
Catalogue no. 12-001-XIE

Survey
Methodology

December 2005



How to obtain more information

Specific inquiries about this product and related statistics or services should be directed to:  Business Survey Methods Division,
Statistics Canada, Ottawa, Ontario, K1A 0T6 (telephone: 1 800 263-1136).

For information on the wide range of data available from Statistics Canada, you can contact us by calling one of our toll-free
numbers. You can also contact us by e-mail or by visiting our website.

National inquiries line 1 800 263-1136
National telecommunications device for the hearing impaired 1 800 363-7629
Depository Services Program inquiries 1 800 700-1033
Fax line for Depository Services Program 1 800 889-9734
E-mail inquiries infostats@statcan.ca
Website www.statcan.ca

Information to access the product

This product, catalogue no. 12-001-XIE, is available for free. To obtain a single issue, visit our website at www.statcan.ca and
select Our Products and Services.

Standards of service to the public

Statistics Canada is committed to serving its clients in a prompt, reliable and courteous manner and in the official language of
their choice. To this end, the Agency has developed standards of service that its employees observe in serving its clients. To
obtain a copy of these service standards, please contact Statistics Canada toll free at 1 800 263-1136. The service standards
are also published on www.statcan.ca under About Statistics Canada > Providing services to Canadians.



Statistics Canada
Business Survey Methods Division

Survey
Methodology

December 2005

Note of appreciation

Canada owes the success of its statistical system to a long-standing partnership between 
Statistics Canada, the citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information could not be produced without their 
continued cooperation and goodwill.

May 2006

Catalogue no. 12-001-XIE
ISSN 1492-0921

Frequency: semi-annual

Ottawa

Cette publication est disponible en français sur demande (no 12-001-XIF au catalogue).

 
 
Published by authority of the Minister responsible for Statistics Canada 
 
© Minister of Industry, 2006 
 
All rights reserved. The content of this electronic publication may be reproduced, in whole or 
in part, and by any means, without further permission from Statistics Canada, subject to the 
following conditions: that it be done solely for the purposes of private study, research, 
criticism, review or newspaper summary, and/or for non-commercial purposes; and that 
Statistics Canada be fully acknowledged as follows: Source (or “Adapted from”, if 
appropriate): Statistics Canada, year of publication, name of product, catalogue number, 
volume and issue numbers, reference period and page(s). Otherwise, no part of this 
publication may be reproduced, stored in a retrieval system or transmitted in any form, by any 
means—electronic, mechanical or photocopy—or for any purposes without prior written 
permission of Licensing Services, Client Services Division, Statistics Canada, Ottawa, 
Ontario, Canada K1A 0T6. 
 
 



Vol. 31, No. 2, pp. 161-168 
Statistics Canada, Catalogue No. 12-001

 

Does Weighting for Nonresponse Increase the  
Variance of Survey Means? 

Roderick J. Little and Sonya Vartivarian 1 

Abstract 

Nonresponse weighting is a common method for handling unit nonresponse in surveys. The method is aimed at reducing 
nonresponse bias, and it is often accompanied by an increase in variance. Hence, the efficacy of weighting adjustments is 
often seen as a bias-variance trade-off. This view is an oversimplification  –  nonresponse weighting can in fact lead to a 
reduction in variance as well as bias. A covariate for a weighting adjustment must have two characteristics to reduce 
nonresponse bias – it needs to be related to the probability of response, and it needs to be related to the survey outcome. If 
the latter is true, then weighting can reduce, not increase, sampling variance. A detailed analysis of bias and variance is 
provided in the setting of weighting for an estimate of a survey mean based on adjustment cells. The analysis suggests that 
the most important feature of variables for inclusion in weighting adjustments is that they are predictive of survey outcomes; 
prediction of the propensity to respond is a secondary, though useful, goal. Empirical estimates of root mean squared error 
for assessing when weighting is effective are proposed and evaluated in a simulation study. A simple composite estimator 
based on the empirical root mean squared error yields some gains over the weighted estimator in the simulations. 

                                                           
1. Roderick J. Little, University of Michigan, U.S.A. E-mail: rlittle@umich.edu; Sonya Vartivarian, Mathematica Policy Research, Inc. 600 Maryland Ave 

SW, Suite 550, Washington, D.C. 20024-2512. E-mail: SVartivarian@Mathematica-MPR.com. 
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1. Introduction  
In most surveys, some individuals provide no infor-

mation because of noncontact or refusal to respond (unit 
nonresponse). The most common method of adjustment for 
unit nonresponse is weighting, where respondents and 
nonrespondents are classified into adjustment cells based on 
covariate information known for all units in the sample, and 
a nonresponse weight is computed for cases in a cell 
proportional to the inverse of the response rate in the cell. 
These weights often multiply the sample weight, and the 
overall weight is normalized to sum to the number of 
respondents in the sample. A good overview of nonresponse 
weighting is Oh and Scheuren (1983). A related approach to 
nonresponse weighting is post-stratification (Holt and Smith 
1979), which applies when the distribution of the population 
over adjustment cells is available from external sources, 
such as a Census. The weight is then proportional to the 
ratio of the population count in a cell to the number of 
respondents in that cell.  

