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Using Matched Substitutes to Improve Imputations for Geographically 
Linked Databases 

Wai Fung Chiu, Recai M. Yucel, Elaine Zanutto and Alan M. Zaslavsky 1 

Abstract 

When administrative records are geographically linked to census block groups, local-area characteristics from the census 
can be used as contextual variables, which may be useful supplements to variables that are not directly observable from the 
administrative records. Often databases contain records that have insufficient address information to permit geographical 
links with census block groups; the contextual variables for these records are therefore unobserved. We propose a new 
method that uses information from “matched cases” and multivariate regression models to create multiple imputations for 
the unobserved variables. Our method outperformed alternative methods in simulation evaluations using census data, and 
was applied to the dataset for a study on treatment patterns for colorectal cancer patients. 
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1. Introduction  
In a study on treatment patterns for colorectal cancer 

patients, income and education are desired variables for 
constructing statistical models of relevant scientific interest. 
Unfortunately, individual measurements for these variables 
are not directly observable from the cancer registry 
databases that are compiled from hospital records, which 
like many administrative databases contain primarily 
information required for administrative purposes. Instead, 
mean values of these variables for small geographical areas 
(census block groups or tracts) including the subject’s area 
of residence are used as regressors to estimate income and 
education effects. Analyses using such “contextual vari-
ables” are common in epidemiological and health services 
research (Krieger, Williams and Andmoss 1997), and often 
produce results broadly similar to those based on individual 
variables. If both individual and contextual variables were 
available, it might be possible to separate the effects of indi-
vidual characteristics and contexts; in a purely contextual 
analysis, these effects are confounded. Nonetheless, associa-
tions between contextual socioeconomic characteristics and 
quality of care would suggest an equity problem, regardless 
of whether such associations primarily reflect individual or 
community-level relationships. 

In the colorectal cancer treatment study, each contextual 
variable for a given patient record is assumed to be the 
variable’s census group (or tract) mean value obtained by 
geographically linking the record’s address to a census 
block group (or tract). A small but substantial percentage of 

patient records (about 3.3% or 1,696 records) have 
insufficient address information to permit links with census 
block groups, hence making the corresponding contextual 
variables unobservable. Such records will be called 
ungeocodable records, while records that can be linked to 
census block groups will be referred to as geocodable. To 
generate multiple imputations for the unobserved contextual 
variables, we propose a strategy that uses information from 
more than one “matched case” to help build parametric/ 
nonparametric imputation models. In particular, information 
from the matched cases accounts for small area effects in 
our imputation models, so that there is no need to explicitly 
model such effects. 

Rubin and Zanutto (2001) use the term “matched 
substitute” instead of “matched case”, and propose a 
parametric imputation model using only one matched 
substitute per record.  The analyses resulted from their 
model were compared to those given by other analytic 
methods in an extensive simulation study, but was not 
applied to real data. We extend Rubin and Zanutto’s method 
by (1) allowing use of information from more than one 
matched case per record and (2) using an empirical rather 
than a parametric distribution of residuals.  

This research was motivated by our need for multiple 
imputations for the partially observed variables in the study 
of treatment patterns for colorectal cancer patients. Ayanian, 
Zaslavsky, Fuchs, Guadagnoli, Creech, Cress, O’Connor, 
West, Allen, Wolf and Wright (2003) analyzed a dataset 
that included imputations generated by our method, 
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referring to Rubin and Zanutto (2001) and a preliminary 
version of this paper that appeared in a proceedings 
publication (Chiu, Yucel, Zanutto and Zaslavsky 2001). 
This paper is the first comprehensive publication of our 
methodology and the first published report that describes an 
application of Rubin and Zanutto’s method to real data. 

The organization for the rest of this paper is as follows.  
Section 2 summarizes Rubin and Zanutto’s method and 
gives a general description of our method. Section 3 outlines 
the application of our method to the colorectal cancer study. 
Section 4 illustrates in a simulation study the performance 
of our method relative to three other commonly-used 
nonresponse adjustment methods. 

