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Penalized Spline Nonparametric Mixed Models for Inference about a 
Finite Population Mean from Two-Stage Samples 

Hui Zheng and Roderick J.A. Little 1 

Abstract 
Samplers often distrust model-based approaches to survey inference because of concerns about misspecification when 
models are applied to large samples from complex populations. We suggest that the model-based paradigm can work very 
successfully in survey settings, provided models are chosen that take into account the sample design and avoid strong 
parametric assumptions. The Horvitz-Thompson (HT) estimator is a simple design-unbiased estimator of the finite 
population total. From a modeling perspective, the HT estimator performs well when the ratios of the outcome values and 
the inclusion probabilities are exchangeable. When this assumption is not met, the HT estimator can be very inefficient. In 
Zheng and Little (2003, 2004) we used penalized splines (p-splines) to model smoothly – varying relationships between the 
outcome and the inclusion probabilities in one-stage probability proportional to size (PPS) samples. We showed that 
p-spline model-based estimators are in general more efficient than the HT estimator, and can provide narrower confidence 
intervals with close to nominal confidence coverage. In this article, we extend this approach to two-stage sampling designs. 
We use a p-spline based mixed model that fits a nonparametric relationship between the primary sampling unit (PSU) means 
and a measure of PSU size, and incorporates random effects to model clustering. For variance estimation we consider the 
empirical Bayes model-based variance, the jackknife and balanced repeated replication (BRR) methods. Simulation studies 
on simulated data and samples drawn from public use microdata in the 1990 census demonstrate gains for the model-based 
p-spline estimator over the HT estimator and linear model-assisted estimators. Simulations also show the variance 
estimation methods yield confidence intervals with satisfactory confidence coverage. Interestingly, these gains can be seen 
for a common equal-probability design, where the first stage selection is PPS and the second stage selection probabilities are 
proportional to the inverse of the first stage inclusion probabilities, and the HT estimator leads to the unweighted mean. In 
situations that most favor the HT estimator, the model-based estimators have comparable efficiency. 
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1. Introduction  
In a sample survey, let iy  denote the value of an 

outcome Y for unit i, and let S  denote the set of sampled 
units. The Horvitz-Thompson (HT) estimator (Horvitz and 
Thompson 1952) ,π/ˆ

HT ∑ ∈= Si iiyY  where iπ  is the 
probability of selection of unit i, is a design-unbiased 
estimator of the finite population total (and of the mean 
when divided by the known population count N ). It can also 
be regarded as a model-based projective estimator (Firth and 
Bennett 1998) for the following linear model relating iy  to 

iπ : 

iiiiy επβπ += , 

where iε  is assumed to be i.i.d. normally distributed with 
mean zero and variance .σ2  

In Zheng and Little (2003, 2004), we proposed a 
nonparametric model  

( ),σπ,0ind~ε,ε)π( 22k
iiiii Nfy +=  

using penalized splines to model mean of outcome iy  as a 
smoothly-varying function  f of the inclusion probabilities 

iπ . We showed in Zheng and Little (2003) that the 
nonparametric model-based estimators are more efficient 
than HT for general one-stage probability-proportional-to-
size (PPS) samples and not much less efficient than HT 
when the data are generated using a model that favors HT.  

In this article we consider two-stage sampling. In the first 
stage, a subset of m primary sampling units (PSUs) is drawn 
from a population with H PSUs with unequal probabilities 

h,1π , h = 1, ..., H.  Let us number the included PSUs from 1 
to m. In the second stage, a simple random sample (srs) of 

hn  out of hN secondary sampling units (SSUs) is drawn 
from the sampled PSU labeled h with probability h,2π . The 
overall selection probability for unit i in PSU h is 

,πππ ,2,1 hhh =  and the HT estimator of the mean of an 
outcome Y is ∑ ∑= == m

h
n
i hhhiw

h Nyy 1 1 ,2,1 ,/)ππ(/  where hiy  
is the value of Y for unit i in PSU h and N is the known total 
number of units (SSUs) in the whole population. In a 
commonly adopted design, the first stage selection 
probability is proportional to an estimate of the PSU size, 
and the second stage inclusion probabilities are proportional 
to the inverse of the first stage inclusion probabilities so that 
the overall inclusion probabilities hπ  are equal for all SSUs. 
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The inverse probability weighted mean in this case equals 
the simple sample mean ./1 1 1∑ ∑ ∑= = == m

h
n
i

m
h hhi

h nyy  
We assume throughout this article that the selection 

probabilities h,1π  are known for all the PSUs h = 1, …, H. 
In sections 2 and 3, we assume the PSU counts hN  are also 
known for all the PSUs in the population. In section 4, we 
discuss the common situation where hN  is only known for 
sampled PSUs, but the hN  for nonsampled PSUs can be 
estimated using a regression model based on auxiliary 
variables known for all PSUs in the population. 

