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Simultaneous Use of Multiple Imputation for Missing Data and 
Disclosure Limitation 

Jerome P. Reiter 1 

Abstract 
Several statistical agencies use, or are considering the use of, multiple imputation to limit the risk of disclosing respondents’ 
identities or sensitive attributes in public use data files. For example, agencies can release partially synthetic datasets, 
comprising the units originally surveyed with some collected values, such as sensitive values at high risk of disclosure or 
values of key identifiers, replaced with multiple imputations. This article presents an approach for generating multiply-
imputed, partially synthetic datasets that simultaneously handles disclosure limitation and missing data. The basic idea is to 
fill in the missing data first to generate m completed datasets, then replace sensitive or identifying values in each completed 
dataset with r imputed values. This article also develops methods for obtaining valid inferences from such multiply-imputed 
datasets. New rules for combining the multiple point and variance estimates are needed because the double duty of multiple 
imputation introduces two sources of variability into point estimates, which existing methods for obtaining inferences from 
multiply-imputed datasets do not measure accurately. A reference t-distribution appropriate for inferences when m and r are 
moderate is derived using moment matching and Taylor series approximations. 

                                                           
1. Jerome P. Reiter, Institute of Statistics and Decision Sciences, Duke University, Box 90251, Durham, NC 27708-0251. E-mail: jerry@stat.duke.edu. 
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1. Introduction  
Many statistical agencies disseminate microdata, i.e., 

data on individual units, in public use files. These agencies 
strive to release files that are (i) safe from attacks by ill-
intentioned data users seeking to learn respondents’ 
identities or attributes, (ii) informative for a wide range of 
statistical analyses, and (iii) easy for users to analyze with 
standard statistical methods. Doing this well is a difficult 
task. The proliferation of publicly available databases, and 
improvements in record linkage technologies, have made 
disclosures a serious threat, to the point where most 
statistical agencies alter microdata before release. For 
example, agencies globally recode variables, such as 
releasing ages in five year intervals or top-coding incomes 
above $100,000 as “$100,000 or more” (Willenborg and de 
Waal 2001); they swap data values for randomly selected 
units (Dalenius and Reiss 1982); or, they add random noise 
to continuous data values (Fuller 1993). Inevitably, these 
strategies reduce the utility of the released data, making 
some analyses impossible and distorting the results of 
others.  They also complicate analyses for users.  To analyze 
properly perturbed data, users should apply the likelihood-
based methods described by Little (1993) or the mea-
surement error models described by Fuller (1993). These are 
difficult to use for non-standard estimands and may require 
analysts to learn new statistical methods and specialized 
software programs.   

An alternative approach to disseminating public use data 
was suggested by Rubin (1993):  release multiply-imputed, 

synthetic datasets. Specifically, he proposed that agencies (i) 
randomly and independently sample units from the 
sampling frame to comprise each synthetic data set, (ii) 
impute unknown data values for units in the synthetic 
samples using models fit with the original survey data, and 
(iii) release multiple versions of these datasets to the public.  
These are called fully synthetic data sets. Releasing fully 
synthetic data can protect confidentiality, since iden-
tification of units and their sensitive data is nearly 
impossible when the values in the released data are not 
actual, collected values. Furthermore, with appropriate 
synthetic data generation and the inferential methods 
developed by Raghunathan, Reiter and Rubin (2003) and 
Reiter (2004b), it can allow data users to make valid 
inferences for a variety of estimands using standard, 
complete-data statistical methods and software. Other 
attractive features of fully synthetic data are described by 
Rubin (1993), Little (1993), Fienberg, Makov and Steele 
(1998), Raghunathan et al. (2003), and Reiter (2002, 
2004a). 

No statistical agencies have released fully synthetic 
datasets as of this writing, but some have adopted a variant 
of the multiple imputation approach suggested by Little 
(1993): release datasets comprising the units originally 
surveyed with some collected values, such as sensitive 
values at high risk of disclosure or values of key identifiers, 
replaced with multiple imputations. These are called 
partially synthetic datasets. For example, the U.S. Federal 
Reserve Board protects data in the U.S. Survey of 
Consumer  Finances  by  replacing  monetary  values at high 
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disclosure risk with multiple imputations, releasing a 
mixture of these imputed values and the unreplaced, 
collected values (Kennickell 1997). The U.S. Bureau of the 
Census and Abowd and Woodcock (2001) protect data in 
longitudinal, linked data sets by replacing all values of some 
sensitive variables with multiple imputations and leaving 
other variables at their actual values. Liu and Little (2002) 
present a general algorithm, named SMIKe, for simulating 
multiple values of key identifiers for selected units. 