 
2. Imputation Methodology  

This section will begin with a summary of Rubin and 
Zanutto’s method, followed by a general description of our 
method that includes a discussion on out-of-sample versus 
within-sample matching, the details of the modeling and 
multiply-imputing tasks, and an analysis of efficiency as a 
function of the number of matched cases used.  
2.1 Matching, Modeling and Multiply Imputing  

Rubin and Zanutto (2001) proposed a method called 
“matching, modeling, and multiply imputing” (MMM) that 
uses matched substitutes to help generate multiple impu-
tations for nonrespondents in sample surveys, without 
requiring that substitutes be perfect replacements for the 
nonrespondents. Matched substitutes are responding survey 
units chosen to match the nonrespondents on one or more 
“matching covariates” – variables that are available prior to 
the survey and are convenient for matching but not neces-
sarily for modeling. As a result of matching, nonrespondents 
and their substitutes may share similar values in their “field 
covariates” – variables that are only implicitly observed and 
are therefore not available for data analysis. “Modeling 
covariates” are variables that can be included in statistical 
models to adjust for observed differences between non-
respondents and their substitutes, but that may not be 
available or used for matching. The essence of MMM is that 
both matching and modeling covariates are used, in the 
context of proper multiple imputation (Little and Rubin 
1987, pages 258 – 259 and references therein). 

Consider a simple example where age and address 
covariates are available for all units in a population prior to 
sampling. Finding substitutes matching nonrespondents 
with respect to both age and address may be difficult. An 
alternative is to match only on address (e.g., choosing a 
neighbor to be a substitute) and adjust for systematic age 

differences between nonrespondents and matched substi-
tutes through statistical modeling. If neighboring households 
were chosen as matched substitutes for nonresponding 
households, the substitutes and nonrespondents might have 
similar socioeconomic contexts (e.g., levels of crime, access 
to public transportation, etc.) even though these charac-
teristics might have not been recorded. In this example, 
address is a matching covariate, age is a modeling covariate, 
and the contextual socioeconomic characteristics are field 
covariates. 

In summary, MMM (i) chooses matched substitutes for 
nonrespondents and some respondents based on matching 
covariates, (ii) uses modeling covariates to fit a model 
estimating the systematic differences in responses between 
pairs of respondents and substitutes, (iii) multiply-imputes 
the unobserved values using the model in (ii) under the 
assumption that the same relationship holds between pairs 
of nonrespondents and substitutes, and (iv) discards all 
matched substitutes after imputation.  
2.2 Out-of-Sample Versus Within-Sample Matching  

Matched cases may be obtained from out-of-sample data 
or within-sample data. In the Rubin and Zanutto approach, 
matched substitutes are obtained from out-of-sample data 
after the missingness is detected. Their description empha-
sizes that the matched substitutes must be discarded after 
imputation since including such additional cases in infer-
ences would modify the sample design by adding extra 
cases in the “blocks” that contain unobserved data. Matched 
cases are considered within-sample data if they are obtained 
from the database that is available before imputing or even 
finding out which records in the database have unobserved 
variables. As far as the overall inferential goals are con-
cerned, these matched cases are not additional cases, but are 
part of the original data collection, and therefore will be 
included in scientific analyses. 

Assuming within-sample matching, we treat the un-
geocodable records as nonrespondents and the geocodable 
records as respondents. For each ungeocodable record, a 
given number of matched cases are randomly chosen from a 
pool of geocodable records within the same small geograph-
ical area (e.g., zip code, which is a postal delivery code 
usually representing an area served by a single main US 
post office). Similarly, the same number of matched cases 
are also chosen for each of the randomly sampled geo-
codable records (see Rubin and Zanutto (2001) for recom-
mendations on the size of such a sample relative to the total 
number of ungeocodable records in a given dataset). If more 
matched cases were needed than those are available in the 
same small area, the selection pool would be extended to the 
“nearest” geographical areas until the required number of 
matched cases was achieved. 
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All matched cases in the colorectal cancer study came 
from the same cancer database. In general, matched cases 
need not be drawn from the same population in which the 
nonrespondents and respondents originated. For example, 
matched cases for colorectal cancer records can be obtained 
from a general population of cancer patients, and a model 
can then be fitted to correct for systematic differences. Note 
that, with matched cases from a more similar population, 
stronger models can be built with more covariates. In our 
example, since we used other patients with the same cancer 
type, relationships to treatment process and outcome 
variables are likely to be consistent.  
2.3 Modeling and Multiply-imputing  