Särndal, Swensson and Wretman (1992) discussed 
model-assisted alternatives to the HT estimator for two-
stage samples with auxiliary information available at the 
PSU or SSU level. In the first case, let hx  denote a vector of 
PSU-level auxiliary variables for PSU h. The PSU totals 

∑ == hN
i hih yt 1  are assumed to be related to hx  according to a 

linear model: 

( ) HhtxxtE hh
T
hhh ...,,1,σ)(Varβ, 2 ===  

(Särndal et al. 1992). β  is estimated by the probability-
weighted regression  

( ) ( ) ,πσ/πσ/ˆ
,1

2

1

*
1

,1
2

1
hh

m

h
hhhh

m

h

T
hh txxxB ∑∑

=

−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=  

where ,π/1 ,2
* ∑ == hn

i hhih yt  leading to the projected totals 
.,1,ˆˆ HhBxt T

hh …==  In practice, estimates ,σ̂2
h  either 

simply assumed (e.g., hσ  proportional to a measure of size 
of stratum h) or estimated, replace 2σ h  in the above formula. 
The generalized regression (GR) estimator of the grand total 
is  

∑∑
==

−
+=

m

h h

hh
H

i
hA

tt
tT

1 ,1

*

1 π
)ˆ(ˆˆ , 

and the estimate for the mean is ./ˆ NTA  The term 
∑ = −m

h hhh tt1 ,1
* π/)ˆ(  is a bias calibration term that makes the 

estimator design- consistent.  
In the second case where auxiliary information is known 

at the SSU level, let hix  denote the set of auxiliary variables 
for SSU i in PSU h, .,,1;,,1 hNiHh …… ==  The 
relationship between the outcome and the auxiliary 
information is modeled by   

( )
....,,1,...,,1,σ

)(Var,β,
2

hhi

hi
T
hihihi

NiHh

yxxyE

===

= …
 

The probability weighted regression estimate for β  is  

( ) ( )∑∑∑∑
= =

−

= =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m

h
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hihhihihihi

m

h

n

i
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hihi

hh

yxxxB
1 1

2

1

2

1 1

πσ/πσ/ˆ , 

where hiπ  is the probability for unit (h, i) to be included in 
the sample. The GR estimator for the grand total is  

∑ ∑∑∑
= = ==

−
+=

H

h

m

h

n

i hi

hihi
N

i
hiB

hh yy
yT

1 1 11 π
)ˆ(

ˆˆ , 

where Bxy T
hihi

ˆˆ = . The estimator for the mean is ./ˆ NTB  
These two methods do not account for the within-PSU 

correlations of outcome. These correlations can be modeled 
by treating PSU means as random effects in a hierarchical 
model. For the case where PSU-level information hx  is 
available for all PSUs, one such model is:  

( )
( )DN

Ny

H

hhhi

,φ~μ

σ,μ~μ 2
ind

 

(1)

 

where ,)μ...,,μ(μ 1
T

H=  T
H )φ...,,φ(φ 1=  where hμ  is 

the mean outcome in PSU h, ,βφ T
hh x=  and D is the 

covariance matrix of the PSU means. The model-based 
estimator of Y  is given by 

( ),μ̂]μ̂)([
1

),|(ˆ

11 ∑∑ +== +−+

=
H

mh hh
m

h hhhhh

h

NnNyn
N

xYE y
 

where ),|(ˆμ̂ hhih xyE y= , and y  is the vector of outcomes 
in the sample. 

Different assumptions about φ  and D in (1) lead to the 
following models:  
Exchangeable random effects (XRE): (Holt and Smith 
1979; Ghosh and Meeden 1986; Little 1991; Lazzaroni and 
Little 1998): Hhoh ...,,1,μφ =≡ and HID 2τ= ;  
Autoregressive (AR1): (Lazzaroni and Little 1998): 

Hhoh ...,,1,μφ =≡  and }ρ{ ||2 jirD −= ;  
Linear (LIN): (Lazzaroni and Little 1998): =hφ  

Hhxh ...,,1,βα =+  and HID 2τ= ;  
Nonparametric: (Elliott and Little 2000): =hφ  

Hhxf h ...,,1),( =  and 0=D .  
The nonparametric models in Elliott and Little (2000) 

assume nonparametric mean function relating the outcome 
to the design variables. By assuming 0=D , the PSU 
means are modeled to equal the mean function f instead of 
varying around it.  Nonparametric mixed models relax the 
assumptions on D (e.g., HID 2τ= ) and serve as a natural 
extension of the Elliott and Little (2000) model and linear 
mixed models with a parametric mean structure. 
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It is worth pointing out that some estimators in the above 
family of models correspond to standard design-based 
estimators. For example, in an equal-probability design 
where hn  are approximately constant across PSUs, the 
unweighted mean corresponds to the special model-based 
estimator that assumes hφ  is constant.  