Nonresponse weighting is primarily viewed as a device 
for reducing bias from unit nonresponse. This role of 
weighting is analogous to the role of sampling weights, and 
is related to the design unbiasedness property of the 
Horvitz-Thompson estimator of the total (Horvitz and 
Thompson 1952), which weights units by the inverse of 
their selection probabilities. Nonresponse weighting can be 
viewed as a natural extension of this idea, where included 
units are weighted by the inverse of their inclusion 

probabilities, estimated as the product of the probability of 
selection and the probability of response given selection; the 
inverse of the latter probability is the nonresponse weight. 
Modelers have argued that weighting for bias adjustment is 
not necessary for models where the weights are not 
associated with the survey outcomes, but in practice few are 
willing to make such a strong assumption. 

Sampling weights reduce bias at the expense of increased 
variance, if the outcome has a constant variance. Given the 
analogy of nonresponse weights with sampling weights, it 
seems plausible that nonresponse weighting also reduces 
bias at the expense of an increase in the variance of survey 
estimates. The idea of a bias-variance trade-off arises in 
discussions of nonresponse weighting adjustments (Kalton 
and Kasprzyk 1986, Kish 1992, Little, Lewitzky, Heeringa, 
Lepkowski and Kessler 1997). Kish (1992) presents a 
simple formula for the proportional increase in variance 
from weighting, say L, under the assumption that the 
variance of the observations is approximately constant: 

,2cvL =  (1) 

where cv is the coefficient of variation of the respondent 
weights. 

Equation (1) is a good approximation when the 
adjustment cell variable is weakly associated with the 
survey outcome. However, since it approximates variance 
rather than mean squared error, it does not measure the 
potential nonresponse bias reduction that is the main 
objective of weighting, and it does not apply to outcomes 
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that are associated with the adjustment cell variable, where 
nonresponse weighting can in fact reduce the variance. The 
fact that nonresponse weighting can reduce variance is 
implicit in the formulae in Oh and Scheuren (1983), and is 
noted in Little (1986) when adjustment cells are created 
using predictive mean stratification. It is also seen in the 
related method of post-stratification for nonresponse 
adjustment (Holt and Smith 1979).  

Variability of the weights per se does not necessarily 
translate into estimates with high variance: an estimate with 
a high value of L can have a smaller variance than an 
estimate with a small value of L, as is shown in the 
simulations in section 3. Also, the situations where 
nonresponse weighting is most effective in reducing bias are 
precisely the situations where the weighting tends to reduce, 
not increase, variance, and Equation (1) does not apply. This 
differs from the case of sampling weights, and is related to 
“super-efficiency” that can result when weights are 
estimated from the sample rather than fixed constants; see, 
for example, Robins, Rotnitsky and Zhao (1994).  

We propose a simple refinement of Equation (1), namely 
Equation (14) below, that captures both bias and variance 
components whether or not the adjustment cell variable is 
associated with the outcome, and hence is a more accurate 
gauge of the value of weighting the estimates, and of 
alternative adjustment cell variables. In multipurpose 
surveys with many outcomes, the standard approach is to 
apply the same nonresponse weighting adjustment to all the 
variables, with the implicit assumption that the value of 
nonresponse bias reduction for some variables outweighs 
the potential variance increase for others. Our empirical 
estimate of mean squared error allows a simple refinement 
of this strategy, namely to restrict nonresponse weighting to 
the subset of variables for which nonresponse weighting 
reduces the estimated mean squared error. This composite 
strategy is assessed in the simulation study in section 3, and 
shows some gains over weighting all the outcomes. As 
noted in section 4, there are alternative approaches that have 
even better statistical properties, but these lead to different 
weights for each variable and hence are more cumbersome 
to implement and explain to survey users. 

 
2. Nonresponse Weighting Adjustments  

for a Mean  
Suppose a sample of n units is selected. We consider 

inference for the population mean of a survey variable Y 
subject to nonresponse. To keep things simple and focused 
on the nonresponse adjustment question, we assume that 
units are selected by simple random sampling. The points 
made here about nonresponse adjustments also apply in 

general to complex designs, although the technical details 
become more complicated. 