A simple example of our method is given here to convey 
the basic idea; in practice, more complex models may often 
be required. Suppose the following relationship holds in the 
population, 

,iki
T
ikiky ε+δ+= βx  (1) 

where i  indexes small geographical area, k  indexes unit 
within area, and iky  and ikx  are respectively the response 
and the characteristics of the thk  unit in geographical area 
.i  This model includes a regression prediction ,βT

ikx  a 
small-area effect ,iδ  and a unit-specific residual .ikε  We 
assume that ikε  follows some distribution εF  with mean 
zero and variance .2σ  Note that this development 
generalizes directly to multivariate .iky  

We extend Rubin and Zanutto’s method to allow more 
than one match in the same small area, because having 
several matches in small areas is possible (often convenient 
and inexpensive) in census data or in large administrative 
datasets. Rubin and Zanutto’s assumption of a single match 
is appropriate to survey data collection that requires 
additional field work for each match. 

The regression coefficients in equation (1) are estimated 
using any collection of observations with two or more 
records per small area to fit the regression model in which 
the iδ  are treated as fixed effects. With only two cases per 
area, β  can instead be estimated from the within-area 
regression 

,)()()( 212121 ii
T
i

T
iii yy ε−ε+−=− βxx  (2) 

where the small area effect drops out. The residuals from 
this regression have a symmetrical distribution with vari-
ance .2 2σ  

Assuming for the moment that we have a draw from the 
posterior distribution of ,β  we carry out the rest of this 
analysis conditional on that draw. Now suppose that we are 
interested in imputing for a new unit (indexed as 0=k ) in 
area ,i  and that we have obtained 1≥iK  matched cases for 
this unit. Denote the outcomes of these matched cases by 

the vector T
iKii i

yy )...,,( 1=y  and the corresponding 
characteristics by the matrix .)...,,( 1

T
iKii i

xxX =  With a 
flat prior for ,iδ  the posterior distribution for β,,| iii Xyδ  
has mean 

βT
iiy x−  (3) 

and variance ,/2
iKσ  where ∑ == iK

k iiki Kyy 1 /  and =ix  
∑ =

iK
k ii K1 ./x  Hence, the predictive distribution for 

β,,,| 00 iiiiy xXy  has mean 

β)( 0
T
i

T
iiy xx −+  (4) 

and variance 2)/11( σ+ iK  which is the sum of the 
predictive variance under the model conditional on all 
parameters and the posterior variance of .iδ  These 
statements assume that the mean of the residuals is a 
sufficient statistic for .iδ  This assumption is true for the 
normal distribution (or natural observations of any 
exponential family distribution); we assume it is at least 
approximately true for ,εF  so that we can base inferences 
on that mean. Note that use of a flat prior leads to 
overdispersed draws relative to what would be obtained 
with a proper prior from a hierarchical model, but is much 
simpler (especially in analyses with the multivariate 
outcomes). 

An imputation for 0iy  can be generated by first drawing 
2σ  from its posterior distribution, second drawing β  

conditional on the draw of ,2σ  third computing the 
predictive mean in equation (4) from the draw of ,β  and 
finally adding a residual of variance 2)/11( σ+ iK  to the 
predictive mean. In simple surveys with β  estimated by 
equation (2), the posterior distribution of β  (conditional on 

2σ  and the data) under a flat prior is approximately 
))(,ˆ(N 21 σ−XX Tβ  where the thi  row of X  is 

.)( 21
T
i

T
i xx −  In more complex designs, the posterior 

distribution of β  can be approximated using the point 
estimate and sampling variance calculated under the 
associated design. 