 
2. Estimation for the P-spline Mixed Model  

The linear structure of φ  in LIN model is subject to 
misspecification when the actual mean structure is non-
linear. The non-linearity problem can be partially solved by 
adding polynomial terms (e.g., quadratic or cubic terms) to 
the fixed effects part in the LIN model. P-spline 
nonparametric mixed models (Lin and Zhang 1999; 
Brumback, Ruppert and Wand 1999; Coull, Schwartz and 
Wand 2001) are even more flexible, since they replace 
polynomials by smooth nonparametric functions. We 
propose the following p-spline nonparametric mixed model 
for inference about the population mean:  
P-spline nonparametric mixed model (PMM):  

,τ,...,,1),(φ 2
Hhh IDHhxf ===  

where f  is a nonparametric degree p spline function: 

( ) ( )∑ ∑
= =

++ −++=
p

j

K

l

p
lpl

j
j xxxf

1 1
0 ,κββββ;  

where Kκ...κ1 <<  are K fixed knots, Kp+β...,,β 0  are 
coefficients to be estimated and )0()( ≥=+ xxx pp I . 

A naive way of estimating Kp... +β,,β 0  is to treat them 
as fixed and estimate them together with the variance 
components 2σ  and 2τ  by fitting a linear mixed model. 
However this method can yield estimates of f  with too 
much roughness and variability. To avoid overfitting, the 
roughness of the estimation f̂  can penalized by adding a 
penalty term to the sum of squared deviations, so that the 
solution pβ̂...,,β̂ 0  is minimizes  

∑∑
=

+
=

+−
K

l
plh

m

h
hxf

1

22

1

βα)μ̂)(ˆ( . 

This is achieved in the context of the model by assigning 

pβ...,,β0  flat priors, )β...,,β( 1 Kpp ++  a normal prior 
)σ,0( 2

βmN , and letting 2
β

2 σ/τα = . The result is a 
penalized spline ( p-spline) model. 

When 1=p , f̂  is piecewise linear and the coefficients 

10 β...,,β +K  and 2
β

2 σ,σ  and 2τ  are estimated by fitting the 
linear mixed model: 

εβ 21 ++= uXXy , (2) 

where  ,)( 1211
T

mnm
y...,,y,yy =   ,, T)ββ(β 10=  =u  

,)β(β 112
T

mK u...,,u,...,, +  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

mx

x

x

x

x

x

X

1

..

..

..

.

..

..

.

.

..

1

1

2

2

1

1

1

1 , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−
−−

−−

=

++

++

++

++

++

1.00

....

....

1.00

0.10

....

....

..10

..01

....

....

0.01

)κ(...)κ(

.....

.....

.....

)κ(...)κ(

.....

.....

)κ(...)κ(

)κ(...)κ(

.....

.....

)κ(...)κ(

1

212

212

111

111

2

Kmm

K

K

K

K

xx

xx

xx

xx

xx

X , 

where hx  in 1X  and +− )κ( lhx  in 2X  are both repeated 

hn  times. The random terms u  and ε  are mutually 
independent with 

.
τ0

0σ

,)0(),,,β,,(β

2

2
β

112

⎥
⎦
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⎢
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= ++
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Variance components 2
β

2 σ,σ  and 2τ  can be estimated by 
fitting model (2) by restricted maximum likelihood 
(REML).  

The predicted means of PSUs included in the sample 
are given by: uXX ˆβ̂μ̂ 21 += , where 1

1
1

1 )ˆ(β̂ −−= XVX T  
yVX T 1

1
ˆ − , )β̂(ˆˆˆ 1

1
2 XyVXGu T −= − , where =V̂  

∑+ ,σ̂ˆ 2
22
TXGX  ]}/1[{diag 1

m
hhn =∑=  and =y  

T
my,...,y )( 1 . The predicted mean for a PSU h that is not 

selected in the first stage is ,β̂μ̂ *T
hh x=  where  
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T
Khhhh xxxx ])κ( ... )κ(    1[ 1 ++ −−=  

and 

.]β̂ ..., ,β̂  β̂[β̂ 110
* T

K +=  

Combining the predictions, we obtain the model-based 
estimator of the population mean 

