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Towards Nonnegative Regression Weights for Survey Samples 

Mingue Park and Wayne A. Fuller 1 

Abstract 

Procedures for constructing vectors of nonnegative regression weights are considered. A vector of regression weights in 
which initial weights are the inverse of the approximate conditional inclusion probabilities is introduced. Through a 
simulation study, the weighted regression weights, quadratic programming weights, raking ratio weights, weights from logit 
procedure, and weights of a likelihood-type are compared. 

                                                           
1. Mingue Park, University of Nebraska, 103 Miller Hall, Lincoln, NE, 68588-0712, U.S.A.; Wayne A. Fuller, Iowa State University, 221 Snedecor Hall, 

Ames, IA 50011-1210, U.S.A. 

  
Key Words: Raking ratio; Maximum likelihood; Quadratic programming; Simple Conditionally Weighted (SCW) 

estimator. 
 
 

 

1. Introduction  
In survey sampling, information about the population is 

often available at the analysis stage. One method of using 
this information is through regression estimation. There are 
a number of ways to construct a regression estimator of the 
population mean or total. One regression estimator of the 
mean is 
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)...,,(diag 11 nnφφ=Φ  is a nonsingular diagonal matrix, 
the iπ ’s are the selection probabilities and Nx  is the 
population mean of .x  A possible choice of 1−φii  is .iα  A 
review of the use of such information in regression esti-
mation for sample surveys is given by Fuller (2002). 

It is well known that regression weights that are used to 
define a regression estimator such as (2) can be very large or 
(and) can be negative. If the regression weights are to be 
used to estimate a finite population total in a general pur-
pose survey, it seems reasonable that no individual weight 

should be less than one. Also, it seems reasonable, on 
robustness grounds, to avoid very large weights. 

There are several ways to construct regression weights 
with a reduced range of values. Huang and Fuller (1978) 
defined a procedure to modify the iw  so that there are no 
negative weights and no large weights. Husain (1969) sug-
gested quadratic programming as a procedure to place 
bounds on the weights. Quadratic programming and a 
number of other procedures build on the fact that the 
weights can be defined as values that optimize some 
function. Deville and Särndal (1992) considered seven 
objective functions that can be used to construct weights. 
They suggested objective functions that can be used to 
produce weights which fall within a given range. Deville, 
Särndal and Sautory (1993) introduced the program, 
CALMAR, written as a SAS macro that can be used to 
calculate weights corresponding to four different objective 
functions when auxiliary information in the survey consists 
of known marginal counts in a frequency table. 

Another modification of regression weights is to relax 
some of the restrictions used in constructing the estimator. 
Husain (1969) considered modifying weights for a simple 
random sample from a normal distribution. He derived the 
weights that minimize the mean square error (MSE) of the 
resulting estimator. Bardsley and Chambers (1984) con-
sidered an estimator based on an objective function and the 
division of the auxiliary variable into two components. They 
studied the behavior of the estimator from a model 
perspective. Rao and Singh (1997) studied an estimator in 
which tolerances are given for the difference between the 
final estimator for part of the auxiliary variables vector and 
the corresponding elements of the population vector. 

In this paper, we consider different types of regression 
weights including a procedure based on Tillé’s (1998) con-
ditional selection probabilities. The approximate conditional 

4                                                                 Park and Fuller: Towards Nonnegative Regression Weights for Survey Samples



 

 
Statistics Canada, Catalogue No. 12-001

inclusion probabilities are used to compute regression 
weights that are positive for most samples. These regression 
weights are compared to raking ratio weights, to quadratic 
programming weights, weights from logit procedure, and to 
weights based on a likelihood-type objective function. 

 
2. Maximum Likelihood and  

       Raking Ratio  
Consider a two-way table with r  rows and c  columns. 