The residual can be obtained through modeling or 
sampling. Modeling involves estimating 2σ  using the 
residual variance of equation (1) and drawing the residual 
under univariate normality (see Rubin and Zanutto (2001) 
for the special case where only one matched case was ob-
tained for each record) or some other parametric distri-
bution. We refer to such an approach as parametric MMM 
(PMMM). An alternative is to randomly sample a 
regression residual from any area j  whose residuals might 
be regarded as exchangeable with those from area i  (Rubin 
1987 pages 166 – 168). See also Lessler and Kalsbeek 
(1992, section 8.2.2.4), Kalton and Kasprzyk (1986), and 
Kalton (1983). Since the variance of such a residual is 

,]/)1([ 2σ− jj KK  we multiply the randomly-sampled 
residual by )]1/([]/)1([ −+ jjii KKKK  to obtain the 
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correct predictive variance. We call this approach 
nonparametric MMM (NpMMM).  

In summary, our method consists of three basic steps: 
 

1. Draw matched cases for the ungeocodable records 
and for some randomly sampled geocodable records; 
 

2. Use the sampled geocodable records and their 
matched cases to fit equation (1) where the iδ  are 
treated as fixed effects, and save the residuals; 
 

3. Repeat the following for m  (usually 5 to 10) times: 
 

(a) Draw 2σ  from its posterior distribution, then β  
conditional on the draw of 2σ ; 
 

(b) For each ungeocodable record, treat the sum of 
the vector of predictive means obtained from 
equation (4) and a vector of residuals drawn 
using either PMMM or NpMMM as a realization 
of the unobserved vector of contextual variables.  

2.4 Efficiency  
The efficiency of an imputation is related to the number 

of matched cases used. Let KV  be the predictive variance of 
an imputation model where K  matched cases per record are 
used. For the model in section 2.3, .)/11( 2σ+= KVK  
Define efficiency as 

,
1)/11( 2

2

+
=

σ+
σ== ∞

K

K

KV

V
E

k
K  (5) 

for any positive integer .K  Efficiency increases as the 
number of matched cases per record increases; for example, 

,91.0,8.0,67.0 1042 ≈=≈ EEE  and .95.020 ≈E  
Theoretically each record can have as many matched 

cases as permitted by available resources. In practice, the 
number of matched cases used often depends on the cost of 
matched cases and the cost of computation involved in 
model fitting. In our method, the cost of computation for 
each added matched case per record is negligible. In the 
colorectal cancer study, while the matched cases were free, 
the ability to do the imputation based on a limited number of 
matched cases was crucial because confidentiality restrict-
tions prevented investigators from using the entire dataset in 
modeling with zip codes (even in a coded form) attached. 
For illustrative purposes, we will use two matched cases per 
record in subsequent analyses.  

3. Application: The Colorectal Cancer Study  
The colorectal cancer database has a total of 50,740 

patient records, of which approximately 3.3% are un-
geocodable. Among these, about half have P.O. box 
addresses (often in a rural area), and the rest are mistyped 

addresses or addresses from newly developed areas that are 
not in address databases. In a study of factors predicting 
provision of chemotherapy for colorectal cancer patients, 
investigators believed that the following three census block-
group means would be useful contextual variables: 
 

1Y  = median household income, 
 

2Y  = percent with no high school diploma, and 
 

3Y  = percent below poverty level. 
 

These variables were observed in geocodable records but 
unobserved in ungeocodable records. The task was to 
generate multiple imputations for the unobserved census 
variables using the methods in section 2. 

Each of the block-group means was reported in the 
census data for six race/ethnic groups, and the scientific 
analyses used only the set of block-group means 
corresponding to the race/ethnicity of each patient. For 
imputations used in Ayanian et  al. (2003), we therefore 
fitted six separate models to impute all )36(18 ×  values for 
each ungeocodable patient and then selected the three 
variables pertinent to each patient; joint distributions for 
different race/ethnic groups were not important because 
each imputation only used values for a single group. An 
alternative would have been to use race as a matching 
variable, but this would have forced us to seek some 
matches at a much greater distance geographically, diluting 
the predictive value of the geographical match. 

