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An Optimal Calibration Distance Leading to the Optimal  
Regression Estimator 

Per Gösta Andersson and Daniel Thorburn 1 

Abstract 

When there is auxiliary information in survey sampling, the design based “optimal (regression) estimator” of a finite 
population total/mean is known to be (at least asymptotically) more efficient than the corresponding GREG estimator. We 
will illustrate this by some simulations with stratified sampling from skewed populations. The GREG estimator was 
originally constructed using an assisting linear superpopulation model. It may also be seen as a calibration estimator; i.e., as 
a weighted linear estimator, where the weights obey the calibration equation and, with that restriction, are as close as 
possible to the original “Horvitz-Thompson weights” (according to a suitable distance). We show that the optimal estimator 
can also be seen as a calibration estimator in this respect, with a quadratic distance measure closely related to the one 
generating the GREG estimator. Simple examples will also be given, revealing that this new measure is not always easily 
obtained. 

                                                           
1. Per Gösta Andersson, Mathematical Statistics, Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden; Daniel Thorburn, 

Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden. 
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1. Notation and Basics  
Consider a finite population U  consisting of N  objects 

labelled N...,,1  with associated study values Nyy ...,,1  
and −J dimensional auxiliary (column) vectors ...,,1x  

.Nx  We want to estimate the population total ∑ ∈= Ui iy yt  
by drawing a random sample s  of size n  (fixed or random) 
from ,U  with first and second order inclusion probabilities 

),,(),( sjiPsiP iji ∈=π∈=π  ....,,1, Nji =  The 
study values and the auxiliary vectors are recorded for the 
sampled objects and before the sample is drawn we assume 
that at least ∑ ∈= Ui ix xt  is known.  

This is the standard setup for a regression estimator. In 
section 2 we discuss different regression estimators: the 
common GREG estimator (Särndal, Swensson and 
Wretman 1992), the optimal estimator (Montanari 1987, 
Andersson, Nerman and Westhall 1995) and calibration 
estimators (Deville and Särndal 1992). It is well known that 
the GREG estimator can be obtained as a calibration 
estimator. In section 3 it is shown that this holds also for the 
optimal estimator, but with a more complicated distance 
measure. In the last two sections this and the optimal 
estimator are illustrated, first by theoretical examples and 
then by simulations. 

Finally some comments about matrix notation in this 
paper: Generally, the transpose of a matrix A  is denoted by 

TA  and if A  is square, the inverse (generalised inverse) is 
written ).(1 −− AA  We further let the column vectors 

siiy ∈= )(y  and X,)/1(0 sii ∈π=w  be the nJ ×  
“design” matrix of the auxiliary information from s  and 
finally nI  means a unit diagonal matrix of size .n  

2. Regression and Calibration Estimators  
An unbiased simple estimator of yt  is the Horvitz-

Thompson estimator ∑ ∈ =π= si
T

iiy yt ./ˆ 0wy  However, 
more efficient estimators may be obtained utilising the 
auxiliary information, e.g., the well-known model assisted 
GREG estimator, see Särndal et al. (1992). For example, 
constructed from the assumption of a homoscedastic linear 
regression superpopulation model the GREG estimator is 

)ˆ()()(ˆ 1
0 xx

T
r

T
r

TT
yrt ttXRXXRywy −+= −  (1) 

,gyT=  (2) 

where ∑ π== ∈ si iixnr /ˆ,0 xtIwR  and  

.))ˆ()(1(
1 1

si

xx
T

r
T
i

i ∈

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

π
= ttXRXxg  

Now, the expression (2) for the GREG estimator is 
interesting since we also have that 

,x
T tgx =  (3) 

which is called the calibration equation. This brings us to an 
alternative possible derivation of the GREG estimator 
according to Deville and Särndal (1992). Suppose that we 
seek an estimator wyT  of yt  with a vector w  of sample-
dependent weights ,)( siiw ∈  which respects the corre-
sponding calibration equation, while also minimising the 
distance between w  and 0w  according to the quadratic 
distance measure 
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),()( 00 wwRww −− T  

where .)( 1
0

−= nIwR  
This results in 

,)ˆ()( 111
0 xx

TT ttXRXxRww −+= −−−  (4) 

which means that ,gw =  since here .1−= rRR  
Turning to the optimal estimator, consider first the vector 

)ˆ,ˆ( T
xtyt  and let xy,∑  be the covariance (row) vector of yt̂  

and xt̂  and xx,∑  the covariance matrix of .ˆ
xt  Now, the 

minimum-variance, see Montanari (1987), unbiased linear 
estimator (in yt̂  and xt̂ ) of yt  is the difference estimator 