All these partially synthetic approaches are appealing 
because they promise to maintain the primary benefits of 
fully synthetic data – protecting confidentiality while 
allowing users to make inferences without learning 
complicated statistical methods or software – with 
decreased sensitivity to the specification of imputation 
models (Reiter 2003). Valid inferences from partially 
synthetic datasets can be obtained using the methods 
developed by Reiter (2003, 2004b), whose rules for 
combining point and variance estimates again differ from 
those of Rubin (1987) and also from those of Raghunathan 
et al. (2003).  

The existing theory and methods for partially synthetic 
data do not deal explicitly with an important practical 
complication:  in most large surveys, there are units that fail 
to respond to some or all items of the survey. This article 
presents a multiple imputation approach that handles 
simultaneously missing data and disclosure limitation.  The 
approach involves two steps. First, the agency uses multiple 
imputation to fill in the missing data, generating m multiply-
imputed datasets. Second, the agency replaces the values at 
risk of disclosure in each imputed dataset with r multiple 
imputations, ultimately releasing mr multiply-imputed 
datasets. This double-duty of multiple imputation requires 
new methods for obtaining valid inferences from the 
multiply-imputed datasets, which are derived here.   

The paper is organized as follows. Section 2 reviews 
multiple imputation for missing and partially synthetic data.  
Section 3 presents the new methods for generating partially 
synthetic data and obtaining valid inferences when some 
survey data are missing. Section 4 shows a derivation of 
these methods from a Bayesian perspective, and it discusses 
conditions under which the resulting inferences should be 
valid from a frequentist perspective. Section 5 concludes 
with a discussion of the challenges to implementing this 
multiple imputation approach on genuine data, with an aim 
towards stimulating future research.    

2. Review of Multiple Imputation Inferences  
To describe multiple imputation, we use the notation of 

Rubin (1987). For a finite population of size N, let 1=jI  if 
unit j is selected in the survey, and 0=jI  otherwise, where 

j = 1, 2, ..., N. Let )Ι,= NII ...,( 1 . Let jR  be a p × 1 vector 
of response indicators, where 1=jkR  if the response for 
unit j to survey item k is recorded, and 0=jkR  otherwise.  
Let )= NRRR ...,,( 1 . Let Y be the N × p matrix of survey 
data for all units in the population.  Let ),( misobsinc YYY =  
be the n × p matrix of survey data for the n units with 

;1=jI  obsY  is the portion of incY  that is observed, and misY  
is the portion of incY  that is missing due to nonresponse.  
Let X be the N × d matrix of design variables for all N units 
in the population, e.g., stratum or cluster indicators or size 
measures. We assume that such design information is 
known approximately for all population units, for example 
from census records or the sampling frame(s). Finally, we 
write the observed data as ),,,( obs RIYXD = . 

 
2.1 Multiple Imputation for Missing Data  

The agency fills in values for misY  with draws from the 
Bayesian posterior predictive distribution of )|( mis DY , or 
approximations of that distribution such as those of 
Raghunathan, Lepkowski, Van Hoewyk and Solenberger 
(2001). These draws are repeated independently ml ,,1…=  
times to obtain m completed data sets, ),( )(

mis
)( ll YDD = . 

Multiple rather than single imputations are used so that 
analysts can estimate the variability due to imputing missing 
data.   

In each imputed data set )(lD , the analyst estimates the 
population quantity of interest, Q, using some estimator q, 
and estimates the variance of q with some estimator u. We 
assume that the analyst specifies q and u by acting as if each 

)(lD  was in fact collected data from a random sample of 
(X, Y ) based on the original sampling design I, i.e., q and u 
are complete-data estimators.   

