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A New Algorithm for the Construction of Stratum Boundaries  
in Skewed Populations 

Patricia Gunning and Jane M. Horgan 1 

Abstract 
A simple and practicable algorithm for constructing stratum boundaries in such a way that the coefficients of variation are 
equal in each stratum is derived for positively skewed populations. The new algorithm is shown to compare favourably with 
the cumulative root frequency method (Dalenius and Hodges 1957) and the Lavallée and Hidiroglou (1988) approximation 
method for estimating the optimum stratum boundaries. 

                                                           
1. Patricia Gunning, School of Computing, Dublin City University, Dublin 9, Ireland; Jane M. Horgan, School of Computing, Dublin City University, 

Dublin 9, Ireland. 
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1. Introduction  
A stratified random sampling design is a sampling plan 

in which a population is divided into mutually exclusive 
strata, and simple random samples are drawn from each 
stratum independently. The essential objective of strati-
fication is to construct strata to allow for efficient esti-
mation. In what follows X represents the known strati-
fication or auxiliary variable while Y represents the 
unknown study variable. Suppose there are L strata, con-
taining hN  elements from which a sample of size hn  is to 
be chosen independently from each stratum ).1( Lh ≤≤  We 
write ∑ == L

h hNN 1  and .1∑ == L
h hnn  In the case of the 

stratified mean estimate, 
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where hy  is the mean of the sample elements in the hth 
stratum, we need to choose the breaks in order to minimise 
its variance 
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is the mean. 

Dalenius (1950) derived equations for determining 
boundaries when stratifying variables by size, so that (2) is 
minimised, but these equations proved troublesome to solve 
because of dependencies among the components. Since then 
there have been numerous attempts to obtain efficient 
approximations to this optimum solution. The first such 
approximation, suggested by Dalenius and Hodges 
(1957,  1959), constructs the strata by taking equal intervals 
on the cumulative function of the square root of the 
frequencies; this method is still often used today. Eckman’s 
rule (1959) of iteratively equalising the product of stratum 
weights and stratum ranges was found to require arduous 
calculations, and is less used than the method of Dalenius 
and Hodges method (Nicolini 2001). Lavallée and 
Hidiroglou (1988) derived an iterative procedure for 
stratifying skewed populations into a take-all stratum and a 
number of take-some strata such that the sample size is 
minimised for a given level of reliability. Other recent 
contributions include Hedlin (2000) who revisited Ekman’s 
rule, Dorfman and Valliant (2000) who compared model-
based stratified sampling with balanced sampling, and 
Rivest (2002) who constructed a generalisation of the 
Lavallée and Hidiroglou algorithm by providing models 
accounting for the discrepancy between the stratification 
variable and the survey variable. 

In the present paper we propose an algorithm which is 
much simpler to implement than any of those currently 
available. It is based on an observation by Cochran (1961), 
that with near optimum boundaries the coefficients of 
variation are often found to be approximately the same in all 
strata. He concluded however that computing and setting 
equal the standard deviations of the strata would be too 
complicated to be feasible in practice. In what follows we 
show that, for skewed distributions, the coefficients of 
variation   can  be  approximately  equalised  between  strata  
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using the geometric progression. This new algorithm is 
derived in section 2. Section 3 compares the efficiency of 
the new approximation with the cumulative root frequency 
and the Lavallée and Hidiroglou approximations. We 
summarise our findings in section 4. 

 
2. An Alternative Method  
      of Stratum Construction  

To stratify a population by size is to subdivide it into 
intervals, with endpoints .,,10 Lkkk <<< …  Ideally, the 
division should be based on the survey variable Y. Such a 
construction is of course not possible since Y is unknown; if 
it were known we would not need to estimate it. In practice 
therefore we use a known auxiliary variable X, which is 
correlated with the survey variable. 

In order to make the breaks ),,,( 10 Lkkk …  for any 
given 0k  and ,Lk  we seek to make the hxhh XSCV /=  the 
same for :,,2,1 Lh …=  
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Now xhS  is the standard deviation and hX  the mean of X in 
stratum h: If we make the assumption that the distribution 
within each stratum is approximately uniformly distributed 
we may write 
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This new and exotic recurrence relation reduces however to 
something familiar: 

;11
2
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the stratum boundaries are the terms of a geometric 
progression. 