( ).μ̂]μ̂)([
1

),|(ˆ

11 ∑∑ +== +−+

=
H

mh hh
m

h hhhhh

h

NnNyn
N

xyYE
 

 
3. Variance Estimation Methods  

3.1 Empirical Bayes Model-based Variance  
Model (2) can be interpreted as a Bayes model in which 

the parameters T
mK uuu ),,,β,,β( 112 …… +=  have multi-

variate normal prior ),,0( GN mK +  and ,σ ,β ,β 2
10  

22
β  τand σ   all  have  the  flat  priors.  This  leads            

to the Bayes posterior variance for the vector 
T

mK uu )...,,,β...,,β,β( 1110 +  conditional on  σ ,σ 2
β

2  
2τand  as 

12

22
β

2
1110

)(σ

),τ,σ,σ|)...,,,β...,,β,β((Var
−

+

Δ+= XX

yuu
T

T
mK  

where ] [ 21 XXX =  and  
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22
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β

2

τσ000

0σσ00

0000

0000

, 

where mK II  and  are )( KK ×  and )( mm ×  identity 
matrices, respectively. 

The empirical Bayes posterior variance for 
T

mK uu )...,,,β...,,β,β( 1110 +  is calculated by replacing 
22

β
2  τand σ ,σ  with their maximum likelihood (ML) or 

restricted maximum likelihood (REML) estimates 
,τ̂andσ̂ ,σ̂ 22

β
2  respectively. The empirical Bayes 

method underestimates the true posterior variance, but the 
underestimation is not severe for the sample sizes 
encountered in many survey settings. A fully Bayes solution 
is also possible, but is not covered here. 

The predicted population mean is ,/p̂red NT  where 

21pred
ˆˆ TTT += , ∑ == m

h hh ynT 11  is the sample total, and 2̂T  
is the estimated total for units not included in the sample,  
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The empirical Bayes posterior variance for NTY /ˆˆ
pred=  is  

.))((σ

),,τ,σ,σ|ˆ(Var
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β

2

NNXXXXN

XXY
T
P

T
P

T
PP

P

−Δ+

=
 

 
3.2 The Jackknife Method  

A jackknife variance estimator is developed for the PMM 
estimator. The jackknife replicates are constructed by 
dividing the set of PSUs into G equal-sized subgroups and 
computing the gth pseudovalue as )(

ˆ)1(ˆˆ
gg YGYGY −−= , 

where Ŷ  is the original PMM estimator and )(
ˆ

gY  is the 
same estimator calculated from the reduced sample obtained 
by excluding the elements from the PSUs in the gth 
subgroup. 

The jackknife variance estimate of Ŷ  is   

∑
=

−
−

=
G

g
g YY

GG
Yv

1

2)
ˆˆ(

)1(
1

)ˆ( , 

where ∑ == G
g g GYY 1 /ˆˆ

. In order to balance the distribution 
of the selection probabilities across the subgroups, sampled 
units are stratified into n /G strata each of size G with similar 
first stage inclusion probabilities, and the G subgroups are 
constructed by randomly selecting one element from each 
stratum. To save computation, estimates 22

β
2 τ̂ and σ̂ ,σ̂  are 

not recomputed for each replicate. That is, we compute 
pseudovalues of T

mK uu )...,,,β...,,β,β( 1110 +  based on 
the variance components estimated from the whole sample.  

Miller (1974) and Shao and Wu (1987, 1989) proved 
asymptotic properties of the jackknife estimator and 
jackknife variance estimation in the case of multiple linear 
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regression. Zheng and Little (2004) provided a theoretical 
justification for the jackknife method for the p-spline model-
based estimator in the case of one-stage designs. Numerical 
simulations in section 4 suggest the above described 
jackknife method also works well for the two-stage design. 
Improved performance might be achieved using the 
weighted jackknife proposed by Hinkley (1977).  
3.3 The Balanced Repeated Replication Method  

The BRR method can be applied in stratified designs 
with two units sampled in each stratum. For designs with 
one PSU per stratum, strata are often collapsed (Kalton 
1977) for BRR variance estimation. In our application we 
assume the PSUs are sampled systematically from a 
randomly ordered list. This can be viewed approximately as 
a stratified design with n strata each consisting of PSUs with 
cumulative measures of approximate size ∑ =

H
i i nz1 / , where 

iz  are the measures of size for the PSUs . One PSU is 
sampled from each of the n strata. Assuming n is even, the 
design can be approximated by a stratified design with n/2 
strata with measures of size nzN

i i∑ =1 /2 , and two units 
sampled per stratum. Balanced repeated half samples are 
constructed by selecting one PSU from each stratum, with 
the selection scheme based on Hadamard matrices (Plackett 
and Burman 1946). Let bŶ  be the p-spline estimator 
computed from the bth half sample, using the same knots as 
used in the computation using the full sample – the number 
and placement of knots needs to allow the spline model to 
be fitted on each half-sample. The BRR estimator is given 
by ∑ = −= B

b b YYBYv 1
2

BRR )ˆˆ(/1)ˆ( . This estimate of the 
variance is subject to some bias, because it treats the design 
as if it was stratified with two PSUs per stratum. 