The population cell ijU  contains ijN  elements; ...,,1=i  
....,,1, cjr =  Assume marginal counts ji NN ⋅⋅ ,  are 

known. The population characteristics of interest are the 

ijN  or, equivalently, .1
ijij NNp −=  For a simple random 

nonreplacement sample of size ,n  Deming and Stephan 
(1940) suggested a raking ratio procedure to get the solution 
for the cell frequencies. See also Stephan (1942). If we 
assume the sample is a random sample from a multinomial 
distribution defined by the population entries in a two way 
table, we can construct an estimator using the maximum 
likelihood procedure. 

Deville and Särndal (1992) defined a class of calibration 
estimators, ,caly  of the population mean of y  as 
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and ),( iiwG α  is a measure of distance between an initial 
weight iα  and a final weight .iw  The raking ratio and 
maximum likelihood estimators of the population cell 
fraction, ,ijp  belong to the class of calibration estimators. 

The raking ratio weights for the population cell fraction, 
with a simple random sample, can be obtained by 
minimizing 
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subject to the constraints (4) with 

,)...,,,...,,( 11 crk ⋅⋅⋅⋅ δδδδ=x  (6) 

where 1=δ ⋅i  if thk  element belongs to the thi  row and 
0=δ ⋅i  otherwise, and 1=δ⋅ j  if thk  element belongs to the 

thj  column and 0=δ⋅ j  otherwise. The raking ratio 
estimator for the population cell fraction ijp  is the estimator 
(3) where 1=ky  if the thk  element belongs to cell ij  and 

0=ky  otherwise. 

For the maximum likelihood estimator of the population 
fraction, with a simple random sample, Deville and Särndal 
(1992) suggested minimizing 
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subject to (4) with x  defined in (6). 
Chen and Sitter (1999) suggested a pseudo empirical 

likelihood estimator. They defined the population likelihood 
of iy  as 
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where Uiw ,  is the density at observation .iy  With a sample 
of size ,n  they suggested the pseudo empirical likelihood 
estimator of the form 
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where iw ’s are obtained by minimizing the function 
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under the restrictions (4). The resulting iw  are equal to 
those obtained by minimizing (7) with iN π=  under the 
restrictions (4). 

Deville and Särndal (1992) showed that the raking ratio 
and maximum likelihood estimators are approximately 
equal to a regression estimator of the form (1), and, hence, 
have the same limiting distribution as the regression 
estimator. Weights for the raking ratio and maximum 
likelihood estimators are nonnegative if the solutions for the 
weights exist. 

 
3. Weighted Regression Using 
       Conditional Probabilities  

Tillé (1998) suggested the use of approximate 
conditional inclusion probabilities, conditioning on the 
Horvitz-Thompson estimators of auxiliary variables, to 
compute an estimator for the population mean of the study 
variable. His approximation can be extended to produce 
regression weights that are nonnegative with high 
probability. 

Assume that the vector of population means of auxiliary 
variables, ,Nx  is known. Consider the Horvitz-Thompson 
estimator of Nx  given by 

,
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where )...,,( 1 ipii xx=x  and iπ  is the unconditional 
inclusion probability. Tillé (1998) introduced the simple 
conditionally weighted (SCW) estimator, 

,
1
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where 
HT|xiπ  is the conditional inclusion probability of the 

thi  element conditioning on .HTx  To construct the SCW-
estimator of ,Ny  the conditional inclusion probability 

HT|xiπ  is required. If HTx  takes the value ,t  we have 
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where A  is the set of indices for the sample elements. 
In order to compute the conditional inclusion probabil-

ities, it is necessary to know the probability distribution of 

HTx  unconditionally and conditionally on the presence of 
each unit in the sample. Except for some particular cases, 
this probability distribution is very complex. For this reason, 
approximation of the conditional inclusion probability is 
considered. 