For expository purposes, we assume henceforth that only 
the block-group mean corresponding to the race of each 
respondent is available, but not the means corresponding to 
the other five races that are available simultaneously in the 
census data. This is more typical of data that would be 
collected directly from the respondent, where the race 
variable itself (as a modeling variable) is quite predictive 
because income data for people of different races reflect 
differences in income associated with race.  
3.1 Matching and the Dataset  

The addresses of over 90% of ungeocodable records 
have zip codes. Zip code was therefore chosen as a 
matching covariate. A simple diagnostic for its usefulness 
appears in section 3.2. The numerical sequence of zip codes 
does not always correspond to neighborhood distance 
relationships. For example, Cambridge, Massachusetts has a 
02138 post office that also uses the 02238 zip code for 
mailboxes, and in nearby Boston there is a 02215 zip code 
that was carved out of the 02115 area. Instead of using the 
numerical sequence of zip codes, the distances between zip 
codes were computed based on latitudes and longitudes of 
their main post offices, under the assumption that two zip 
codes were closest to each other if their main post offices 
were closest to each other. 
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The colorectal cancer database has 1,696 ungeocodable 
records. The same number )696,1( * =n  of geocodable 
records was randomly selected from the same database. For 
each of these 3,392 records, two matched geocodable cases 
were randomly chosen from its own zip code or (if 
necessary) neighboring zip codes. This created a dataset 
with 176,103392,3 =×  records. Note that *n  was a 
convenient choice, because the data were free. In general, 
the choice of *n  could affect both the total cost and the 
precision of the estimates. Both the randomly selected 
geocodable records and the matched cases were within-
sample data and hence were retained in the analyses for 
Ayanian et al. (2003). We asked the cancer registry for 
these cases only because for confidentiality purposes we 
could not do the matching ourselves with the data (for the 
same cases) that we had in hand. 

The modeling covariates used in the imputation model 
were the eight administrative-record variables: age, sex, 
race, marital status, cancer stage, chemotherapy treatment, 
cancer type and radiotherapy treatment, and category of 
treating hospital’s American College of Surgeons accred-
itation as of 1999 (ACOS99). These variables are observed 
for all 10,176 records included in the imputation model. 
(Some of these variables are predictors and some are 
outcomes in the scientific models of the main analyses, but 
the distinction is irrelevant for imputation.) The census 
mean values 21, YY  and 3Y  are observed in geocodable 
records, but not in ungeocodable records. These variables 
were treated as outcome variables of the imputation model 
in section 2.3. The data structure is represented by Table 1. 
 

Table 1 
Structure of Data Used in Imputation for the  

Colorectal Cancer Study 
 

Eight Modeling 
Covariates 

Census 
Variables Data* 

Age Sex … ACOS99 1Y  2Y  3Y  

Ungeocodable √ √ … √ ? ? ? 
First Match √ √ … √ √ √ √ 
Second Match √ √ … √ √ √ √ 

Geocodable √ √ … √ √ √ √ 
First Match √ √ … √ √ √ √ 
Second Match √ √ … √ √ √ √ 

 

* There were 1,696 records in each of the six types  
 of data. 
√ = observed ? = unobserved 
 

Before we fitted the model, the percentage outcomes 2y  
and 3y  were transformed using the scaled-logit function: 

,
)/()(1

)/()(
log ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−

−−
abay

abay
 (6) 

with 5.0−=a  and 5.100=b  so that after imputations the 
inverse transformation with rounding to the nearest integer 

would yield imputed values between 0 and 100 inclusive 
(Schafer 1999). Similarly, a log-transformation was applied 
to the income outcome 1y  so that the imputed incomes 
would be nonnegative. Note that the distributions of the 
transformed variables are closer to normality than they are 
on the original scale (Schafer 1997). To keep notation 
simple, we redefine 21, yy  and 3y  as their transformed 
versions.  
3.2 Preliminary Diagnostics  

A simple diagnostic test for the usefulness of the 
matching covariates is to compare the adjusted 2R  for the 
regression models predicting the three census variables with 
only the modeling covariates, the models with only the 
matching covariates, and the models with both. In this 
application, zip code was the only matching covariate. 
There were 1,133 distinct zip codes (hence 1,132 dummy 
variables) in the 8,480 fully observed records (the 
geocodable records and all first and second matches). Table 
2 shows the adjusted 2R  for models with only the eight 
modeling covariates, models with only zip code, and models 
with both modeling covariates and zip code. The adjusted 

2R  for models with both modeling covariates and zip code 
are higher than the corresponding ones for models with only 
one of the two covariate types. Our imputation procedure 
uses information from both matching and modeling 
covariates and thus can be expected to work better than 
procedures using only the matching or the modeling 
covariates (as shown by the simulation study in section 4). 
Although the contribution of the modeling covariates to 2R  
is relatively modest, their inclusion is important for 
removing systematic biases and properly representing 
relationships that might be important in the scientific 
models. 