 
4. When Some PSU Counts Are Not Known  

In sections 2 and 3 we assumed that the PSU counts hN  
are known for sampled and non-sampled PSUs. In this 
section we discuss the situation where hN  is only known 
exactly for the sampled PSUs (labeled 1 through m). We 
also assume that values HhM h ...,,1, =  of an auxiliary 
variable predictive of hN  are known for the whole 
population. For example, the hM  may be PSU counts 
estimated from outside sources such as a census. We 
conduct a regression of hN  on hM  using the sampled 
PSUs and replace the counts hN  in (3) for nonsampled 
PSUs with predictions HmhN h ,,1,ˆ …+=  from this 
regression. The resulting estimate of the total is 

∑∑ +== +−+= H

mh hh
m

h hhh NnNTT
111 μ̂ˆμ̂)(

~
. 

The variance estimate of T
~

 needs to incorporate the 
additional variability in hN̂ . In particular, a model-based 
variance for T

~
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,)
~

)(
~

(σ),π,ˆ|
~

(Var 12 T
P

T
P

T
PPhhh NXXXXNMNT −Δ+≈  

]ˆ ˆ )( ... )[(
~

111 HmmmP N ...NnNnNN +−−= , and X , PX  
and Δ  are defined as in (3).  

If the models for hμ  and hN  are both correctly 
specified, the above variance can be estimated according to 
the corresponding models. 

 
5. Simulations 

 
5.1 Simulation Design  

Two simulations are conducted to compare the inverse 
probability weighting method, the model-assisted method 
(Särndal et al. 1992) and the PMM method in the case of 
two-stage samples. 

In our first simulation, artificial populations are generated 
with different mean functions )π( ,1 hf of the first stage 
inclusion probabilities. Four different mean functions are 
simulated: 1) NULL, a constant function; 2) LINDOWN, a 
linearly decreasing function; 3) EXP, an exponentially 
increasing function; and 4) SINE, a sine function. 

Two combinations of values for variance components are 
simulated: 1) 2.0τand1.0σ == ; 2) 1.0τand2.0σ == . 
Only normal errors around the mean functions are simulated 
while both normal and lognormal within-PSU errors are 
simulated. 

The population consists of 500 PSUs, and in the first 
stage 48 PSUs are sampled systematically with probability 
proportional to size (PPS) from a randomly-ordered list. The 
PSU sizes are uniformly distributed with values ranging 
from 4 to about 400. The SSU count in each PSU is 
generated from a distribution with mean equal to 1.05 times 
the measure of size and log-normal errors with standard 
deviation 30. 

Two types of second-stage sampling plans are studied: 1) 
within-PSU simple random sampling (srs) with inclusion 
probabilities proportional to the inverse of the first stage 
inclusion probabilities, resulting in an equal inclusion 
probability for all SSUs.; 2) within-PSU simple random 
sampling with the same sampling rate across sampled PSUs, 
so that the resulting inclusion probabilities for the SSUs in 
PSU h are proportional to h,1π . 
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For each sample drawn under both sampling plans, the 
following methods are applied: 
 

A. The HT estimator. 
B. The model-assisted estimation method. We use a linear 

model regressing the outcome hiy  on the first stage 
inclusion probabilities, which are treated as element-
level information. The GR estimator is computed by the 
formula given in section 1. 

C. The PMM method, with the first-stage inclusion 
probabilities h,1π  as the covariate. We use 20 equal 
percentiles of h,1π  of the sampled PSUs as the knots for 
p-spline regression.  

D. The PMM method with the PSU means hμ  estimated 
the same way as in C, but using estimated PSU counts 
from a simple linear regression of hN  on the measures 
of size, which are proportional to h,1π . This part of the 
simulation is conducted to study the method described in 
section 4. 

 

Estimates of Y  from methods A-D are calculated for 
each of the 500 samples drawn repeatedly from the artificial 
populations (each artificial population is generated only 
once). For the PMM estimator, we compute the empirical 
Bayes, the jackknife (K = 8) and BRR variance estimators 
for each repeated sample. The mean estimate for the 

variance of PMM and the coverage rate of the 
corresponding 95% confidence interval are used to judge the 
quality of inference. For method D, we study the empirical 
bias of the model-based variance estimator described in 
section 4, together with coverage rates of associated 
confidence intervals.  