For ml ,,1…= , let )(lq  and )(lu  be respectively the 
values of q and u in data set )(lD . Under assumptions 
described in Rubin (1987), the analyst can obtain valid 
inferences for scalar Q by combining the )(lq  and )(lu . 
Specifically, the following quantities are needed for 
inferences:   

∑
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l
m mqq

1
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∑
=

−−=
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l
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l
m mqqb

1
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.
1
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=

=
m

l

l
m muu  (3) 

The analyst then can use mq  to estimate Q and 

mmm ubmT ++= )/11(  to estimate the variance of mq . 
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Inferences can be based on t-distributions with degrees of 
freedom 2)))/11/((1)(1( mmm bmumv ++−= .  
2.2 Multiple Imputation for Partially Synthetic Data 
 when obsinc YY =   

Assuming no missing data, i.e., obsinc YY = , the agency 
constructs partially synthetic datasets by replacing selected 
values from the observed data with imputations. Let 1=jZ  
if unit j is selected to have any of its observed data replaced 
with synthetic values, and let 0=jZ  for those units with all 
data left unchanged. Let )= nΖZZ ...,,( 1 . Let iY ,rep  be all 
the imputed (replaced) values in the ith synthetic data set, 
and let nrepY  be all unchanged (unreplaced) values of obsY . 
The iY ,rep  are assumed to be generated from the posterior 
predictive distribution of ),|( ,rep ZDY i , or a close 
approximation of it. The values in nrepY  are the same in all 
synthetic data sets. Each synthetic data set, id , then 
comprises ),,,,( nrep,rep ZIYYX i . Imputations are made 
independently i = 1, …, r times to yield r different partially 
synthetic data sets, which are released to the public.  Once 
again, multiple imputations enable analysts to account for 
variability due to imputation. 

The values in Z can and frequently will depend on the 
values in D. For example, the agency may simulate sensitive 
variables or identifiers only for units in the sample with rare 
combinations of identifiers; or, the imputer may replace 
only incomes above $100,000 with imputed values. To 
avoid bias, the imputations should be drawn from the 
posterior predictive distribution of Y for those units with 

1=jZ . Reiter (2003) illustrates the problems that can arise 
when imputations are not conditional on Z. 

Inferences from partially synthetic datasets are based on 
quantities defined in Equations (1)  – (3). As shown by Reiter 
(2003), under certain conditions the analyst can use rq  to 
estimate Q and rrp urbT += /  to estimate the variance of 

rq . Inferences for scalar Q can be based on t-distributions 
with degrees of freedom 2))//(+1)(1−(= rburv rrp . 

 
3. Partially Synthetic Data  

      when obsinc YY ≠   
When some data are missing, it seems logical to impute 

the missing and partially synthetic data simultaneously.  
However, imputing misY  and repY  from the same posterior 
predictive distribution can result in improper imputations.  
For an illustrative example, suppose univariate data from a 
normal distribution have some values missing completely at 
random (Rubin 1976). Further, suppose the agency seeks to 
replace all values larger than some threshold with 
imputations.  The imputations for missing data can be based 
on a normal distribution fit using all of obsY . However, the 
imputations for replacements must be based on a posterior 

distribution that conditions on values being larger than the 
threshold. Drawing misY  and repY  from the same distri-
bution will result in biased inferences.   

Imputing the misY  and repY  separately generates two 
sources of variability, in addition to the sampling variability 
in D, that the user must account for to obtain valid 
inferences. Neither mT  nor pT  correctly estimate the total 
variation introduced by the dual use of multiple imputation.  
The bias of each can be illustrated with two simple 
examples. Suppose only one value needs replacement, but 
there are hundreds of missing values to be imputed.  
Intuitively, the variance of the point estimator of Q should 
be well approximated by ,mT  and pT  should underestimate 
the variance, as it is missing a mb . On the other hand, 
suppose only one value is missing, but there are hundreds of 
values to be replaced. The variance should be well 
approximated by pT , and mT  should overestimate the 
variance, as it includes an extra mb .  