We assume that respondents and nonrespondents can be 
classified into C adjustment cells based on a covariate X. Let 
M be a missing-data indicator taking the value 0 for 
respondents and 1 for nonrespondents. Let mcn  be the 
number of sampled individuals with ,, cXmM ==  

ccc nnnCcm 10,,,1;1,0 +=== +K  denote the number of 
sampled individuals in cell ∑ == C

c cnnc 1 00,  and =1n  
∑ =

C
c cn1 1  the total number of respondents and non-

respondents, and 000 /,/ nnpnnp cccc == +  the proportions 
of sampled and responding cases in cell c. We compare two 
estimates of the population mean μ  of Y, the unweighted 
mean  

∑
=

=
C

c
cc ypy

1
000 ,  (2) 

where cy0  is the respondent mean in cell c, and the 
weighted mean  

∑∑
==

==
C

c
ccc

C

c
ccw ypwypy

1
00

1
0 ,  (3) 

which weights respondents in cell c by the inverse of the 
response rate ./ 0ccc ppw =  The estimator (3) can be 
viewed as a special case of a regression estimator, where 
missing values are imputed by the regression of Y on 
indicators for the adjustment cells. We compare the bias and 
mean squared error of (2) and (3) under the following 
model, which captures the important features of the 
problem. We suppose that conditional on the sample size n, 
the sampled cases have a multinomial distribution over the 

)2( ×C  contingency table based on the classification of M 
and X, with cell probabilities 

,)1(),1Pr(;),0Pr( 10 cc cXMcXM πφ−===φπ===  

where )0Pr( ==φ M  is the marginal probability of 
response. The conditional distribution of X given 0=M  
and 0n  is multinomial with cell probabilities =XPr(  

,)0| 0 cMc π==  and the marginal distribution of X given 
n is multinomial with index n and cell probabilities 

,)1()Pr( 10 ccccX π=πφ−+φπ==  

say. We assume that the conditional distribution of Y given 
cXmM == ,  has mean mcμ  and constant variance .2σ  

The mean of Y for respondents and nonrespondents are  

∑∑
==

μπ=μμπ=μ
C

c
cc

C

c
cc

1
11

1
1000 ,,  

respectively, and the overall mean of Y is +φμ=μ 0  
.)1( 1μφ−  

Under this model, the conditional mean and variance of 

wy  given }{ cp  are respectively ∑ = μC
c ccp1 0  and ∑ =σ C

c 1
2  

./ 0
2

cc np  Hence the bias of wy  is 
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∑
=

μ−μπ=
C

c
cccwyb

1
0 ),()(  

where cπ  and cμ  are the population proportion and mean 
of Y in cell c. This can be written as  

,~)( 0 μ−μ=wyb  (4) 

where cc
C
c 010

~ μπ=μ ∑ =  is the respondent mean “adjusted” 
for the covariates, and cc

C
c μπ=μ ∑ =1  is the true population 

mean of Y. The variance of wy  is the sum of the expected 
value of the conditional variance and the variance of its 
conditional expectation, and is approximately 

∑
=

μ−μπ+σλ+=
C

c
ccw nnyV

1

2
000

2 ,/)~(/)1()(  (5) 

where ∑ = −πππ=λ C
c ccc1

2
00 ))1/((  is the population analog 

of the variance of the nonresponse weights },{ cw  which is 
the same as L in Equation (1) since the weights are scaled to 
average to one. The formula for the variance of the weighted 
mean in Oh and Scheuren (1983), derived under the quasi-
randomization perspective, reduces to (5) when the within-
cell variance is assumed constant, and finite population 
corrections and terms of order 2/1 n  are ignored. The mean 
squared error of wy  is thus 

).()()(mse 2
www yVyby +=  (6) 

The mean squared error of the unweighted mean (2) is  

),()()(mse 00
2

0 yVyby +=  (7) 

where: 

,~)()( 000 μ−μ+= wybyb  (8) 

is the bias and  

∑
=

μ−μπ+σ=
C

c
cc nnyV

1
0

2
0000

2
0 ,/)(/)(  (9) 

is the variance. Hence the difference (say Δ ) in mean 
squared errors is  

0
2

2

2
00

11
0

2
0001

000
2

00

210

/

,/)~(/)(

),~()~(2)~(

where,)(mse)(mse

nV

nnV

B

VVByy

c

C

c
c

C

c
cc

w

λσ=

μ−μπ−μ−μπ=

μ−μμ−μ+μ−μ=

−+=−=Δ

∑∑
==

 

(10)

 