( )....,,1,0 Lhark h
h ==  (9) 

Thus ,0ka =  the minimum value of the variable, and 
,L

L kar =  the maximum value of the variable. It follows 
that the constant ratio can be calculated as =r .)/( /1

0
L

L kk  
For a numerical example take 

:000,50;5;4 40 === kkL  (10) 

thus )4,3,2,1,0(10.5 == hk h
h  and the strata form the 

ranges 

.000,50000,5;000,5500;50050;505 −−−−  (11) 

This is clearly an extremely simple method of obtaining 
stratum breaks. 

The relationship in (8) depends on the assumption that 
the distributions within strata are uniform. This may be 
justified by the following heuristic argument. When the 
parent distribution is positively skewed, then the low values 
of the variable have a high incidence, which decreases as the 
variable values increase, which makes it appropriate to take 
small intervals at the beginning and large intervals at the 
end. This is what happens with a geometric series of 
constant ratio greater than one. In the lower range of the 
variable, the strata are narrow so that an assumption of 
rectangular distribution in them is not unreasonable. As the 
value of the variable increases, the stratum width increases 
geometrically. This coincides with the decreased rate of 
change of the incidence of the positively skewed variable, 
so here also the assumption of uniformity is reasonable. 

This algorithm will of course not work for normal 
distributions. Also since the boundaries increase geo-
metrically, it will not work well with variables that have 
very low starting points: this will lead to too many small 
strata; the rule breaks down completely when the lower end 
point is zero. We expect the best results when the 
distribution is highly positively skewed and the upper part 
contains a small percentage of the total frequency. 

 
3. The Performance of the Algorithm  

3.1 Some Real Positively Skewed Populations  
To test our algorithm, we implement it on four specific 

populations, which are skewed with positive tail: 
Our first population (Population 1) is an accounting 

population of debtors in an Irish firm, detailed in Horgan 
(2003). In addition, we use three of the skewed populations 
that Cochran (1961) invoked to illustrate the efficiency of 
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the cumulative root frequency method of stratum 
construction. These are: 
 

 

− The population in thousands of US cities 
(Population  2); 

− The number of students in four-year US colleges 
(Population  3); 

− The resources in millions of dollars of a large 
commercial bank in the US (Population  4). 

 

There were five other populations in the Cochran paper, 
which turned out to be unsuitable for use with our 
algorithm. In three cases the variable was a proportion: 

agricultural loans, real estate loans and independent loans 
expressed as a percentage of the total amount of bank loans. 
Another, a population of farms in which the variable ranged 
from 1 to 18, was essentially discrete. Yet another, a 
population of income tax returns, was not sufficiently 
skewed: it owed its skewness to the top 0.05% of the 
population, and when this was removed, or put in a take-all 
stratum, the skewness disappeared. 

These four populations are illustrated and summarised in 
Figure 1 and Table 1 in decreasing order of skewness. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Populations 
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The new algorithm is implemented on these populations, 
and compared with the cumulative root frequency 
(cum f ) and the Lavallée-Hidiroglou methods of stratum 
construction.  
3.2 Comparison with the Cumulative Root 

Frequency Method  
We first compare the performance of the new algorithm 

with cum f  by dividing the populations summarised in 
Table 1 into L = 3, 4 and 5 strata, using both methods to 
make the breaks. The results are given in Tables 2, 3 and 4. 

A cursory examination of the coefficients of variation in 
Tables 2, 3 and 4 suggests that, in most cases, the geometric 
method is more successful than cum f  in obtaining near-
equal strata .hCV  For example in Population 1, which has 
the greatest skewness, the hCV  differ substantially from 

each other when cum f  is used to make the breaks, while 
the geometric method appears to achieve near-equal hCV  in 
all cases of 3, 4 and 5 strata: the best results are obtained 
with L  =  5. In the other three populations, the hCV  are not 
as diverse with cum ,f  but they still appear more 
variable than those obtained with the geometric method of 
stratum construction. 

The hCV  with the geometric method are more 
homogeneous when L = 4 or 5 than when L = 3; this is to be 
expected since the validity of the assumption of uniformity 
of the distribution of elements within stratum is strength-
ened with increased number of strata. 

A more detailed analysis of the variability of the hCV  
between strata is given in Table 5, where the standard 
deviation of the hCV  is calculated for each design. 
 