To allow users to estimate the total variability correctly, 
agencies can employ a three-step procedure for generating 
imputations. First, the agency fills in misY  with draws from 
the posterior distribution for )|( mis DY , resulting in m 
completed datasets, )(mDD ...,,)1( . Then, in each )(lD , the 
agency selects the units whose values are to be replaced, i.e., 
whose 1)( =l

jZ . In many cases, the agency will impute 
values for the same units in all )(lD  to avoid releasing any 
genuine, sensitive values for the selected units.  We assume 
this is the case throughout and therefore drop the superscript 
l from Z. Third, in each )(lD , the agency imputes values 

)(
,rep

l
iY  for those units with 1=jZ , using the posterior 

distribution for ),|( )(
rep ZDY l . This is repeated 

independently i = 1, …, r times for l = 1, …, m, so that a 
total of M = mr datasets are generated. Each dataset, 

),,,,,,( )(
,rep

)(
misnrep

)( ZRIYYYXd l
i

ll
i = , includes a label 

indicating the l of the )(lD  from which it was drawn.  These 
M datasets are released to the public.  Releasing such 
nested, multiply-imputed datasets also has been proposed 
for handling missing data outside of the disclosure 
limitation context (Shen 2000; Rubin 2003). 

Analysts can obtain valid inferences from these released 
datasets by combining inferences from the individual 
datasets. As before, let q be the analyst’s estimator of Q, and 
let u be the analyst’s estimator of the variance of q. We 
assume the analyst specifies q and u by acting as if each 

)(l
id  was in fact collected data from a random sample of 

(X, Y ) based on the original sampling design I. For 
l = 1, …, m and i = 1, …, r, let )(l

iq  and )(l
iu  be respectively 

the values of q and u in data set )(l
id . The following 

quantities are needed for inferences about scalar Q:   

∑ ∑∑
= ==

==
m

l

m

l

l
r

i

l
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1
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The )(lq  is the average of the point estimates in each 
group of datasets indexed by l, and the Mq  is the average of 
these averages across l. The )(lb  is the variance of the point 
estimates for each group of datasets indexed by l, and the 

Mb  is average of these variances. The MB  is the variance of 
the )(lq  across synthetic datasets. The Mu  is the average of 
the estimated variances of q across all synthetic datasets. 

Under conditions described in section 4, the analyst can 
use Mq  to estimate Q. An estimate of the variance of Mq  
is:   

.)11( MMMM urbBmT +−+=  (8) 

When n, m, and r are large, inferences can be based on 
the normal distribution, ),0(~)( MM TNqQ − . When m 
and r are moderate, inferences can be based on the 
t-distribution, ),0(~)( MvM TtqQ

M
− , with degrees of 

freedom  

( )( )
( )

( )
( ) .⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

1−
+

1−
1+1=

−1

2

2

2

2

M

M

M

M
M Trm

rb

Tm

Bm
v  (9) 

The behavior of MT  and Mv  in special cases is 
instructive. When r is very large, mM TT ≈ . This is because 
the )()( ll qq ≈ , so that we obtain the results from analyzing 
the )(lD . When the fraction of replaced values is small 
relative to the fraction of missing values, the Mb  is small 
relative to MB , so that once again mM TT ≈ . In both these 
cases, the Mv  approximately equals mv , which is Rubin’s 
(1987) degrees of freedom when imputing missing data 
only. When the fraction of missing values is small relative 
to the fraction of replaced values, the rbB MM /≈ , so that 

MT  is approximately equal to pT  with M released datasets.   

 
4. Justification of New Combining Rules  

This section presents a Bayesian derivation of the 
inferences described in section 3 and describes conditions 
under which these inferences are valid from a frequentist 
perspective.  These results make use of the theory developed 
in Rubin (1987) and Reiter (2003). For the Bayesian 

derivation, we assume that the analyst and imputer use the 
same models.   

Let }== mlDD lm ...,,1:{ )(  be the collection of all 
multiply-imputed datasets before any observed values are 
replaced.  For each )(lD , let )(lq  and )(lu  be the posterior 
mean and variance of Q. As in Rubin (1987, Chapter 3), let 

∞B  be the variance of the )(lq  obtained when m = ∞.  
Let }1=== mlridd l

i
M ...,,;...,,1:{ )(  be the collection 

of all released synthetic datasets. For each )(l
id , let )(l

iq  be 
the posterior mean of )(lq . For each l, let )(lB  be the 
variance of the )(l

iq  obtained when r = ∞. Lastly, let B be 
the average of the )(lB  obtained when m = ∞.  

Using these quantities, the posterior distribution for 
)|( MdQ  can be decomposed as  

.