Under the assumption that HTx  has an approximately 
normal distribution unconditionally and conditionally on the 
presence of each unit in the sample, the conditional inclu-
sion probability (13) can be approximated by 
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A  is the set of indices appearing in the sample and 
}...,,{ 1 NyyF =  is the finite population. Tillé (1998) gives 

an expression for )(, ixx∑  for the general case. 
Assume the design covariance matrices xx∑  and )(, ixx∑  

are positive definite and assume the vector of auxiliary 
variables is normally distributed. Tillé (1999) showed that 
the SCW-estimator defined in (12) with the approximate 
conditional inclusion probabilities of (14) satisfies 
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1−Φ  is xxjiijjiijN ∑),()( 12 ππ−ππππ −−  is the design 

variance of ,HTx yx∑  is the design covariance of HTx  and 
,HTy xx∑̂  is the Horvitz-Thompson variance estimator of 
,HTx  and yx∑̂  is the Horvitz-Thompson estimator of the 

covariance of HTx  and .HTy  
Given a complex design, a number of the quantities in 

(14) are difficult to compute. However, approximations 
giving the same large sample properties for the estimator are 
relatively easy to compute. We replace xx∑  and )(, ixx∑  
with estimators, replace )(, iNx  with ,

ixN dx +  define 
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where 
ixd  is a function of the sample and yxM  is a 

population quantity. Often yxM  is the population covari-
ance matrix ,yx∑  but this equality is not required in order 
for the estimator to be well defined. In many cases one can 
compute 

ixd  as a multiple of the jackknife deviate. Also in 
many situations, an adequate value for the estimator, 

,
~

)(, ixx∑  of )(, ixx∑  is .ˆ)1(1
xxnn ∑−−  We write our gener-

alization of (14) as 
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An approximate conditional inclusion probability with a 
simple random sample and a single auxiliary variable is 
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The SCW-estimator (21) with the approximate 

conditional inclusion probabilities is not calibrated, that is, 
the estimator (21) for the mean of the vector of auxiliary 
variables is not the vector of population means. It is 
relatively easy to standardize the probabilities so that they 
sum to one or sum to the stratum fraction for stratified 
sampling. To construct a calibrated estimator for the general 
case, we suggest computing the regression estimator with 
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and 
HT|

~
xiπ  is the approximate conditional inclusion 

probability of (20). We assume the vector of auxiliary 
variables contains one so that the estimator is location 
invariant. 

The estimator (21) is approximately equal to a regression 
estimator and estimator (22) is also approximately equal to 
the same regression estimator.  
Theorem: Let a sequence of populations and samples, 

,},{ NN AF  satisfy 
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where D  denotes a diagonal matrix having the elements of 
the diagonal of xx∑̂  on its diagonal. Let 

ixd  be a function 
of the sample satisfying (19) and assume (18) holds. 
Assume the sequence of Horvitz-Thompson variance 
estimators satisfies 
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element. Assume .yxyx ∑=M  Then the weighted 
regression estimator of (22) satisfies 
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For proof, see the appendix. 
To illustrate the nature of the different types of regression 

weights, we selected a simple random sample of size 40 
from a normal population with mean zero and variance one. 
The sample mean is – 0.614 and the population mean is 
zero. The  weight for the regression estimator is given by (2) 
with .11 −− =φ=α niii  The weights for the raking ratio and 
MLE are obtained by minimizing the objective functions (5) 
and (7), respectively, under the restriction (4). Weights for 
the SCW-weighted regression estimator are given in (22). 
The weights are plotted against the sample x  values in 
Figure 1. Five of the simple regression weights are less than 
zero because of the large discrepancy between the sample 
and the population means. All weights for the SCW-
weighted regression estimator, MLE and raking ratio are 
nonnegative. Figure 1 shows that the behaviors of raking 
ratio and SCW-weighted regression weights are similar and 
that MLE has an extremely large weight in this sample. 

Survey Methodology, June 2005                                                                                                                                          7



 

 
Statistics Canada, Catalogue No. 12-001

Table 1 contains selected weights for the smallest x  values, 
x  values close to the sample mean, x  values close to the 
population mean, and the largest x  values. For the x –
values farthest from the population mean MLE gives the 
largest weights. For x –values near the sample mean the 
ordinary least squares weights are close to 1−n  while the 
other weights are less than .1−n  The MLE weights are close 
to 1−n  for x –values close to the population mean while the 
other weights are larger. 