.)ˆ(ˆ 1
,, xtt −+ −

xxxxyyt ∑∑  (5) 

Since xy,∑  and xx,∑  in practice are unknown, we let the 
optimal estimator be 

,)ˆ()()(ˆ

)ˆ(ˆˆˆ

1
optopt

1
,,0opt

xx
TTT

y

xxxxxy
T

y

t

t

ttXRXXRy

ttwy

−+=

−+=

−

−∑∑
 

(6)
 

where .))/()(( ,opt sjijiijjiij ∈πππππ−π=R  
In an asymptotic context, where ∞→n  and 

yxN ,
ˆ, ∑∞→  and xx,∑̂  may be viewed as components of 

the asymptotic covariance matrix of ).ˆ,ˆ( T
xyt t  Under the 

assumption of consistency of yx,∑̂  and ,ˆ
, xx∑  which holds 

under very mild conditions, see Andersson et al. (1995), the 
optimal estimator has the same asymptotic variance as the 
difference estimator (5). In particular it follows that the 
optimal estimator is asymptotically better than the usual 
GREG estimator, see Rao (1994), Montanari (2000) and 
Andersson (2001), i.e., its asymptotic variance is never 
larger and usually smaller. In section 5 we actually present 
some simple simulations showing that the optimal estimator 
can be much more efficient than GREG. However, one does 
not know anything about the efficiency for finite samples, 
since the covariance estimator may converge slowly. The 
rate of convergence is illustrated in section 5. Note also that 
in some cases there exist asymptotically even better 
estimators which are not linear. 

Now, the fact that the GREG estimator is also a 
calibration estimator using  

)()( 0
1

0 wwRww −− −
r

T  (7) 

as the distance measure and comparing (1) with (6), leads 
one to believe that replacing rR  by optR  in (7) should 
imply that we instead derive the optimal regression 
estimator as a calibration estimator. That this actually holds 
is shown below. 
 

3. The Main Result  
In order to show existence of a distance measure 

corresponding to the optimal estimator, we will first state 
and prove a result in the general case.  
Lemma: With R  denoting an arbitrary positive definite 

nn ×  matrix, 

)()( 00 wwRww −− T  (8) 

subject to the constraint ,xtwX =  is minimised by 

.)ˆ()( 111
0 xx

TT ttXRXXRww −+= −−−  

Proof: Introducing the  1×J  vector λ  of Lagrange 
multipliers, we get after differentiation the equation system 

0)(2 0 =+− λTXwwR  (9) 

0=− xtWX  (10) 

Multiplying (9) by ,1−XR  using (10) and solving for ,λ  
yields with :ˆ

0 xtwX =  

.)ˆ()(2 11
xx

T ttXRX −= −−λ  (11) 

Putting this into (9) and solving for w  finally leads to 

.)ˆ()( 111
0 xx

TT ttXRXXRww −+= −−−  

From the lemma we thus have the following main result:  
Theorem: With optR  being positive (semi –) definite and 
using the optimal calibration distance-measure, which we 
get by letting )( opt

1
opt

−−= RRR  in (8), the calibration 
estimator will become the optimal regression estimator.  
Remark: optR  may in some cases be indefinite (see below). 
The only thing we know is that it is an unbiased estimator of 
a covariance matrix. If it is not positive semi-definite there 
also exist x – values such that TXRX opt  is not positive 
semi-definite, but the probability of such x – values goes to 
zero as the population and sample sizes increase (and if 

xx,∑  is positive definite). A strict minimisation of a 
distance with “a negative component” would lead to 
infinitely large corrections. This problem of the optimal 
estimator has, to our knowledge, not been pointed out 
previously. 

The simplest way to find a distance which gives the 
optimal estimator as a calibration estimator is to find a 
matrix distR  which has the same eigenvectors as optR  but 
where the eigenvalues are replaced by their absolute values. 
(This result can be shown along the same lines as the proof 
of the lemma above. The distance can be seen as the sum of 
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the products of the eigenvalues and the squared 
eigenvectors. Putting the derivatives equal to zero means 
that in the proposition we found the extremes i.e., the 
minima for positive eigenvalues and the maxima for 
negative eigenvalues. By changing all negative signs the 
extremes will all be minima). 