Table 2 
Adjusted 2R  for Alternative Regression Models 

 

 Only 
Modeling 
Covariates 

Only Matching 
Covariate  

(Zip Code) 

Both Modeling 
and Matching 

Covariates 
Median household income (INC) 0.091 0.453 0.496 
Percent with no high school 
diploma (EDU) 0.115 0.452 0.503 
Percent below poverty level (POV) 0.047 0.327 0.343 
Model degrees of freedom(a) 26(b) 1,133 1,158 
Sample sizes 8,480 8,480 8,480 
Residual degrees of freedom 8,454 7,347 7,322 
 

(a) With intercept. 
 

(b) The modeling covariates are age, sex (2 levels), race (6 levels), 
marital status (6 levels), cancer stage (6 levels), chemotherapy 
treatment (2 levels), cancer type and radiotherapy treatment (3 
levels), and category of treating hospital’s American College 
of Surgeons accreditation as of 1999 (6 levels). 

 
To determine whether a multivariate model was needed, 

we fitted a multivariate-outcome regression model with both 
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modeling covariates and zip code. The estimated correla-
tions between the residuals were: ,194.012 −≈r  

,297.013 −≈r  and ,357.023 ≈r  where “variable 1” is 
median household income, “variable 2” is percent with no 
high school diploma, and “variable 3” is percent below 
poverty level. These estimates were significantly different 
from zero, which therefore indicated that multivariate 
versions of the methods in section 2.3 should be used to 
generate imputations.  
3.3 Multiple Imputation Results and Comparisons  

Imputations under NpMMM were used in the study of 
factors predicting provision of chemotherapy for colorectal 
cancer patients (Ayanian et al. 2003). Their model included 
three indicator variables for ranges of contextual income, 
together with 21 other variables representing patient and 
hospital characteristics. The multiple imputation analysis 
shows that the information loss due to missing information 
is always less than 0.1%, which is much smaller than the 
fraction of ungeocodable records (3.3%). As expected, the 
largest fractions of missing information appeared for the 
income variables. The scientific results in Ayanian et al. 
(2003) would not have changed dramatically if the 
incomplete cases had been dropped. In this type of research, 
however, every case is precious and expensive, and saving 
the 3.3% with missing data was a contribution to the study. 

For comparison, variances of parameters under the 
complete-case analysis were on the average 4.0% larger 
than those under multiple imputation analysis. Such 
percentage differences are close to the fraction of 
incomplete cases deleted for this analysis. When the 
imputations generated by our method were included in the 
scientific analysis, the precision of the estimate of the 
“rural” effect was dramatically improved (using only the 
complete cases led to 41.6% increase in variance), due to 
the concentration of ungeocodable records in rural areas 
(21.6% of rural records are ungeocodable, but only 3.1% of 
nonrural records are ungeocodable).  

4. A Simulation Study  
This simulation study compares performance of our new 

method with three other commonly-used nonresponse 
adjustment methods. The population of this study was the 
1,696 fully observed triples – the 1,696 geocodable records 
and the corresponding first and second matches (one row 
from each of the last three horizontal blocks in Table 1) – or 
5,088 observations. For simplicity, we assumed that the 
triples were from distinct zip codes (clusters), hence 

.696,1...,,2,1 == Ii  Each cluster i  contained three units 
,)3,2,1( =u  and the record of each unit consisted of iux  

(the covariates) and iuy  (the census variables). 