Table 1 
Selected Regression Weights for Illustrated Example 

 

x Weights multiplied by n = 40 
 Reg W. Reg Raking MLE 

– 2.103 – 0.56 0.12 0.16 0.40 
– 1.941 – 0.40 0.12 0.20 0.40 
– 1.727 – 0.16 0.20 0.24 0.44 
– 0.710 0.88 0.68 0.68 0.68 
– 0.670 0.96 0.72 0.68 0.68 
– 0.468 1.16 0.88 0.84 0.76 
– 0.103 1.52 1.28 1.24 0.92 

0.021 1.68 1.44 1.40 1.00 
0.097 1.76 1.56 1.52 1.08 
0.628 2.32 2.60 2.60 1.84 
0.662 2.36 2.68 2.72 1.92 
1.237 2.96 4.60 4.88 9.12 

 
Simulation Study  

To compare the alternative methods of constructing 
regression weights we conducted a simulation study. A total 
of 30,000 simple random samples of size 32 were selected 
from a 2χ  distribution with two degrees of freedom. The 
parameters being estimated are those of the infinite 

generating mechanism. Let ix  be the value for the thi  
sampled element. Six estimation procedures were 
considered. 
 

1. Ordinary least squares regression (OLS) 
 

2. Quadratic programming with upper and lower 
bounds (QP) 

3. Weighted regression with SCW weights (SCW reg) 
 

4. Maximum likelihood objective function (MLE) 
 

5. Raking objective function (Raking reg) 
 

6. Logit procedure with upper and lower bounds (Logit)  
The weights for the OLS estimator were calculated by (2) 

with .1−=α ni  The quadratic programming weights 
minimize ∑ =

n
i iw1

2  subject to the constraint 065.00 ≤≤ iw  
for all i  and subject to constraints (4). The quadratic 
programming procedure is equivalent to the truncated linear 
method of case 7 of Deville and Särndal (1992). Weights for 
the SCW weighted regression were calculated by 
minimizing ∑ =

−αn
i ii w1

21  subject to constraints (4), where 

iα  is defined in (22). The weights for raking and maximum 
likelihood were obtained by minimizing the objective 
functions (5) and (7), respectively, under the restriction (4). 
Weights calculated by the logit procedure minimize the 
function ∑ =

n
i inwG1 )(  subject to constraints (4),where 
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Figure 1. Comparison of four sets of weights. 
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if unwi <<0  and ∞  elsewhere, ,)1( 1−−= uua  and 
.08.2=u  Note that the solution for the logit procedure, if it 

exists, satisfies the bound restrictions 065.00 ≤≤ iw  for all 
.i  The logit procedure was introduced as a case 6 in Deville 

and Särndal (1992). As the upper bound for the weight, 
0.065 was used so that 3,026 samples (approximately 10%) 
have at least one raking regression weight greater than 
0.065. In 99 samples among 30,000, no solution for the 
quadratic programming and logit procedure is possible 
because no feasible point satisfies (4) and the bound 
restriction. For those 99 samples, the maximum of the OLS 
regression weights was used as the upper bound for the 
quadratic programming and logit procedures. 

Table 2 shows the average of the sum of squares for the 
six weights. The average weight is 1/32 = 0.03125 for every 
estimator. The least squares procedures have the smallest 
sum of squares of the weights because this is the objective 
function for those procedures. The least squares procedures 
also have a slightly smaller range in the sum of squares. One 
percent of the least squares samples have a normalized 
mean of squares greater than 1.401 while one percent of the 
mean of squares for raking are greater than 1.441.  

Table 2 
Monte Carlo Average of the Sum of Squares of the Weights 

 

 OLS QP SCW 
Reg 

MLE Raking 
Reg 

Logit 

Average of 32)(×′ ww  1.043 1.044 1.045 1.053 1.045 1.045  
Table 3 contains properties for the minimum of the 

weights. Maximum likelihood has the largest average 
minimum weight while the least squares procedures have a 
smaller average for the minimum weight. The variance of 
the minimum weight is largest for the ordinary least squares 
procedures. Note that QP permits weights that equal the 
lower bound of zero.  