 
4. Examples  

Positive definite optR : Suppose that the objects in U  are 
independently drawn with inclusion probabilities 

Nππ ...,,1  (Poisson sampling); thus implying a random 
sample size ,n  where .][ iUinE π∑= ∈  Due to the 
independence of drawings, optR  is diagonal and specifically 

.
1

2
1

opt

sii

i
n

∈

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π−

π
= IR  

Positive semi-definite optR : Suppose n  objects are drawn 
according to simple random sampling, i.e., each object has 
inclusion probability ./ Nni =π  The elements of optR  are 

N

nN

n

N
ji

−
⎟
⎠
⎞

⎜
⎝
⎛=

2

:  

.
)1(

:
2
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⎛≠

nN

Nn

n

N
ji  

This means that optR  is singular with rank .1−n  
Suppose instead (as in the following simulation study) 

that U  is partitioned into L  strata of sizes ,...,,1 LNN  
from which we draw independent simple random samples 
of sizes ....,,1 Lnn  The elements of optR  then are 

h

hh

h

h

N

nN

n

N
ji

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

:  

,
)1(

:
2

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≠

hh

hh

h

h

nN

Nn

n

N
ji  

when in the latter case i  and j  both belong to stratum 
Lhh ...,,1, =  and 0 otherwise. Therefore optR  has rank 

.hN −  
Non positive semi-definite optR : Let U  consist of four 
elements and s of two elements. Suppose that a systematic 
sample is taken with probability 0.94 and a simple random 
sample with probability 0.06, i.e., 48.02413 =π=π  and 

.01.034231412 =π=π=π=π  In that case 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
212/23

12/232
optR  (12) 

with probability 0.96 and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

296

962
optR  (13) 

with probability 0.04. The second matrix has a negative 
eigenvalue.  

The problem does not necessarily disappear if N  is 
large. Consider instead a population consisting of 4/N  
strata with four elements each. Suppose that the above 
sampling procedure is used independently in each stratum. 
In that case optR  will consist of a matrix with the above 

22 × – matrices along the diagonal and zeroes elsewhere. 

 
5. A Simulation Study  

5.1 Notation and Outline  
In order to make empirical comparisons between the 

optimal estimator (OPT) and the GREG estimator (GREG) 
and also compare these estimators with the Horvitz-
Thompson estimator (HT), we have conducted a small 
simulation study. In the previous sections we mentioned that 
OPT is Best Linear Asymptotic Efficient and a calibration 
estimator. Even though it has many nice properties it may 
for reasonable sample sizes be inefficient. Here we will in 
some simulated situations show that the optimal estimator 
can be a substantial improvement compared to GREG also 
for moderate sample sizes when the population is 
(deliberately) chosen to be unfavourable for GREG. A 
simple but non-trivial situation for which OPT is not equal 
to GREG arises for stratified simple random sampling, in 
particular, when the slopes differ between the different 
strata and the unstratified population. Consider therefore a 
population of size ,N  which is partitioned into L  strata of 
sizes ....,,1 LNN  From each stratum h  a simple random 
sample hs  of size hn  is drawn, where sss L =+ ...1  and 

....1 nnn L =++  For simplicity we further assume that the 
auxiliary information is one-dimensional and global, i.e., 
only xt  is known beforehand. For GREG we have chosen 
the homoscedastic simple linear regression model, see 
Särndal et al. (1992). 

The resulting expressions for HT, OPT and GREG 
respectively are  

)),(ˆ(ˆ

))(ˆ(ˆ

ˆ

optopt

strstyr

ststy

sty

xxByNt

xxByNt

yNt

−+=

−+=

=

 

 
where stsh

L
hsti

N
i xyNNyxNx

h
(,)/1(,)/1( 11 == ∑=∑=  

analogous) and 
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It is easily seen from these formulae  that the optimal 
regression coefficient is the mean of the within stratum 
slopes and that the GREG regression coefficient is the 
global slope. When there is a large difference between these 
slopes the GREG correction becomes bad. We are here 
particularly interested in comparing the qualities of these 
estimators when the assisting (linear) model for GREG fails. 
We have thus generated −x  and −y values from 
correlated lognormally distributed random variables X  and 

,Y  where ln X  is normally distributed with expectation 0 
and variance )),0(( 1

2
1 σσ N  and lnY  is .),0( 2σN  The 

variances 2
1σ  and 2

2σ  and the correlation between ln X  and 
lnY  can then be chosen to obtain prespecified values of the 
variances 2

xσ  of X  and 2
yσ  of Y  and their correlation 

.),( YXρ  Values generated from bivariate normal 
distributions were obtained by MATLAB (version 6.0). 
Twelve populations have in this manner been created, each 
of size N  = 10,000, including four combinations of 
variances 2

xσ  and 2
yσ  (10 and 100) and three values of the 

correlation ),( YXρ  (0.5, 0.7 and 0.9). For these 
populations a variance of 10 implies a skewness of 9.37 and 
the variance 100 leads to skewness 38.59.  