4.1 Simulated Data and Response Mechanism  
Assuming that the design was cluster sampling with 

sample size 800, we drew random samples of 800 clusters. 
For each random sample, about half of the 800 clusters were 
randomly selected to have an ungeocodable record in which 
the census variables were unobserved, with the probability 
of missingness depending on an individual’s race and on the 
mean income of the cluster (zip code). We simulated 
missingness under a multinomial logit model where the 
outcomes are: nothing unobserved 10 ,)1( iiw y=  unob-
served 21 ,)1( iiw y=  unobserved ,)1( 2 =iw  and 3iy  
unobserved .)1( 3 =iw  Specifically, for each ,...,,2,1 Ii =  
let 00 =iz  and 

)codezipinincomemean(

)Whiteisunit(

ic

iuIbaziu

×+
×+=

 
(7)

 

where .3,2,1=u  Then 

.3,2,1,0for

)(exp)(exp)1(Pr
3

0

=

== ∑
=

u

zzw
u

iuiuiu  
(8)

 

The results of this simulation study were based on 
datasets generated by the mechanism with 11,1 =−= ba  
and ,0003.0=c  which made about 17% of the units in a 
random sample ungeocodable, with probability of 
geocoding positively related to White race and higher block-
level income. The task was to use the random sample to 
estimate ,y  the mean values of the population (1,696 
clusters). 

The simulation conditions described in the preceding 
paragraphs were designed to give a stringent test of the 
procedure and alternatives by exaggerating the impact of 
unobserved data and making the missingness strongly 
related to characteristics both of the individual and of the 
area. We were not attempting to simulate the exact con-
ditions of the application in section 3 but rather to use an 
artificial population with similar distributions to those in the 
real population to illustrate the workings of our method and 
its competitors.  
4.2 Inferential Methods and Measures of 

Performance  
Preliminary results indicated that the performance of 

PMMM and NpMMM is similar; NpMMM is, however, 
simpler (especially in analyses with multivariate outcomes), 
because the method does not require explicit parametric 
modeling of the residual variance. Our simulations com-
pared performance of NpMMM (using two matched cases 
per record) with three other commonly-used nonresponse 
adjustment methods: 
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1. Complete-case Method (CCM) 
The population means are estimated from all geo-
codable units of a random sample. 

 

2. Substitute Single Imputation (SSI) 
This is the traditional use of substitutes. The un-
observed census variables of each ungeocodable unit 
are replaced by the values of the census variables of a 
randomly selected unit from the same cluster. The 
resulting sample is treated as if there had been no 
ungeocodable unit; all 800 clusters in such a sample 
are used for estimating the population means.  

 

3. Multivariate Normal Multiple Imputation 
(MNMI) 
This method uses only one randomly selected unit 
from each of the fully observed clusters in a random 
sample to fit the multivariate normal linear regression 

,),(N~ 0 ΣBβ T
i

TT
i xy +  

with a noninformative prior on the parameters. The 
model is then used to create m  sets of multiple 
imputations for the unobserved census variables using 
a direct multivariate generalization of the algorithm 
given by Rubin (1987, page 167). 

 

Note that CCM uses neither matching nor modeling 
covariates, SSI uses only the matching covariate (zip code), 
MNMI uses only the modeling covariates, and NpMMM 
uses both the matching covariate and the modeling 
covariates. 

The CCM and SSI data are analyzed by the usual 
complete-data method which estimates the population mean 
from the data with the appropriate estimator for cluster 
sampling from a finite population, including the finite 
population correction (Cochran 1977, Chapters 9 – 10). Both 
MNMI and NpMMM produce m  sets of complete data, 
each of which is analyzed by the same complete-data 
method used for the CCM and SSI data; the m  sets of point 
and variance estimates are then combined using the multiple 
imputation combination rule (Rubin 1987; Schafer 1997, 
pages 108 – 110). 

For each simulation ,}...,,2,1{ Tt ∈  we denote the 
point estimates from the four methods by ),(CC ty  

),(),( MNSS tt yy  and ),(Np ty  and the means of these 
quantities across simulations are written as ,CCy  

,, MNSS yy  and .Npy  Performance evaluation of the four 
nonresponse adjustment methods will be based on three 
measures: 
 

1. Percent reduction in the average bias of an 
estimator relative to the average bias of the CCM 
estimator. Denote the average bias of an estimator by 

.Eb  Then  
,E yyb −= E  

where .}NpMN,SS,CC,{∈E  We define the 
percent reduction in the average bias of an estimator 
relative to the average bias of the CCM estimator as  

,
||

||||
),(

CC

ECC
CCE b

bb
bbR

−
=  

where Eb  is an element of Eb  and CCb  is the corre-
sponding element in .CCb  By definition, ),( CCCC bbR  
is zero.  