Equation (10) and its detailed interpretation provide the 
main results of the paper; note that positive terms in (10) 
favor the weighted estimator .wy   
(a) The first term B represents the impact on MSE of bias 

reduction from adjustment on the covariates. It is order 
one and increasingly dominates the MSE as the sample 
size increases. If 00

~ μ<μ≤μ  or ,~
00 μ≤μ<μ  then 

weighting has reduced the bias of the respondent 

mean, and both of the components of B are positive. In 
particular, if the missing data are missing at random 
(Rubin 1976, Little and Rubin 2002), in the sense that 
respondents are a random sample of the sampled cases 
in each cell c, then μ=μ0

~  and weighting eliminates 
the bias of the unweighted mean. The bias adjustment 
is  

,))(1(~~
1

00000 ∑
=

μ−μ−π−μ−μ
C

c
ccc w  

ignoring differences between the weights and their 
expectations. This is zero to )1(O  if either non-
response is unrelated to the adjustment cells (in which 
case 1≈cw  for all ,c  or the outcome is unrelated to 
the adjustment cells (in which case  00 μ≈μ c  for all c). 
Thus a substantial bias reduction requires adjustment 
cell variables that are related both to nonresponse and 
to the outcome of interest, a fact that has been noted by 
several authors. It is often believed that conditioning 
on observed characteristics of nonrespondents will 
reduce bias, but note that this is not guaranteed; it is 
possible for the adjusted mean to be further on average 
from the true mean than the unadjusted mean, in which 
case weighting makes the bias worse.   

(b) The effect of weighting on the variance is represented 
by .21 VV −    

(c) For outcomes Y that are unrelated to the adjustment 
cells, 00 μ=μ c  for all c, ,01 =V  and weighting 
increases the variance, since 2V  is positive. The 
variance part of equation (10) then reduces to the 
population version of Kish’s formula (1). Adjustment 
cell variables that are good predictors of nonresponse 
hurt rather than help in this situation, since they 
increase the variance of the weights without any 
reduction in bias; but there is no bias-variance trade-off 
for these outcomes, since there is no bias reduction.   

(d) If the adjustment cell variable X is unrelated to non-
response, then λ  is )/1( nO  and hence 2V  has a lower 
order of variability than .1V  The term 1V  tends to be 
positive, since ∑ ∑= = −μπ−μ−μπC

c
C
c cccc1 1 00

2
000 (~)(  

,)~ 2
0μ  and the divisor n in the second term is larger 

than the divisor 0n  in the first term. Thus weighting in 
this case tends to have no impact on the bias, but 
reduces variance to the extent that X is a good predictor 
of the outcome. This contradicts the notion that 
weighting increases variance. The above-mentioned 
“super-efficiency” that results from estimating non-
response weights from the sample is seen by the fact 
that if the data are missing completely at random, then 
the “true” nonresponse weight is a constant for all 
responding units. Hence weighting by “true” weights 
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leads to (2), which is less efficient than weighting by 
the “estimated” weights, which leads to (3).  

(e) If the adjustment cell variable is a good predictor of the 
outcome and also predictive of nonresponse, then 2V  
is again small because of the reduced residual variance 

,2σ  and 1V  is generally positive by a similar argument 
to (d). The term ∑ = μ−μπC

c cc1
2

000 )(  may deviate 
more from ∑ = μ−μπC

c cc1
2

00 )~(  because the weights 
are less alike, but this difference could be positive or 
negative, and the different divisors seem more likely to 
determine the sign and size of 1V . Thus, weighting 
tends to reduce both bias and variance in this case.  

(f) Equation (9) can be applied to the case of post-
stratification on population counts, by letting n 
represent the population size rather than the sample 
size. Assuming a large population, the second term in 

1V  essentially vanishes, increasing the potential for 
variance reduction when the variables forming the 
post-strata are predictive of the outcome. This finding 
replicates previous results on post-stratification (Holt 
and Smith 1979; Little 1993).  

A simple qualitative summary of the results (a) – (f) of 
section 2 is shown in Table 1, which indicates the direction 
of bias and variance when the associations between the 
adjustment cells and the outcome and missing indicator are 
high or low. Clearly, weighting is only effective for 
outcomes that are associated with the adjustment cell 
variable, since otherwise it increases the variance with no 
compensating reduction in bias. For outcomes that are 
associated with the adjustment cell variable, weighting 
increases precision, and also reduces bias if the adjustment 
cell variable is related to nonresponse.  

