents the parameter estimates and their SE in 
case of regression temporal model and spatial temporal 
model. 

For Model 4, unconstrained iterative maximisation 
process converged the value of k greater than 1, which is 
inadmissible  under the assumption  of stationarity.  For this   

Table 2 
Estimates of Parameters for Small Area Estimates of MPCE Under Regression and Spatial Models 

 

 Round 2R  Model 2 Model 3 LRT Model 3A LRT 

  2
vσ  ρ  2

vσ  1λ  ρ  2
vσ  2λ  

 Rd. 50 0.27 1,724.48 0.30 1,635.70 1.80 0.59 1,724.68 6.64 
  (356.19) (0.18) (346.45)  (0.13) (378.66)  
 Rd. 51 0.27 3,424.21 0.48 3,156.90 0.66 0.67 3,022.32 4.54 
  (820.89) (0.19) (815.24)  (0.13) (824.54)  
 Rd. 52 0.17 2,150.54 0.87 714.96 13.46 0.86 768.11 0.90 
  (540.23) (0.07) (257.15)  (0.07) (272.27)  
 Rd. 53 0.13 6,312.99  – 0.39 5,822.99 1.56 0.09 7,141.60 7.66 
  (1,397.92) (0.27) (1,374.70)  (0.23) (1,561.72)  
 Rd. 54 0.22 3,437.67 0.61 2,793.24 1.30 0.66 2,888.66 3.00 
  (806.87) (0.14) (742.35)  (0.13) (768.84)  
 Rd. 55 0.31 2,989.73 0.87 1,060.21 20.30 0.86 1,186.58 1.56 
  (712.28) (0.06) (362.40)  (0.07) (394.27)  

1λ  and 2λ  compare models 2,3 and models 3,3A respectively. 841.32
05,.1 =χ  for 1λ  and 815.72

05,.3 =χ  for .2λ  
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case, estimates were obtained by taking 1=k  and Model 4 
was accordingly modified. Table 3 reports the results for 

1=k  in case of regression temporal model. The spatial 
temporal model shows higher value of common auto-
correlation coefficient and far lower value of the estimate of  

.2
vσ  A summary of the round  wise average estimates of 

MPCE (based on all the 63 districts), their estimated 
standard errors (SE) and the coefficient of variation (CV) 
under each model has been presented in Table 4. 

The results of Table 4 have been summarized below. 
The Direct survey estimates are less precise and all the 

models involving mixed effects improve it. The estimates 
for the rounds 50 and 55 (based on large samples) are more 
precise than the estimates based on other rounds. Spatial 
model, depending on the value of ρ  improves the estimates 
considerably. In case of rounds 52 and 55, where the 
autocorrelation have been found significant, the reduction in 
the average SE of the estimates in comparison to the model 
without spatial autocorrelation, is considerable. Model 3A 
with  spatial effect and without auxiliary variables is equally 

good. The spatial temporal model further improves the 
estimates taking into advantage of the state space consider-
ations. It may be noted that for the round 52 (very high 
spatial autocorrelation), the estimates based on temporal 
models are worse than the estimates based on models 
without temporal considerations. Perhaps due to fixed 
regression and autocorrelation parameters, the estimates 
tend towards the average of the five rounds. 

In order to judge the performances of the estimators 
under various models vis-a-vis under the most general 
model (spatial temporal model), data have been simulated 
under the spatial temporal model and true MSEs of the 
replicated estimates under each of the assumed models have 
been obtained. For this, we have conducted the simulation 
by taking the estimated parameters from the spatial temporal 
model, given in Table 2 and obtained the true replicated 
small area mean )(bθ  for thb  replication ),,2,1( Bb K=  
along with simulated observations )(by  for a large number 
of replications. On this simulated dataset, for each repli-
cation, different models including spatial temporal model  

 
Table 3 

Estimates of Parameters for Small Area Estimation of MPCE Under Regression Temporal and  
Spatial Temporal Models 

 

 ρ  2
vσ  k 

Models Estimate S.E. Estimate S.E. Estimate S.E. 
Model 4 – – 4,715.64 431.00 – – 
Model 5 0.79 0.04 2,163.50 245.50 0.53 0.07 

  
Table 4 

Average EBLUP for MPCE (Rs.), their Estimated SE and CV Under Regression, 
Spatial, Regression Temporal and Spatial Temporal Models 

 

NSSO Rounds 
Models 50 51 52 53 54 55 

 Average Small Area Estimates 
Model 1 276.10 321.26 373.07 408.52 411.25 482.00 
Model 2 272.87 312.53 354.45 397.52 400.87 471.99 
Model 3 272.98 313.14 351.51 398.21 400.78 471.09 
Model 3A 273.56 314.19 352.01 396.40 399.91 471.91 
Model 4 274.13 305.62 345.54 383.53 399.56 463.32 
Model 5 273.75 312.21 351.79 391.61 399.50 473.57 
 Average Standard Errors (SE) 
Model 1 25.09 66.06 64.18 74.19 53.87 45.45 
Model 2 17.10 33.65 29.09 39.85 32.68 30.59 
Model 3 16.88 32.84 21.51 39.98 30.87 24.84 
Model 3A 16.56 31.29 20.79 40.03 30.23 24.37 
Model 4 19.51 34.91 35.19 37.79 35.14 33.15 
Model 5 17.18 28.99 28.33 30.02 28.76 28.10 
 Average Coefficient of Variation (CV) (%) 
Model 1 9.09 20.56 17.20 18.16 13.10 9.43 
Model 2 6.27 10.79 8.21 10.01 8.15 6.48 
Model 3 6.18 10.49 6.12 10.04 7.70 5.27 
Model 3A 6.05 9.96 5.91 10.10 7.56 5.17 
Model 4 7.12 11.42 10.18 9.85 8.79 7.15 
Model 5 6.28 9.29 8.05 7.67 7.20 5.93 