In the second simulation study, we draw samples of 
household income data from the 5% public use microdata 
sample (PUMS) for the State of Michigan in the 1990 US 
Census, which we treat as a finite population. This 
simulation is more realistic than the previous simulation in 
that the outcome values are drawn from a real rather than 
simulated distribution. The PSUs we simulate are based on 
the natural geographical clusters called “Public Use 
Microdata Areas” (PUMAs),which are typically counties 
and places. There are 67 PUMAs in the Michigan 5% 
PUMS, with counts of families ranging from around 1,300 
to over 10,000. We increase the number of available PSUs 
by dividing each PUMA into 5, resulting in 335 PSUs. The 
PSU counts ranges from 134 to 3,058. Figure 1 gives the 
scatter plot of one sample of the average household income 
versus sampled PSU sizes together with the regression curve 

)(ˆ xf . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  P-spline Regression Curve (dotted line) and the Average Household Income  (stars) in Sampled PSUs. 
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Five hundred two-stage samples are drawn, each 
consisting of 30 PSUs and 20 SSUs (families) from each 
selected PSU. The first stage sampling is systematic PPS 
where the measures of size are equal to the PSU counts. The 
second stage sample is simple random sampling with 
inclusion probabilities proportional to the inverse of the first 
stage inclusion probabilities. In the estimation of the mean, 
we use the true PSU counts as variable hx , with values 
proportional to the first-stage inclusion probabilities. We 
apply the p-spline nonparametric mixed model formulated 
in (2). We use 10 equally spaced sample percentiles of the 
PSU counts as the knots in the p-spline.  
5.2 Results  

Table 1 gives the empirical bias and root mean squared 
error (RMSE) from four estimation methods of the finite 
population mean applied to equal probability sample from 
populations generated with both normal and log-normal 
within-PSU errors and two )τσ,(  combinations. The 
empirical bias and RMSE are estimated by the mean bias 
and squared error from the 500 repeated samples. 

Table 1 suggests the PMM based methods give 
estimators with small biases. In the case of equal probability 
sampling, the PMM estimator is roughly as efficient as HT 
estimator when the mean function f  is constant. In the 
more general cases such as NULL and LINDOWN, where 
f  is linear but not constant, the linear model-assisted and 

PMM method are comparable and both are more efficient 
than the HT estimator in terms of root mean squared error. 
For populations EXP and SINE, whose mean functions are 

not linear, the PMM method is superior to both the HT and 
the linear model-assisted estimators. The improvement of 
efficiency requires the knowledge of complete design 
information including probabilities h,1π  and PSU counts 

hN  for the whole population. When using estimated PSU 
counts hN̂  in the place of hN , the resulting estimator is less 
efficient than in the case with known hN , but the PMM 
estimator can still outperform the HT when the mean 
function is non-constant. Comparisons on populations with 
normal or log-normal within-PSU errors result in similar 
findings.  

Similar gains for the PMM method are seen in Table 2, 
for the case of unequal probability sampling. This suggests 
that the key to improved efficiency is the better prediction 
given by the nonparametric models. Tables 1 and 2 both 
suggest that the p-spline model-based estimators have very 
small empirical design-biases. We believe this is because 
the flexible mean functions yield good predictions of the 
PSU means. 

Table 3 compares point estimation and coverage of 95% 
confidence intervals from three variance estimation methods 
for PMM: the empirical Bayes model-based method, the 
Jackknife method and the BRR method. The empirical 
Bayes method is generally satisfactory but tends to 
underestimate the true variance of PMM estimator, resulting 
in under-coverage in some cases. The jackknife and the 
BRR methods tend to yield more robust estimates for the 
variance. In general, PMM yields estimates with improved 
efficiency over the traditional HT and linear model-assisted 
estimators and satisfactory design-based inferences. 

 
Table 1 

Empirical Biases and RMSE of PMM, HT, GR and PMM with Estimated hN  for Samples Under Equal Probability Designs 
 

PMM 
 

Horvitz-Thompson Linear Model-
Assisted 

PMM with 
Estimated hN  

 

)10( 3−×  BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
Normal NULL 1.1 29.7 0.8 30.0 0.8 29.9 1.3 30.1 
Errors LINDOWN 3.5 30.7 3.6 36.4 3.7 30.7 2.3 30.4 

0.2τ =  EXP – 4.4 29.1 – 9.4 53.0 – 9.5 36.7 – 4.3 29.1 

0.1σ =  SINE 4.8 32.5 2.1 42.0 – 0.3 35.9 5.2 34.3 

Normal NULL 5.7 22.0 6.6 22.5 6.6 22.1 5.5 22.3 
Errors LINDOWN 0.5 20.4 – 0.6 27.1 – 0.3 20.5 1.6 20.6 