Table 1 
Effect of Weighting Adjustments on Bias and Variance of 
a Mean, by Strength of Association of the Adjustment Cell  

Variables with Nonresponse and Outcome 
 

 Association with outcome 
Association with nonresponse Low High 

Cell 1 Cell 3 
Bias: --- Bias: --- Low 
Var: --- Var: ↓ 

Cell 2 Cell 4 
Bias: --- Bias: ↓ High 
Var: ↑ Var: ↓  

It is useful to have estimates of the MSE of 0y  and wy  
that can be computed from the observed data. Let =2

0cs  
∑ ∈ −−ci cci nyy )1/()( 0

2
0  denote the sample variance of 

respondents in cell c, )/()1( 0
2
01 0

2 Cnsns cc
C
c c −−= ∑ =  the 

pooled within-cell variance, and /)(0
1

2
0

2
0 ∑ = −= n

i i yys  
),1( 0 −n  the total sample variance of the respondent 

values. We use the following approximately unbiased 
expressions, under the assumption that the data are MAR: 

),(ˆ)(ˆ)(eŝm 00
2

0 yVyBy +=  (11) 

where 0
2
00 /)(ˆ nsyV =  and 

,

/)(

/)(

/)(

)/(

})(,0max{)(ˆ

0
2

01
1

2

0
2

000
1

1
2)1(

001
1

2
1

2
00

2

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

−+

−

=

−−=

∑

∑

∑

=

=

=

ccc

C

c

cc

C

c

cc

C

c

d

dw

npps

nyyp

nyyp

nnV

VyyyB

 
(12)

 

where ∑ == C
c cc ypy 1 01

)1(
0 ,  and dV  estimates the variance of 
)( 0yyw −  and is included in (12) as a bias adjustment for 

2
0 )( yyw −  as an estimate of ),( 0

2 yB  similar to that in 
Little et al. (1997). Also 

./)(/)1()(ˆ)(eŝm
1

2
00

2 nyypnsLyVy
C

c
wccww ∑

=
−++== (13) 

Subtracting (11) from (13), the difference in MSE’s of wy  
and 0y  is then estimated by 

∑
=

−−+

−−=
C

c
wcc yBnyyp

nssnLsD

1
0

22
0

0
22

00
2

).(ˆ/)(

/)(/
 

(14)
 

This is our proposed refinement of (1), which is represented 
by the leading term on the right side of (14). 

 
3. Simulation Study  

We include simulations to illustrate the bias and variance 
of the weighted and unweighted mean for sets of parameters 
representing each cell in Table 1. We also compare the 
analytic MSE approximations in Equations (6) and (7) and 
their sample-based estimates (11) and (13) with the 
empirical MSE over repeated samples.  
3.1 Superpopulation Parameters   

The simulation set-up for the joint distribution of X and 
M is described in Table 2. The sample is approximately 
uniformly distributed across the adjustment cell variable X, 
which has 10=C  cells. Two marginal response rates are 
chosen, 70%, corresponding to a typical survey value, and 
52%, a more extreme value to accentuate differences in 
methods. Three distributions of M given X are simulated to 
model high, medium and low association.  

The simulated distributions of the outcome Y given 
cXmM == ,  are shown in Table 3. These all have the 

form  

).,(~],|[ 2
10 σβ+β== XNcXmMY  
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Table 2 
Percent of Sample Cases in Adjustment Cell X and Missingness Cell M 

 

a. Overall Response Rate = 52% 

 Association 
Between 
M and X 

X 1 2 3 4 5 6 7 8 9 10 

1. High M = 0 0.55 1.00 4.01 4.52 5.04 5.55 6.06 6.58 9.14 9.96 
  M = 1 8.69 9.00 6.01 5.53 5.04 4.54 4.04 3.54 1.02 0.20 
2. Medium M = 0 2.77 3.50 4.01 4.52 5.04 5.55 6.06 6.58 7.11 7.62 
  M = 1 6.47 6.50 6.01 5.53 5.04 4.54 4.04 3.54 3.05 2.54 
3. Low M = 0 4.62 5.15 5.21 5.28 5.34 5.40 5.45 5.52 5.58 5.64 
  M = 1 4.62 4.85 4.81 4.77 4.73 4.69 4.65 4.60 4.57 4.52 

b. Overall Response Rate = 70% 

 Association 
Between 
M and X 

X 1 2 3 4 5 6 7 8 9 10 

1. High M = 0 0.55 3.00 6.51 7.04 7.55 8.07 8.59 9.11 9.64 9.96 
  M = 1 8.69 7.00 3.51 3.02 2.52 2.02 1.52 1.01 0.51 0.20 
2. Medium M = 0 4.44 5.30 5.81 6.33 6.85 7.37 7.88 8.40 8.93 9.45 
  M = 1 4.80 4.70 4.21 3.72 3.22 2.72 2.22 1.72 1.22 0.71 
3. Low M = 0 6.19 6.85 6.91 6.98 7.05 7.11 7.17 7.24 7.31 7.37 
  M = 1 3.05 3.15 3.11 3.07 3.02 2.98 2.93 2.88 2.84 2.79  