,,|()|(

dBdΒdDdBf

BdBDf

BBDdQfdQf

mM

Mm

mMM

∞

∞

∞

)|(

),|,(

),= ∫
 

(10)

 

The integration is over the distributions of the values in 
D that are missing and the values in each )(lD  that are 
replaced with imputations; the observed, unaltered values 
remain fixed. We assume standard Bayesian asymptotics 
hold, so that complete-data inferences for Q can be based on 
normal distributions.  
4.1 Evaluating ),∞ BBDdQf mM ,,|(   

Given mD , the synthetic data are irrelevant, so that 
),|(=), ∞∞ BDQfBBDdQf mmM ,,|( . This is the poste-

rior distribution of Q for multiple imputation for missing 
data, conditional on ∞B . As shown by Rubin (1987), this 
posterior distribution is approximately  

)+)1+1(,(Ν) ∞∞ mm
m uBmqBDQ ~,(  (11) 

where mq  and mu  are defined as in (1) and (3). In multiple 
imputation for missing data, we integrate (11) over the 
posterior distribution of )|∞

mDB( . This is not done here, 
since we integrate over )|∞

MdB( .  
4.2 Evaluating )|(),|∞

MMm dBfBdBDf ,(   
Since the distribution for Q in (11) relies only on mq , 

mu , and ∞B , it is sufficient for ),|∞ BdBDf Mm ,(  to 
determine 

.

,,(

),|(),,|,(

=),|

∞∞

∞

BdBfBBduqf

BdBuqf
MM

mm

M
mm  

Following Reiter (2003), we first assume replacement 
imputations are made so that, for all i, the sampling 
distributions of each )(l

iq  and )(l
iu  are,  
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),(Ν )()( lllll
i BqBDq ~),|( )()()(  (12) 

).<<,( )()( lllll
i BuBDu ~),|( )()()(  (13) 

Here, the notation F ∼ (G, <<H) means that the random 
variable F has a distribution with expectation of G and 
variability much less than H. In actuality, )(l

iu  is typically 
centered at a value larger than )(lu , since synthetic data 
incorporate uncertainty due to drawing values of the 
parameters. For large sample sizes n, this bias should be 
minimal. The assumption that )()()()( ),|( llll

i qBDqE =  and 
the normality assumption should be reasonable when the 
imputations are drawn from correct posterior predictive 
distributions, ),|( )(

rep ZDYf l , and the usual asymptotics 
hold.   

Assuming flat priors for all )(lq  and )(lv , standard 
Bayesian theory implies that  

( ) ( )rBqBdq lllMl )()( ,Ν~, )()(  (14) 

( ) ( )rBuBdu lllMl /<<, )()(~, )()(  (15) 

2
1−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
r

lM
l

l

Bd
B

br χ~,
)1( )(
)(

)(

 (16) 

where )(lb  is defined in (5). We next assume that BB l =)(  
for all l. This should be reasonable, since the variability in 
posterior variances tends to be of smaller order than the 
variability of posterior means. Averaging across l, we obtain  

( ) ( )rmBqBdq M
M

m ,Ν~,  (17) 

( ) ( )rmBuBdu M
M

m <<,~,  (18) 

where Mq  is defined in (4) and Mu  is defined in (7). The 
posterior distribution of ),|∞ BdB M(  is  

2
1−

∞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,

+
−

m
MM Bd

rBB
Bm χ~

)1(
 (19) 

where MB  is defined in (6). 
Finally, the posterior distribution of )|( MdB  is  

( ) 2χ~
1

1)−(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
rm

MM d
B

brm
 (20) 

where Mb  is defined in (5).  
4.3 Evaluating )|( MdQf   

We need to integrate the product of (11) and (17) with 
respect to the distributions in (19) and (20). This can be 

done by numerical integration, but it is desirable to have 
simpler approximations for users. 

For large m and r, we can replace the terms in the 
variance with their approximate expectations: the ≈∞B  

rBBM /− , and the MbB ≈ . Hence, for large m and r, the 
posterior distribution of Q is approximately:   

( )
( ) ( ) )++−+,( MMMMM

M

umrbrbBmqN

dQ

11~
 

( )( )
( ).,

11,

MM

MMMM

TqN

urbBmqN

=
+−+=

 
(21)

 

When m and r are moderately sized, the normal 
distribution may not be a good approximation. To derive an 
approximate reference t-distribution, we use the strategies of 
Rubin (1987) and Barnard and Rubin (1999). That is, we 
assume that for some degrees of freedom Mv  to be 
estimated,  

( )
2

∞
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++1+ Mv

M

M

MM d
mrBBmu

Tv χ~
1

 (22) 

so that we can use a t-distribution with Mv  degrees of 
freedom for inferences about Q. We approximate Mv  by 
matching the first two moments of (22) to those of a chi-
squared distribution. The details showing that Mv  is 
approximated by the expression in (9) are provided in the 
appendix. 