0.1τ =  EXP 0.9 23.1 1.9 50.3 – 4.2 31.7 0.4 23.4 

0.2σ =  SINE 7.0 22.3 6.5 34.9 3.8 26.4 8.0 26.4 

Log-normal NULL 1.7 32.3 0.9 32.3 0.7 32.3 1.5 32.5 
Errors LINDOWN 2.9 31.9 3.8 39.4 2.7 32.1 3.2 32.0 

0.2τ =  EXP – 0.6 28.4 – 5.9 51.5 – 6.9 36.4 – 0.3 28.5 

0.1σ =  SINE 6.9 33.8 1.5 43.7 – 1.9 39.0 – 3.1 35.0 

Log-normal NULL 8.5 30.5 9.6 31.3 9.2 31.0 9.1 30.8 
Errors LINDOWN 3.6 32.3 1.9 37.5 3.6 32.1 6.4 33.1 

0.1τ =  EXP 3.9 29.0 6.8 53.8 1.0 34.4 3.7 29.4 

0.2σ =  SINE – 2.9 30.1 – 8.9 44.7 – 12.0 38.4 – 3.8 35.9 
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Table 2 
Empirical Biases and RMSE of PMM, HT, GR and PMM with Estimated hN  for Samples Under Unequal Probability Designs 

 

PMM 
 

Horvitz-Thompson Linear Model-
Assisted 

PMM with 
Estimated hN  

 

)10( 3−×  BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE 
Normal NULL – 4.5 29.3 – 3.7 33.6 – 3.2 30.5 – 4.5 29.3 

Errors LINDOWN – 0.9 27.0 3.7 35.5 1.8 27.7 – 0.7 26.9 
0.2τ =  EXP 5.8 32.0 1.9 56.8 0.4 39.4 14.1 34.4 
0.1σ =  SINE 7.1 30.1 6.1 39.5 3.6 32.8 5.3 30.4 

Normal NULL – 7.7 21.3 – 7.7 24.9 – 6.6 21.1 – 7.6 21.2 
Errors LINDOWN 1.1 20.7 3.2 30.6 1.2 20.7 3.5 21.1 

0.1τ =  EXP – 2.3 20.9 – 6.5 53.3 – 7.2 30.0 – 3.0 20.9 
0.2σ =  SINE 5.6 20.9 6.9 36.2 4.0 28.6 4.3 21.1 

Log-normal NULL – 0.5 28.5 – 2.0 30.6 – 2.1 29.5 – 0.3 28.5 
Errors LINDOWN 5.4 32.6 5.0 39.0 3.7 34.1 6.0 32.7 

0.2τ =  EXP – 1.3 28.6 – 7.6 62.6 – 7.1 36.8 – 9.3 30.3 
0.1σ =  SINE 3.7 31.2 2.3 43.1 0.1 36.1 1.6 31.0 

Log-normal NULL 3.6 22.8 5.7 28.8 5.7 24.2 3.6 22.7 
Errors LINDOWN 6.0 26.8 9.3 37.5 7.5 27.3 2.5 26.0 

0.1τ =  EXP 0.8 26.3 – 2.3 50.8 – 3.5 33.1 11.5 29.0 
0.2σ =  SINE 3.7 26.9 2.9 37.6 – 0.1 30.2 2.2 27.8 

 

Table 3 
Variance Estimation and Empirical Coverage Rates of 95% C.I. Using the Model-based, Jackknife and BRR Methods 

 

Empirical 
variance  

Empirical Bayes 
Model-based 

Jackknife(K = 8) BRR 

 Shape )10( 5−×  

Estimate 

)10( 5−×  % 

Estimate 

)10( 5−×  % 

Estimate 

)10( 5−×  % 
Normal NULL 88 74 92.8 94 96.4 96 94.4 

Errors LINDOWN 94 73 89.6 94 94.6 98 94.2 
0.2τ =  EXP 85 70 91.4 88 94.6 85 93.4 
0.1σ =  SINE 83 67 91.6 90 95.8 85 94.4 

Normal NULL 48 45 93.8 48 96.0 49 93.8 
Errors LINDOWN 42 45 96.8 51 96.2 51 96.8 

0.1τ =  EXP 53 54 95.0 61 97.2 59 95.2 
0.2σ =  SINE 44 46 95.8 55 96.6 49 96.0 

Log-normal NULL 104 83 91.8 104 94.8 100 93.6 
Errors LINDOWN 102 98 93.6 106 95.6 107 95.0 