 
Table 3 

Parameters for ),(~],|[ 2
10 σβ+β== cNcXmMY  

 

Association Between 
Y and X 

1β  2σ  2ρ  

1. High 4.75 46 ≈ 0.80 
2. Medium 3.70 122 ≈ 0.48 
3. Low 0.00 234 0.00  
Three sets of values of ),( 2

1 σβ  are simulated to model 
high, medium and low associations between Y and X. The 
intercept 0β  is chosen so that the overall mean of Y is 

3625.26=μ  for each scenario. 
A thousand replicate samples of size n = 400 and n = 

2,000 were simulated for each combination of parameters in 
Tables 2 and 3. Samples where 00 =cn  for any c were 
excluded, since the weighted estimate cannot be computed; 
in practice some cells would probably be pooled in such 
cases. The numbers of excluded simulations are shown in 
Table 4.   

Table 4 
Numbers of Replicates Excluded Because of Cell  

with no Respondents 
 

  Response Rate 
Association of 
M and X 

Association of 
Y and X 

52% 70% 

High High 134 113 
 Medium 120 117 
 Low 131 104 

Medium Low 1 0 

 

 
3.2 Comparisons of Bias, Variance and Root Mean 
 Squared Error, and their Estimates  

Summaries of empirical bias and root MSE’s (RMSE’s) 
are reported in Table 5. The empirical RMSE’s of the 
weighted mean can be compared with the following esti-
mates, which are displayed in Table 5, averaged over the 
1,000 replicates: The estimated RMSE based on Kish’s rule 
of thumb Equation (1), namely:  

∑
=

−−=

+=
0

1
0

2
0

2

0
2

Kish

);1(/)(where

,/)1()(eŝm
n

i
iY

Yw

nyys

nsLy

 
(15)

 

The analytical RMSE from Equations (6) and (7); and the 
estimated RMSE from Equations (11) and (13).  

Following the suggestion of Oh and Scheuren (1983), we 
include in the last two columns of Table 5 the average 
empirical bias and RMSE of a composite mean that chooses 
between wy  and ,0y  picking the estimate with a lower 
sample-based estimate of the MSE. The empirical bias 
relative to the population parameter is reported for all 
estimators. We also include the bias and RMSE of the mean 
before deletion of cases due to nonresponse. 

Table 5a shows results for simulations with a response 
rate of 52%. Rows are labeled according to the four cells in 
Table 1, with medium and high associations combined. For 
each row, the lower of the RMSE’s for the unweighted and 
weighted respondent means is bolded, indicating superiority 
for the corresponding method. 

The first four rows of Table 5a correspond to cell 4 in 
Table 1, with medium/high association between Y and X and 
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medium/high association between M and X. In these cases 

wy  has much lower RMSE than ,0y  reflecting substantial 
bias of 0y  that is removed by the weighting.  

The next two rows of Table 5a corresponding to cell 3 of 
Table 1, with medium/high association between Y and X and 
low association between M and X. In these cases 0y  is no 
longer seriously biased, but wy  has improved precision, 
particularly when the association of Y and X is high. These 
are cases where the variance is reduced, not increased, by 
weighting. The analytic estimates of RMSE and sample-
based estimates are close to the empirical RMSE estimates, 
while Kish’s rule of thumb overestimates the RMSE, as 
predicted by the theory in section 2. 

The next two rows of Table 5a correspond to cell 2 of 
Table 1, where the association between Y and X is low and 
the association between M and X is medium or high. In 
these cases, wy  has higher MSE than .0y  These cases 
illustrate situations where the weighting increases variance, 
with no compensating reduction in bias. The last row 
corresponds to cell 1 of Table 1, with low associations 
between M and X and between Y and X. The unweighted 
mean has lower RMSE in these cases, but the increase in 
RMSE from weighting is negligible. For the last three rows 
of Table 5a, RMSE’s from Kish’s rule of thumb are similar 

to those from the analytical formula in section 2 and 
empirical estimates based on this formulae, and all these 
estimates are close to the empirical RMSE. 