The inferences based on (4) – (9) have valid frequentist 
properties under certain conditions.  First, the analyst must 
use randomization-valid estimators, q and u. That is, when q 
and u are applied on D to get obsq  and obsu , the 

),(Ν UQYXq ~),|( obs  and )<<,( UUYXu ~),|( obs , 
where the relevant distribution is that of I. Second, the 
imputations for missing data must be proper in the sense of 
Rubin (1987, Chapter 4). Essentially, this requires that 
inferences from the imputations for missing data be 
randomization-valid for obsq  and obsu , under the posited 
non-response mechanism. Third, the imputations for 
partially synthetic data must be synthetically proper in the 
sense of Reiter (2003). This requires that the inferences 
from the replacement imputations associated with each )(lD  
be randomization valid for the )(lq  and )(lu .  

In general, it is difficult to verify that imputations for 
missing data are proper in complex samples (Binder and 
Sun 1996). They may be proper for some analyses but not 
for others. As a result, some confidence intervals centered 
on unbiased estimators may not have nominal coverage 
rates; see Meng (1994) for a discussion of this issue.  These 
difficulties exist for the multiple imputation approach used 
here, and indeed may be compounded because of the 
additional imputation of synthetic data. 
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5. Concluding Remarks  
There are many challenges to using partially synthetic 

data approaches for disclosure limitation. Most important, 
agencies must decide which values to replace with 
imputations. General candidates for replacement include the 
values of identifying characteristics for units that are at high 
risk of identification, such as sample uniques and duplicates, 
and the values of sensitive variables in the tails of 
distributions. Confidentiality can be protected further by, in 
addition, replacing values at low disclosure risk (Liu and 
Little 2002). This increases the variation in the replacement 
imputations, and it obscures any information that can be 
gained just from knowing which data were replaced. As 
with any disclosure limitation method (Duncan, Keller-
McNulty and Stokes 2001), these decisions should consider 
tradeoffs between disclosure risk and data utility. Guidance 
on selecting values for replacement is a high priority for 
research in this area. 

There remain disclosure risks in partially synthetic data 
no matter which values are replaced. Users can utilize the 
released, unaltered values to facilitate disclosure attacks, for 
example via matching to external databases, or they may be 
able to estimate actual values of obsY  from the synthetic data 
with reasonable accuracy. For instance, if all people in a 
certain demographic group have the same, or even nearly 
the same, value of an outcome variable, the imputation 
models likely will generate that value for imputations.  
Imputers may need to coarsen the imputations for such 
people. As another example, when users know that a certain 
record has the largest value of some obsY , that record can be 
identified when its value is not replaced.   

On the data utility side, the main challenge is specifying 
imputation models, both for the missing and replaced data, 
that give valid results. For missing data, it is well known 
that implausible imputation models can produce invalid 
inferences, although this is less problematic when imputing 
relatively small fractions of missing data (Rubin 1987; 
Meng 1994). There is an analogous issue for partially 
synthetic data. When large fractions of data are replaced, for 
example entire variables, analyses involving the replaced 
values reflect primarily the distributional assumptions 
implicit in the imputation models. When these assumptions 
are implausible, the resulting analyses can be invalid.  
Again, this is less problematic when only small fractions of 
values are replaced, as might be expected in many 
applications of the partially synthetic approach.   

Certain data characteristics can be especially challenging 
to handle with partially synthetic data. For example, it may 
be desirable to replace extreme values in skewed dis-
tributions, such as very large incomes. Information about 
the tails of these distributions may be limited, making it 
difficult to draw reasonable replacements while protecting 

confidentiality. As another example, randomly drawn 
imputations for highly structured data may be implausible, 
for instance unlikely combinations of family members’ ages 
or marital statuses. These difficulties, coupled with the 
general limitations of inferences based on imputations, point 
to an important issue for research: developing and 
evaluating methods for generating partially synthetic data, 
including semi-parametric and non-parametric approaches. 