Now, before stratification, the objects of each population 
are ordered with respect to ascending −y values. The 
number of strata is 5=L  throughout with sizes 

,000,41 =N  000,1,000,2,500,2 432 === NNN  and 
.5005 =N  These strata are constructed in such a way that 

objects with the smallest −y values constitute stratum 1, 
and so forth. From each stratified population we have drawn 
samples of sizes 000,1,250=n  and 2,500, where for each 
sample .... 51 nn ==  This means that we have created an 
approximate psπ  (probability proportional to size) design, 
with for example, objects in stratum 5 having the largest 
inclusion probability .)/( 55 Nn  The number of simulated 
samples was =K 25,000 for each of the 36312 =×  cases 
and HT, OPT and GREG were then computed for each 
sample. 

In general, common measures of quality for an estimator 
t̂  of a total t  from a sequence Ltt ˆ...,,1̂  are the estimated 
relative bias 

t
tt −ˆ

 

and the estimated variance 

,)ˆˆ(
1

1

1

22 ∑
=

−
−

=
K

i
i tt

K
S  

where .ˆ)/1(ˆ 1 i
K
i tKt =∑=  

Since we are mainly concerned with comparisons of 
OPT and GREG, we will only display results of the relative 
measures of variance (or equivalently standard deviation) 

,and
2

HT

2

2
HT

2
opt

y

ry

y

y

S

S

S

S
 

from which we can compare the estimated variances of OPT 
and GREG with HT and also determine which of OPT and 
GREG have the lowest estimated variance.  
5.2 Results  

Firstly, as reference, the absolute value of the estimated 
relative bias of the unbiased HT did not in any case exceed 

.104 4−⋅  The corresponding maximum values for OPT and 
GREG were ,106 3−⋅  which means that we may concentrate 
on the ratios of estimated variances in order to evaluate 
relative efficiencies of HT, OPT and GREG. 

As seen from Table 1, OPT is superior to both HT and 
GREG (with one exception: ,10,9.0),( 2 =σ=ρ xYX  

1002 =σ y  and ,250=n  where GREG has slighly less 
estimated variance). For the lowest correlation though, the 
decrease in estimated variance for OPT compared with HT 
is not substantial. GREG on the other hand does not 
compete well with the others and this anomaly is 
particularly accentuated for the largest sample size 

.500,2=n  Changing ),( YXρ  to 0.7 means improvement 
for both OPT and GREG, but GREG is also now for most 
cases inferior to HT. Finally, for 9.0),( =ρ YX  GREG still 
displays poor behavior compared with HT for 500,2=n  
(with the exception of 1002 =σ x  and .)102 =σ y  In general 
GREG is closing in on OPT for increasing values of 

),( YXρ  (the assisting linear model becoming less 
misspecified), while OPT, on the other hand, is increasing 
its superiority over GREG for increasing sample sizes, 
which should come as no surprise since OPT is 
asymptotically well motivated. 
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Table 1 
Relative Estimated Efficiencies (Given as Percentages) of OPT )/( 2

HT
2

opt yy SS  and GREG )/( 2
HT

2
yry SS  to HT,  

Based on 25,000 Simulated Samples for Each Sample Size 
 

 102 =σx  102 =σx  1002 =σx  1002 =σx  

 102 =σ y  1002 =σ y  102 =σ y  1002 =σ y  

 OPT GREG OPT GREG OPT GREG OPT GREG 
5.0),( =ρ YX          

250=n  99.1 232.8 97.4 176.8 93.9 179.4 91.4 122.3 

000,1=n  98.3 247.1 98.0 193.7 97.5 183.5 99.9 141.9 

500,2=n  96.8 756.7 96.8 1,455.0 97.8 534.7 96.8 1,625.5 

7.0),( =ρ YX          

250=n  89.7 197.6 83.8 101.2 73.6 120.4 64.3 72.9 

000,1=n  91.0 227.5 89.8 117.2 81.2 120.5 71.7 84.0 

500,2=n  93.8 648.2 91.5 1,308.6 93.1 218.6 93.1 673.5 

9.0),( =ρ YX          

250=n  56.5 76.1 41.2 38.8 27.2 43.4 40.4 41.4 

000,1=n  61.8 87.3 44.1 44.2 27.6 44.1 41.5 45.4 

500,2=n  77.0 237.4 59.8 335.4 63.6 66.0 74.6 259.8 
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