The last two columns of Table 5a show empirical bias 
and RMSE of the composite method that chooses wy  or 0y  
based on the estimated RMSE. For the  simulations in the 
first 6 rows, the composite estimator is the same as ,wy  and 
hence detects and removes the bias of the unweighted mean. 
For simulations in cell 1 (the last row) the composite 
estimator performs like wy  or ,0y  as expected since wy  
and 0y  perform similarly in this case.  For simulations in 
cell 2 that are not favorable to weighting, the composite 
estimator has lower RMSE than ,wy  but considerably 
higher than that of ,0y  suggesting that for the conditions of 
this simulation the empirical MSE affords limited ability to 
pick the better estimator in individual samples.  

Nevertheless, the composite estimator is the best overall 
estimator of the three considered in this simulation. 

Table 5b shows results for the 70% response rate. The 
pattern of results is very similar to that of Table 5a. As 
expected, differences between the methods are smaller, 
although they remain substantial in many rows of the table.  

 

 
Table 5a 

Summaries of Estimators Based on 1,000 Replicate Samples for C = 10 Adjustment Cells, Restricted to Sample 
Replicates with 00 >cn  for all c. Response Rate of 52%. Values are Multiplied by 1,000 

 

Association with Adjustment 
Cells Based on X 

 Unweighted 
Mean 

 Weighted 
Mean 

 Before Deletion 
Mean 

 Composite 
Mean 

Cell (M, X) (Y, X) n  emp. 
bias 

emp. 
rmse 

analytical
rmse1 

est. 
rmse2 

 emp. 
bias 

emp. 
rmse 

Kish 
rmse3 

analytical 
rmse4 

est. 
rmse5 

 emp. 
bias 

emp. 
rmse 

 emp. 
bias 

emp. 
rmse 

4 High High 400 6,955 7,024 7,055 6,974 0 1,057 1,410 956 988   – 38 795  0 1,057 
   2,000 7,008 7,020 7,006 7,015  – 2 424 608 427 434  12 342   – 2 424 
4 High Medium 400 5,376 5,471 5,536 5,404  – 33 1,264 1,510 1,216 1,297   – 21 776   – 33 1,264 
   2,000 5,424 5,441 5,466 5,466  – 41 561 650 545 559   – 30 338   – 41 561 
4 Medium High 400 3,664 3,794 3,809 3,754  – 4 816 1,071 835 842  6 741   – 4 816 
   2,000 3,703 3,731 3,700 3,712 7 369 473 373 374  4 337  7 369 
4 Medium Medium 400 2,838 3,006 3,042 2,991  – 18 938 1,095 954 970   – 9 747   – 18 938 
   2,000 2,864 2,900 2,898 2,893  – 2 426 483 426 428  6 335   – 2 426 
3 Low High 400 476 1,148 1,113 1,178 40 823 1,050 823 828  30 764  40 823 
   2,000 376 587 614 595  – 11 361 465 368 368   – 3 333   – 11 361 
3 Low Medium 400 350 1,106 1,095 1,134 13 927 1,063 925 939   – 16 762  13 927 
   2,000 287 565 563 559  – 20 429 470 413 414   – 22 353   – 20 429 
2 High Low(0) 400 56 1,070 1,056 1,275 96 1,658 1,613 1,518 1,631  28 793  83 1,410 
   2,000  – 11 464 473 567  – 26 698 698 679 699   – 19 337   – 25 620 
2 Medium Low(0) 400 9 1,042 1,053 1,077  – 27 1,122 1,112 1,097 1,125  21 772   – 12 1,074 
   2,000  – 4 474 471 480  – 11 491 491 491 493  11 340   – 9 481 
1 Low Low(0) 400  – 30 1,038 1,050 1,055  – 30 1,053 1,064 1,050 1,076   – 30 752   – 30 1,040 
   2,000  – 2 472 469 469  – 1 474 470 469 471   – 8 343   – 1 472 

 

1 Computed using Equation (7) 
2 Computed using Equation (11) 
3 Computed using Equation (15) 
4 Computed using Equation (6) 
5 Computed using Equation (13) 
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Table 5b 
Summaries of Estimators based on 1,000 Replicate Samples for C = 10 Adjustment Cells, Restricted to Sample 

Replicates with 00 >cn  for all c. Response Rate of 70%. Values are Multiplied by 1,000 
 