 

Survey Methodology, December 2005                                                                                                                                11



 

 
Statistics Canada, Catalogue No. 12-001

Table 5 
Percentage Relative Efficiency [RMSE] of the Temporal Models in Comparison  

to other Models for MPCE 
 

NSSO Rounds 
  50 51 52 53 54 55 

 Spatial Temporal Model [Model 5] 
Model 2 123.63 170.54 193.68 203.55 204.72 169.76 
Model 3 100.24 133.82 149.70 165.46 165.85 154.23 
Model 4 125.81 141.50 141.93 137.55 139.11 129.88 
 Regression Temporal Model [Model 4] 
Model 2 100.71 134.50 156.35 165.30 163.13 152.56 

 
 

 

have been applied and the small area mean estimators under 
each of them are obtained. While fitting the regression and 
spatial temporal models on the simulated datasets, the 
iterative maximisation process have the constrained value of 

.1<=k  Here we have taken 000,5=B  replications. The 
true MSEs of the estimators for thi  small area under a 
particular model )42( −=k  may be defined as 
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The relative efficiency of the estimators under spatial 
temporal model (Model 5) against the estimators under 
models 2 – 4 have been judged by the ratio of their mean 
squared errors (RMSE) as 

)ˆ(MSE

)ˆ(MSE
100)Temp,(RMSE

Temp
1

1

i
m

i

k
i

m

ik
θ

θ
=

∑
∑

=

=  

where ‘Temp’ denotes the spatial temporal model and k 
denotes models 2, 3 and 4. Likewise the relative efficiency 
of the regression temporal model (Model 4) against the 
simple regression model (Model 2) has been found by 
simulating data with the estimated parameters given in 
Table 3, under the regression temporal model. The results 
have been shown in Table 5. 

The results confirm the superiority of the spatial temporal 
model in comparison to other models for these parameters. 
The regression temporal model has also been found better 
than the simple regression model. 

 
5. Conclusions  

The Direct survey estimates based on the small sample 
can be considerably improved by using the area specific 
small area models. The spatial autocorrelation amongst the 
neighboring areas may be exploited for improving the direct 
survey estimates. However, the model must be applied after  
studying the significant correlation amongst the small areas 
by virtue of their neighborhood effects. In case of poor 
relation between the dependent and exogenous variables, the 
simple spatial model with intercept only, may equally 

improve the estimates. This model uses only the spatial 
autocorrelation to strengthen the small area estimates and do 
not require the use of exogenous variables. The spatial 
models, by using the appropriate weight matrix W, or a 
combination of W matrices, can considerably improve the 
estimates. Weight matrix should be based on logical 
considerations and it may be used effectively for the cases, 
where due to some reasons, reliable exogenous variables are 
not available. This aspect can be further exploited to find out 
the small area estimates for the areas which have been 
recently created/demarcated. 

One has to be careful about the increase in the MSE due 
to the variability caused by replacing the parameters by their 
estimates. This gets reflected through the second order 
approximation to the MSE dealt in the paper. That is why 
many times the simple spatial model (with intercept) 
performs better than the spatial model involving more 
parameters. Use of time series data with fixed regression 
parameters across the time, further improves the small area 
estimates especially for the time points where the direct 
survey estimates have larger MSE. Spatial temporal models 
have advantage over temporal models without spatial 
consideration due to the inclusion of fixed spatial auto-
correlation across the small areas. However, for some time 
points for which ρ  may be very different than the rest, this 
may not hold due to estimates tending towards the average 
of five rounds. Here the temporal consideration can be 
started from a suitable initial time point. Finally the 
exogenous variables X and the weight matrix W supplement 
each other through the regression parameter β  and the 
autocorrelation parameter ρ  and a judicious use of them 
may result in considerable improvement in the small area 
estimates. 

 
Acknowledgements  

The unit level data for the research have been made 
available by the National Sample Survey Organisation 
(NSSO), Ministry of Statistics and Programme Implemen-
tation under a research collaboration between IIT Kanpur 
and the NSSO. The weight matrix containing the length of 

12                                                                 Singh, Shukla and Kundu: Spatio-temporal Models in Small Area Estimation



 

 
Statistics Canada, Catalogue No. 12-001

the boundary between different small areas (districts) have 
been provided by the National Informatics Centre (NIC) of 
the Ministry of Information Technology, Government of 
India. We would like to thank the referees for their helpful 
comments which has considerably improved the paper. 

 
Appendix  

Theorem A.1: Under Regularity Conditions 1 
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The expectation of a typical element of the inner most terms 
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Substituting these in the expression (5.4) and also the 
second expression being of order ),( 1−mO  we can get the 
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Using the fact that )(ψΣ  and its derivatives are symmetric, 
we have the second term of the expression as 
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