We note that building the synthetic data models is 
generally an easier task than building the missing data 
models. Agencies can compare the distributions of the 
synthetic data to those of the observed data being replaced.  
When the synthetic distributions are too dissimilar from the 
observed ones, the imputation models can be adjusted. 
There usually is no such check for the missing data models. 

It is, of course, impossible for agencies to anticipate 
every possible use of the released data, and hence 
impossible to generate models that provide valid results for 
every analysis. A more modest and attainable goal is to 
enable analysts to obtain valid inferences using standard 
methods and software for a wide range of standard analyses, 
such as some linear and logistic regressions. Agencies 
therefore should provide information that helps analysts 
decide what inferences can be supported by the released 
data. For example, agencies can include descriptions of the 
imputation models as attachments to public releases of data.  
Users whose analyses are not supported by the data may 
have to apply for special access to the observed data.  
Agencies also need to provide documentation for how to use 
the nested data sets. Rules for combining point estimates 
from the multiple data sets are simple enough to be added to 
standard statistical software packages, as has been done 
already for Rubin’s (1987) rules in SAS, Stata, and S-Plus.   

As constructed, the multiple imputation approach does 
not calibrate to published totals. This could make some 
users unhappy with or distrust the released data. It is not 
clear how to adapt the method – or, for that matter, many 
other disclosure limitation techniques that alter the original 
data – for calibration. 

Missing data and disclosure risk are major issues 
confronting organizations releasing data to the public. The 
multiple imputation approach presented here is suited to 
handle both simultaneously, providing users with 
rectangular completed datasets that can be analyzed with 
standard statistical methods and software. There are 
challenges to implementing this approach in genuine 
applications, but, as noted by Rubin (1993) in his initial 
proposal, the potential payoffs of this use of multiple 
imputation are high. The next item on the research agenda is 
to investigate how well the theory works in practice, 
including comparisons of this approach with other 
disclosure limitation methods. These comparisons should 

Survey Methodology, December 2004                                                                                                                                 9



 

 
Statistics Canada, Catalogue No. 12-001

focus on measures of disclosure risks, obtained by sim-
ulating intruder behavior, and on measures of data utility for 
estimands of interest to users, including properties of point 
and interval estimates.   

 
Appendix  

Derivation of Approximate Degrees of Freedom  
Inferences from datasets with multiple imputations for 

both missing data and partially synthetic replacements are 
made using a t-distribution. A key step is to approximate the 
distribution of  
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as a chi-squared distribution with Mv  degrees of freedom.  
The Mv  is determined by matching the mean and variance 
of the inverted 2χ  distribution to the mean and variance of 
(23).  

Let MBrBΒ )//+(= ∞α , and let MbB/=γ . Then, 
),|−1 Bd Mα(  and )|−1 Mdγ(  have mean square dis-

tributions with degrees of freedom m – 1 and m (r – 1), 
respectively. Let MM uBmf /)/11( += , and let =g  
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To match moments, we need to approximate the expectation 
and variance of (24).  

For the expectation, we use the fact that  
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We approximate these expectations using first order Taylor 
series expansion in −1α  and −1γ  around their expectations, 
which equal one.  As a result,  
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For the variance, we use the conditional variance 
representation  
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For the interior variance and expectation, we use a first 
order Taylor series expansion in −1α  around its expectation.  
Since 1)−2/(=),|−1 mBd Mα(Var , the expression in (27) 
equals approximately  
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We now use first order Taylor series expansions in −1γ  
around its expectation to determine the components of (28). 
The first term in (28) is,  
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Since 1))−(2/(=)|−1 rmd Mγ(Var , the second term in 
(28) is  
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Combining (29) and (30), the variance of (23) equals 
approximately  
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Since a mean square random variable has variance equal to 
2 divided by its degrees of freedom, we conclude that  

( )( ) ( )( ) .⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−+11−
+

−+11−

=
1−

2

2

2

2

gfrm

g

gfm

f

vM

 
(32)

 

 
 

10                                                                            Reiter:  Multiple Imputation for Missing Data and Disclosure Limitation



 

 
Statistics Canada, Catalogue No. 12-001

Acknowledgements  
This research was supported by the U.S. Bureau of the 

Census under a contract through Datametrics Research.  The 
author thanks Rod Little, Trivellore Raghunathan, Don 
Rubin, Laura Zayatz, and the referees for inspiration, 
guidance, and helpful comments on this topic. 