Table 3 
Monte Carlo Mean, Variance and Quantiles  

of the Minimum Weight 
 

   Quantiles ( 32× ) 

Procedure 
Mean 

( 210× ) 
Variance 
( 510× ) 0.01 0.10 0.50 0.90 0.99 

OLS 2.22 6.46 – 0.10 0.34 0.79 0.96 1.00 
QP 2.21 6.32 0.00 0.32 0.79 0.96 1.00 
SCW Reg 2.44 3.58 0.22 0.49 0.84 0.97 0.99 
MLE 2.45 2.79 0.33 0.52 0.83 0.97 1.00 
Raking Reg 2.36 3.81 0.20 0.45 0.81 0.97 1.00 
Logit 2.25 5.23 0.09 0.36 0.78 0.96 1.00  

Among the procedures without bound restrictions on the 
weights, the ordinary least squares procedure has smaller 
maximum weight on average and much smaller variance for 
the maximum. See Table 4. The SCW-weighted regression 
has a smaller fraction of very large weights than MLE or 
raking ratio but a higher fraction of large weights than the 
ordinary least squares procedure. The bounded QP and 

Logit procedures have smaller mean and variance for the 
maximum weight than the procedures with no upper bound 
restrictions. 

Table 4 
Monte Carlo Mean, Variance and Quantiles  

of the Maximum Weight 
 

   Quantiles ( 32× ) 

Procedure 
Mean 

( 210× ) 
Variance 
( 510× ) 0.01 0.10 0.50 0.90 0.99 

OLS 4.25 17.35 1.00 1.03 1.20 1.92 2.93 
QP 4.17 11.91 1.00 1.03 1.20 1.92 2.08 
SCW Reg 4.56 26.42 1.03 1.07 1.27 2.12 3.47 
MLE 4.75 56.13 1.00 1.04 1.25 2.31 4.72 
Raking Reg 4.46 30.25 1.00 1.03 1.23 2.09 3.63 
Logit 4.13 10.23 1.00 1.03 1.21 1.82 2.08  

To evaluate the performance of the procedures when the 
linear model does not hold, we considered estimation of the 
percentiles of the distribution function of .x  Table 5 
contains the Monte Carlo bias of the percentile estimators 
where the table entries are  

,100]}ˆ{ˆ[)}]1(,{min[ 1 ×−− − PPEPP  

and P  is the percentile. For example, the Monte Carlo 
estimated relative bias in the ordinary least squares 
estimator of the 0.01 percentile is – 7.75%. The ordinary 
least squares estimator has the largest biases in estimating 
the population percentiles, among the procedures without 
bound restrictions. The MLE has the smallest bias for all 
percentiles except the ,75th  th95  and ,99th  where the 
SCW-weighted regression estimator has the smallest bias. 
For samples of size 32, many samples contain no 
observation greater than the th99  percentile. The QP and 
Logit procedures have larger bias than other procedures 
except for the th75  percentile. The biases of the QP and 
Logit procedures are relatively large for the lower 
percentiles.  

Table 5 
Monte Carlo Standardized Bias in Percentile Estimators 

 

Percentile Procedure 
 OLS QP SCW Reg MLE Raking Reg Logit 

0.01 – 7.75 – 8.43 – 2.88 – 2.13 – 4.70 – 8.30 
0.05 – 7.27 – 7.95 – 2.58 – 1.82 – 4.30 – 7.85 
0.10 – 6.66 – 7.31 – 2.27 – 1.57 – 3.91 – 7.26 
0.25 – 5.25 – 5.82 – 1.79 – 1.25 – 3.13 – 5.89 
0.50 – 3.21 – 3.46 – 1.37 – 1.16 – 2.18 – 3.53 
0.75 – 2.30 – 2.07 – 1.60 – 2.21 – 2.25 – 1.78 
0.90 4.60 5.31 1.27 0.22 2.62 5.68 
0.95 12.75 13.33 6.01 6.41 9.52 13.15 
0.99 32.94 32.36 19.03 22.66 26.65 30.03  