Association with Adjustment 
Cells based on X 

 Unweighted 
Mean 

 Weighted 
Mean 

 Before Deletion 
Mean 

 Composite 
Mean 

Cell (M, X) (Y, X) n  emp. 
bias 

emp. 
rmse 

analytical
rmse6 

est. 
rmse7 

 emp. 
bias 

emp. 
rmse 

Kish 
rmse8 

analytical 
rmse9 

est. 
rmse10 

 emp. 
bias 

emp. 
rmse 

 emp. 
bias 

emp. 
rmse 

4 High High 400 4,692 4,810 4,893 4,860  – 133 1,129 1,192 889 894   – 129 998   – 133 1,129 
   2,000 4,827 4,841 4,839 4,854  – 20 400 529 398 405   – 5 334   – 20 400 
4 High Medium 400 3,581 3,716 3,855 3,733  – 133 1,266 1,250 1,075 1,097   – 128 917   – 127 1,284 
   2,000 3,763 3,784 3,778 3,777  – 9 501 554 481 490  11 343   – 9 501 
4 Medium High 400 2,666 2,812 2,878 2,837  – 58 803 910 794 796   – 49 772   – 58 803 
   2,000 2,732 2,760 2,767 2,761  – 6 353 406 355 355   – 9 333   – 6 353 
4 Medium Medium 400 2,104 2,282 2,315 2,291  – 28 833 924 854 861   – 43 751   – 28 833 
   2,000 2,146 2,180 2,170 2,165 13 370 411 382 382  10 334  13 370 
3 Low High 400 217 906 954 980  – 81 797 911 790 793   – 77 771   – 81 797 
   2,000 312 513 506 502 2 365 405 353 353  4 349  2 365 
3 Low Medium 400 251 922 942 960 15 804 916 845 852  26 727  15 804 
   2,000 224 454 472 471  – 14 370 408 378 379   – 15 327   – 14 370 
2 High Low(0) 400 0 952 915 1,131 35 1,445 1,349 1,298 1,358  1 807  26 1,292 
   2,000  – 11 416 409 485  – 41 608 598 580 599   – 4 347   – 31 535 
2 Medium Low(0) 400 22 911 910 920 24 942 936 930 946  2 757  21 925 
   2,000 23 418 407 411 20 425 416 416 417  15 344  19 420 
1 Low Low(0) 400 1 914 914 912 2 917 916 914 926   – 5 751  1 914 
   2,000 4 402 408 408 4 403 409 408 410  6 331  4 402 

 
6 Computed using Equation (7) 
7 Computed using Equation (11) 
8 Computed using Equation (15) 
9 Computed using Equation (6) 
10 Computed using Equation (13)  

 
4. Discussion 

  
The results in sections 2 and 3 have important 

implications for the use of weighting as an adjustment tool 
for unit nonresponse. Surveys often have many outcome 
variables, and the same weights are usually applied to all 
these outcomes. The analysis of section 2 and simulations in 
section 3 suggests that improved results might be obtained 
by estimating the MSE of the weighted and unweighted 
mean and confining weighting to cases where this 
relationship is substantial. A more sophisticated approach is 
to apply random-effects models to shrink the weights, with 
more shrinkage for outcomes that are not strongly related to 
the covariates (e.g., Elliott and Little 2000). A flexible 
alternative to this approach is imputation based on 
prediction models, since these models allow for interval-
scaled as well as categorical predictors, and allow 
interactions to be dropped to incorporate more main effects. 
Multiple imputation (Rubin 1987) can be used to propagate 
uncertainty.  

When there is substantial covariate information, one 
attractive approach to generalizing weighting class adjust-
ments is to create a propensity score for each respondent 
based on a logistic regression of the nonresponse indicator 
on the covariates, and then create adjustment cells based on 
this score. Propensity score methods were originally 

developed in the context of matching cases and controls in 
observational studies (Rosenbaum and Rubin 1983), but are 
now quite commonly applied in the setting of unit 
nonresponse (Little 1986; Czajka, Hirabayashi, Little and 
Rubin 1987; Ezzati and Khare 1992). The analysis here 
suggests that for this approach to be productive, the 
propensity score has to be predictive of the outcomes. 
Vartivarian and Little (2002) consider adjustment cells 
based on joint classification by the response propensity and 
summary predictors of the outcomes, to exploit residual 
associations between the covariates and the outcome after 
adjusting for the propensity score. The requirement that 
adjustment cell variables predict the outcomes lends support 
to this approach. 

The analysis presented here might be extended in a 
number of ways. Second order terms in the variance are 
ignored here, which if included would penalize weighting 
adjustments based on a large number of small adjustment 
cells. Finite population corrections could be included, 
although it seems unlikely that they would affect the main 
conclusions. It would be of interest to see to what extent the 
results can be generalized to complex sample designs 
involving clustering and stratification. Also, careful analysis 
of the bias and variance implications of nonresponse 
weighting on statistics other than means, such as subclass 
means or regression coefficients, would be worthwhile. We 
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expect it to be important that adjustment cell variables 
predict the outcome in many of these analyses too, but other 
points of interest may emerge. 
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