 
References  

Abowd, J.M., and Woodcock, S.D. (2001). Disclosure limitation in 
longitudinal linked data. In Confidentiality, Disclosure, and Data 
Access:  Theory and Practical Applications for Statistical 
Agencies, (Eds. P. Doyle, J. Lane, L. Zayatz and J. Theeuwes), 
Amsterdam:  North-Holland. 215–277.  

Barnard, J., and Rubin, D.B. (1999). Small sample degrees of 
freedom with multiple imputation. Biometrika, 86, 948–955.  

Binder, D.A., and Sun, W. (1996). Frequency valid multiple 
imputation for surveys with a complex design. In Proceedings of 
the Section on Survey Research Methods, American Statistical 
Association, 281–286.  

Dalenius, T., and Reiss, S.P. (1982). Data-swapping:  A technique for 
disclosure control. Journal of Statistical Planning and Inference, 
6, 73–85.  

Duncan, G.T., Keller-Mcnulty, S.A. and Stokes, S.L. (2001). 
Disclosure risk vs. data utility:  The R-U confidentiality map. 
Technical report, U.S. National Institute of Statistical Sciences.  

Fienberg, S.E., Makov, U.E. and Steele, R.J. (1998). Disclosure 
limitation using perturbation and related methods for categorical 
data. Journal of Official Statistics, 14, 485–502.  

Fuller, W.A. (1993). Masking procedures for microdata disclosure 
limitation. Journal of Official Statistics, 9, 383–406.  

Kennickell, A.B. (1997). Multiple imputation and disclosure 
protection:  The case of the 1995 Survey of Consumer Finances. 
In Record Linkage Techniques,  (Eds. W. Alvey and B. Jamerson), 
Washington, D.C.: National Academy Press, 248–267.  

Little, R.J.A. (1993). Statistical analysis of masked data. Journal of 
Official Statistics, 9, 407–426.  

Liu, F., and Little, R.J.A. (2002). Selective multiple imputation of 
keys for statistical disclosure control in microdata. In Proceedings 
of the Joint Statistical Meetings, American Statistical Association, 
2133–2138.  

Meng, X.L. (1994). Multiple-imputation inferences with uncongenial 
sources of input (disc: P558-573). Statistical Science, 9, 538–558.  

Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J. and 
Solenberger, P. (2001). A multivariate technique for multiply 
imputing missing values using a series of regression models. 
Survey Methodology, 27, 85–96.  

Raghunathan, T.E., Reiter, J.P. and Rubin, D.B. (2003). Multiple 
imputation for statistical disclosure limitation. Journal of Official 
Statistics, 19, 1–16.  

Reiter, J.P. (2002). Satisfying disclosure restrictions with synthetic 
data sets. Journal of Official Statistics, 18, 531–544.  

Reiter, J.P. (2003). Inference for partially synthetic, public use 
microdata sets. Survey Methodology, 29, 181–189.  

Reiter, J.P. (2004a). Releasing multiply-imputed, synthetic public use 
microdata:  An illustration and empirical study. Journal of the 
Royal Statistical Society, Series A. Forthcoming.  

Reiter, J.P. (2004b). Significance tests for multi-component estimands 
from multiply-imputed, synthetic microdata. Journal of Statistical 
Planning and Inference. Forthcoming.  

Rubin, D.B. (1976). Inference and missing data (with discussion). 
Biometrika, 63, 581–592.  

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. 
New York:  John Wiley & Sons, Inc.  

Rubin, D.B. (1993). Discussion:  Statistical disclosure limitation. 
Journal of Official Statistics, 9, 462–468.  

Rubin, D.B. (2003). Nested multiple imputation of NMES via 
partially incompatible MCMC. Statistica Neerlandica, 57, 3–18.  

Shen, Z. (2000). Nested Multiple Imputation. Ph. D. thesis, Harvard 
University, Dept.  of Statistics.  

Willenborg, L., and De Waal, T. (2001). Elements of Statistical 
Disclosure Control. New York:  Springer-Verlag. 

 
 
 
 

Survey Methodology, December 2004                                                                                                                               11