Table 6 contains the relative MSE of the percentile 
estimators where the table entries are  

.100]}ˆ{ˆ[)}]1(,{min[ 22 ×−− − PPEPP  

Thus the relative mean square error of the OLS estimator of 
the 0.01 percentile is 283.27%. Although the OLS estimator 
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of the 0.01 percentile had the largest bias OLS has the 
smallest mean square error for the 0.01 percentile among the 
procedures without bound restrictions. The QP, OLS and 
Logit procedures are superior for the extreme percentiles 
while the other procedures perform better for the middle 
percentiles.  

Table 6 
Monte Carlo Relative MSE of Percentile Estimators 

 

Percentile Procedure 
 OLS QP SCW Reg MLE Raking Reg Logit 

0.01 283.27 282.50 309.23 311.58 296.37 282.76 
0.05 53.91 54.23 57.41 57.07 54.97 54.06 
0.10 25.50 25.97 26.40 25.79 25.26 25.80 
0.25 8.00 8.41 7.77 7.23 7.42 8.41 
0.50 1.99 2.07 1.88 1.71 1.83 2.12 
0.75 3.65 3.68 3.62 3.66 3.63 3.67 
0.90 14.50 14.60 14.25 14.57 14.36 14.56 
0.95 39.40 38.65 40.99 41.66 39.93 37.94 
0.99 200.17 196.24 235.71 216.22 205.85 194.33  

In 562 of 30,000 samples at least one of the OLS 
regression weights is negative. In 17 of the samples at least 
one of the original SCW regression weights was negative. 
The use of quadratic programming with the OLS objective 
function (QP) to produce weights greater than or equal to 
zero and less than 0.065 increases the average sum of 
squares by less than one percent. See Table 7. Using 
quadratic programming to bound the SCW regression 
weights (SCW (QPL)) by zero increases the average sum of 
squares very little because there are so few weights that are 
changed.  

Table 7 
Monte Carlo Average of the Sum of Squares of the Weights for 

Samples with at Least One Negative OLS Weight 
 

   
OLS QP 

SCW 
– Reg 

SCW 
(QPL) MLE 

Raking 
– Reg 

Average of 32)(×′ ww  1.208 1.217 1.226 1.227 1.342 1.242  
Table 8 gives the Monte Carlo MSE for the 562 samples 

with negative ordinary least squares weights. The quadratic 
programming procedure is superior to other nonnegative 
weight procedures for the 0.01 percentile and is inferior for 
the 0.99 percentile. Of the 562 samples, 497 had a sample 
mean greater than the population mean. Recall that the study 
population has an exponential distribution. Because the 
weight on the largest observation is zero in the 497 samples 
there is a 100 percent error in the quadratic programming 
estimator of the 0.99 percentile for most of the 497 samples 
with a sample mean greater than the population mean. In 
sampling from a finite population the bound on the weights 
would be greater than or equal to 1−N  and the MSE of the 
quadratic programming procedure for the 0.99 percentile 
would be reduced. 

Quadratic programming is superior to the other calibrated 
procedures for the 0.01 percentile in samples with negative 

OLS weights. Raking regression and SCW-weighted 
regression are superior to MLE for the 0.01 and 0.05 
percentiles. This is because MLE often has the largest 
maximum weight.  

Table 8 
Monte Carlo Relative MSE of Percentile Estimators  
for Samples with at Least One Negative OLS Weight 

 

Percentile Procedure 
 OLS QP SCW (QPL) MLE Raking Reg 

0.01 287.52 291.11 350.58 461.80 344.06 
0.05 76.04 70.58 75.80 88.71 72.50 
0.10 44.80 40.74 39.31 38.84 36.05 
0.25 20.24 19.14 14.72 9.91 12.56 
0.50 5.03 5.31 3.65 2.26 3.35 
0.75 5.02 4.53 3.36 4.24 3.45 
0.90 23.77 23.69 20.04 18.80 20.49 
0.95 51.54 46.04 30.79 28.28 32.54 
0.99 206.33 90.08 39.40 57.54 43.49  