2. Estimated coverage of the nominal 95% confidence 
intervals for .y  Intervals produced by the CCM or 
SSI estimates were constructed under appropriate 

ons.distributi−t  For intervals associated with the 
MNMI or NpMMM estimates, we followed the 
procedure outlined in Schafer (1997, pages 109 – 110) 
and replaced the degrees of freedom v  with the 
updated version of Barnard and Rubin (1999).  

3. Estimated fraction of missing information about 
.y  For each of MNMI and NpMMM, we computed 
,λ̂  an estimate of the fraction of missing information 

about y  (see Barnard and Rubin (1999) for the most 
recent expression).  

4.3 Results  
The simulation procedure was implemented 2,000 times, 

and 10=m  was used for MNMI and NpMMM. The mean 
values of the census variables in the population were 

.)55.9,65.21,642,40( T=y  The average bias of the CCM 
estimator was .)79.1,97.3,405,5(CCM

T−−−=b  Other 
results are summarized in Table 3. NpMMM achieved large 
percent reductions in relative average bias (95.0% to 
99.5%). SSI reduced biases more than MNMI, because the 
matching covariate (zip code) was much more informative 
than the set of modeling covariates (section 3.2). Since the 
response mechanism was nonignorable (the response 
probabilities depended partly on income), the poor 
performance of MNMI, which did not use the geographical 
information to help predict income, was expected. Note that 
MNMI is biased, and the bias is large enough so that with 
the sample size considered in this paper the confidence 
intervals never covered the hypothetical population values. 

Under MNMI and NpMMM, the percent of missing 
information was much less than the average percent of 
unobserved data. The percent of missing information was 
smaller under NpMMM than under MNMI. Only NpMMM 
produced well calibrated intervals with correct coverage. In 
summary, NpMMM combines the best features of the other 
two methods – close-to-nominal coverage and less missing 
information. 
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Table 3 
Simulation Results(a): Bias Reduction, Coverage, and Fraction of 

Missing Information 
 

Method Measure Mean 
NpMMM MNMI SSI 

INC 99.5 44.6 95.2 
EDU 95.0 40.6 83.7 

Percent bias 
Reduction 

)b(
CCM ),(100 bbR E  POV 96.8 32.6 80.3 

     

INC 95.1 0.00 89.8 
EDU 94.8 0.00 65.7 

Estimated 
Coverage of the 
95% CIs(c) POV 95.2 0.00 66.0 
     

INC 1.00 9.92  
EDU 0.05 0.07  

×100 Estimated 
fraction of missing 
information )d(λ̂  POV 0.07 0.08  
 

(a) Based on 2,000 replications and .10=m  
 

(b) By definition, .0),(100 CCMCCM =bbR  
 

(c)  Results for the CCM estimates were all zeros. 
 

(d) The average percent of unobserved data was approximately 17%.  
5. Conclusion  

This work extends Rubin and Zanutto (2001) in two 
respects. First, our method allows more than one matched 
case per record. We show theoretically that the efficiency of 
an imputation increases as the number of matched cases per 
record increases. When the cost of matched cases is rela-
tively low, our method offers an option where information 
of more than one matched case per record is used to help fit 
imputation models at a negligible computational expense. 
Second, NpMMM does not require explicit parametric 
modeling of residual variance(s), hence simplifying the 
modeling task (especially for analyses with multivariate 
outcomes). This nonparametric approach makes it feasible 
to apply our method to datasets with complex model 
structures. In a simulation study, NpMMM estimates 
achieved substantial bias reductions, and NpMMM 
produced confidence intervals with correct coverage. 

Although we have focused on geographically-based 
matching to complete unobserved geographically-linked 
variables, the procedures described in this paper can be 
generalized to other matching variables. For example, to 
impute clinical variables, it might be more appropriate to 
match to another patient in the same hospital, if clinical 
characteristics and therapies are likely to be more strongly 
associated with the hospital than with the geographic 
location of the patient’s residence. 
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