0.2τ =  EXP 81 77 93.4 97 96.4 89 94.8 
0.1σ =  SINE 92 99 94.8 97 95.2 92 93.4 

Log-normal NULL 93 97 94.2 100 96.2 99 95.2 
Errors LINDOWN 104 101 93.6 106 96.0 102 92.8 

0.1τ =  EXP 84 81 94.6 84 95.2 82 95.0 
0.2σ =  SINE 110 96 94.4 98 95.6 92 93.0 

 
 
Tables 4 and 5 give the empirical variance of the PMM 

estimator when the non-sampled PSU counts hN  are 
estimated. They also give the mean estimated variance of 
this estimator and corresponding coverage rates by the 95% 
C.I. The confidence intervals are calculated by the usual 
normal theory intervals based on our point and variance 
estimators. These two tables show the inference method 
discussed in section 5 tends to underestimate the true 
variance of PMM estimator using hN̂ , giving in occasion 
under-coverage of the population mean. It remains to be 
studied in the future whether the JRR and BRR methods 
also yield satisfactory inferences for this method.  

For the simulation study using 5% PUMS data, the 
simple mean has bias = – 50.9 and RMSE = 2,600 and the 
p-spline nonparametric mixed model based method has 
bias = – 41.9 and RMSE = 2,153.Thus both methods have 
small bias and the model-based estimator has a RMSE 17% 
less than the RMSE of the simple mean. This improved 
efficiency is due to the fact that the average household 
income decreases for as the number of families in the PSUs 
increases (figure 1). The PMM method exploits this 
relationship in its predictions.  
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Table 4 
Variance Estimation and Empirical Coverage Rates of 95% C.I. Using P-spline and Estimated PSU  

Counts, Population Simulated with Normal Errors 
 

0.2τand1.0σ ==  0.1τand2.0σ ==   

Empirical 
Variance 

)10( 5−×  

Estimated 
Variance 

)10( 5−×  
Coverage 

Rate 

Empirical 
Variance 

)10( 5−×  

Estimated 
Variance 

)10( 5−×  
Coverage 

Rate 
NULL 90 76 91.8 50 46 93.2 

LINDOWN 93 74 90.4 43 46 95.6 
EXP 85 72 93.0 55 56 96.2 
SINE 110 98 94.8 50 55 97.6 

 
Table 5 

Variance Estimation and Empirical Coverage Rates of 95% C.I. Using  P-spline and Estimated PSU  
Counts, Population Simulated with Log-normal Errors 

 

0.2τand1.0σ ==  0.1τand2.0σ ==   

Empirical 
Variance 

)10( 5−×  

Estimated 
Variance 

)10( 5−×  
Coverage 

Rate 

Empirical 
Variance 

)10( 5−×  

Estimated 
Variance 

)10( 5−×  
Coverage 

Rate 
NULL 105 84 91.8 95 99 94.8 

LINDOWN 103 98 94.4 110 102 94.4 
EXP 81 79 94.6 87 83 94.2 
SINE 110 150 96.4 91 130 95.8 

 
6. Discussion  

Previous parametric model-based inference methods 
have been criticized mainly for their potentially large design 
biases when the model is misspecified. In our nonparametric 
models, the linearity assumption is replaced by a much 
weaker assumption of a smoothly-varying relationship. As a 
result, the model-based estimators are more robust, having 
small biases for a variety of population shapes.   

Design information such as inclusion probabilities plays 
a key role in the model-based inference. Inverse-probability 
weighted methods imply simple assumptions about the 
relationship between the outcome variables and the design 
variables. With the method we propose, the gain in 
efficiency is realized by applying nonparametric models that 
relax these assumptions.  

Our study has an interesting finding that the model-based 
estimators can be more efficient than the simple mean for an 
equal probability design. In other studies, we also find gains 
in efficiency from p-spline nonparametric mixed model in 
estimating post-stratum means in post-stratified samples.  

The empirical Bayes method, the jackknife and BRR 
methods all give good confidence coverage with confidence 
intervals that are narrower than those given by the 
traditional methods. However, we expect the empirical 
Bayes method to be sensitive to model assumptions on the 
variance components (e.g., constant within-PSU variances). 
When the PSU counts are not known for the sample but not 
for the whole population, model-based estimates of the 

unknown counts can still provide sound estimates of the 
population mean, if the model tracks the true PSU counts 
precisely enough. The model relating these counts to the 
auxiliary variable was treated parametrically here, but this 
could also be specified nonparametrically without much 
difficulty. 

We believe p-spline nonparametric mixed models can be 
applied to more complex designs such as stratified and 
multi-stage designs. We also believe without much more 
effort our methods can be generalized for binary or ordinal 
outcomes.  
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