In 3,026 of 30,000 samples, at least one of the raking 
regression weights is greater than 0.065. In 2,152 samples, 
at least one of the OLS regression weights is greater than 
0.065, and in 3,209 samples at least one of the SCW 
regression weights is greater than 0.065. The use of 
quadratic programming with the OLS objective function to 
produce weights in (0.000, 0.065) increases the average sum 
of squares by 1.5 percent. Using quadratic programming to 
bound the SCW regression weights by 0.000 and 0.065 
increases the average sum of squares 0.8 percent. See the 
column for SCW (QP) of Table 9.  

Table 9 
Monte Carlo Average of the Sum of Squares of the  

Weights for Samples with at Least One Raking  
Reg Weight Greater than 0.065 

 

   SCW SCW Raking 
 OLS QP – Reg (QP) – Reg Logit MLE 

Average of 32)(×′ ww  1.210 1.228 1.221 1.231 1.228 1.232 1.290  
Table 10 gives the Monte Carlo relative MSE for the 

3,026 samples with raking regression weights greater than 
0.065. The quadratic programming is superior to SCW (QP) 
and Logit for the 0.01, 0.95 and 0.99 percentile and the 
Logit procedure is superior to quadratic programming for 
other percentiles. 
 

Table 10 
Monte Carlo Relative MSE of Percentile Estimators for Samples 

with at Least One Raking Reg Weight Greater than 0.065 
 

Percentile Procedure 
 SCW SCW Raking 
 OLS QP – Reg (QP) – Reg Logit MLE 

0.01 139.96 130.53 173.86 146.40 124.02 173.65 206.65 
0.05 39.83 42.88 39.35 41.69 39.87 37.14 40.83 
0.10 26.31 30.92 22.40 28.10 28.88 20.21 19.98 
0.25 13.56 17.72 10.13 15.69 17.71 8.65 7.01 
0.50 3.95 4.87 3.32 4.75 5.37 3.03 2.28 
0.75 4.84 5.35 4.89 5.58 5.37 5.05 5.48 
0.90 27.98 29.04 28.70 29.34 29.32 28.79 32.07 
0.95 74.15 67.54 85.02 68.12 65.98 83.13 95.99 
0.99 198.77 179.58 219.16 181.17 172.45 212.38 226.73 

10                                                               Park and Fuller: Towards Nonnegative Regression Weights for Survey Samples



 

 
Statistics Canada, Catalogue No. 12-001

Discussion  
We began the research with the conjecture that starting 

with the SCW weights in a regression estimator would 
produce weights that were almost always positive and that 
the weights would have desirable properties as measured by 
the ability to estimate the distribution function of .x  To 
some extent these results support the conjectures. The 
minimum weights of the SCW regression are larger than 
those of OLS and comparable to those for raking. Quadratic 
programming can be used to remove the negative weights in 
the few samples with negative weights. If no upper bound is 
imposed, the maximum weights for the SCW weighted 
regression fall between those of least squares and raking. 

 It is known that all of the procedures in our simulation 
study have the same order 2/1−n  properties. Our simulation 
and the study of generalized raking procedures done by 
Deville et al. (1993) indicate that there are also modest 
differences in small samples. No procedure is superior with 
respect to all criteria. Because of the poor performance for 
the extreme percentiles, we recommend against the use of 
the MLE objective function. The quadratic programming 
and Logit procedure produced weights with marginally 
smaller sums of squares, marginally smaller maximum 
weights, and marginally smaller MSE for extreme 
percentiles than the raking regression. The MLE, SCW 
regression and raking procedures give marginally larger 
minimum weights and marginally smaller MSE for the 
middle percentiles of the x  distribution than quadratic 
programming and Logit procedure. The performances of 
quadratic programming and Logit procedures in estimating 
the distribution function of x  are comparable. 
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Proof. The ratio of the determinants of estimated covariance 
matrices in (20) is 
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