 

Table 1 
Summary Statistics for Real Populations 

 

Population N Range Skewness Mean Variance 
1 3,369 40 – 28,000 6.44   838.64 3,511,827 
2 1,038 10 – 200 2.88     32.57 924 
3 677 200 – 10,000 2.46 1,563.00 3,236,602 
4 357 70 – 1,000 2.08    225.62 36,274 

 

Table 2 
The Geometric vs the Cum :f  Stratum Breaks with L = 3 and n = 100 

 

Stratum 
Population 

Stratification 
Method CV 

 
1 2 3 

1 Geometric 0.0600 hk  354 3,152  
   hN  2,334 1,288 189 
   hn  9 46 45 
   hCV  0.71 0.68 0.64 
 Cum f  0.0600 hk  558 2,236  
   hN  2,339 735 295 
   hn  19 17 64 
   hCV  0.70 0.42 0.76 

2 Geometric 0.0270 hk  26 72  
   hN  701 243 94 
   hn  36 29 35 
   hCV  0.28 0.23 0.33 
 Cum f  0.0269 hk  28 66  
   hN  729 208 101 
   hn  40 22 38 
   hCV  0.29 0.25 0.34 

3 Geometric 0.0317 hk  726 2,645  
   hN  253 321 103 
   hn  9 38 53 
   hCV  0.32 0.37 0.39 
 Cum f  0.0282 hk  1,179 3,629  
   hN  456 152 69 
   hn  37 35 28 
   hCV  0.41 0.31 0.27 

4 Geometric 0.0184 hk  168 405  
   hN  211 93 53 
   hn  27 27 46 
   hCV  0.23 0.24 0.30 
 Cum f  0.0198 hk  162 441  
   hN  207 107 43 
   hn  25 39 36 
   hCV  0.23 0.30 0.27 
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Table 3 
The Geometric vs the Cum :f  Stratum Breaks with L = 4 and n = 100 

 

Stratum 
Population 

Stratification 
Method CV 

 
1 2 3 4 

1 Geometric 0.0430 hk  205 1,057 5,443  
   hN  1,416 1,382 483 88 
   hn  6 22 40 32 
   hCV  0.45 0.44 0.48 0.50 
 Cum f  0.0480 hk  558 1,117 2,795  
   hN  2,339 483 325 222 
   hn  23 5 10 62 
   hCV  0.70 0.19 0.27 0.69 

2 Geometric 0.0194 hk  20 43 93 200 
   hN  459 398 130 51 
   hn  22 31 25 22 
   hCV  0.22 0.20 0.22 0.22 
 Cum f  0.0213 hk  19 38 85  
   hN  393 428 155 62 
   hn  15 26 30 29 
   hCV  0.20 0.17 0.25 0.26 

3 Geometric 0.0214 hk  526 1,386 3,653  
   hN  138 343 127 69 
   hn  5 27 26 42 
   hCV  0.27 0.26 0.26 0.27 
 Cum f  0.0230 hk  690 2,160 5,100  
   hN  235 319 75 48 
   hn  13 43 21 23 
   hCV  0.31 0.33 0.29 0.19 

4 Geometric 0.0142 hk  134 261 504  
   hN  156 109 63 29 
   hn  20 23 29 28 
   hCV  0.18 0.19 0.19 0.20 
 Cum f  0.0143 hk  162 255 488  
   hN  207 58 57 35 
   hn  33 9 23 35 
   hCV  0.23 0.11 0.18 0.24 

 

Table 4 
The Geometric vs the Cum :f  Stratum Breaks with L = 5 and n = 100 

 

Stratum 
Population 

Stratification 
Method CV 

 
1 2 3 4 5 

1 Geometric 0.0360 hk  147 549 2,037 7,552  
   hN  1,054 1,267 732 265 51 
   hn  2 14 27 33 24 
   hCV  0.37 0.38 0.40 0.37 0.41 
 Cum f  0.0349 hk  279 838 1,677 4,193  
   hN  1,644 1,010 332 249 134 
   hn  9 14 7 15 55 
   hCV  0.52 0.30 0.20 0.25 0.57 

2 Geometric 0.0144 hk  17 32 59 108  
   hN  364 418 130 87 39 
   hn  18 28 17 20 17 
   hCV  0.18 0.14 0.15 0.16 0.15 
 Cum f  0.0186 hk  28 38 57 104  
   hN  729 92 89 88 40 
   hn  58 4 7 16 15 
   hCV  0.28 0.08 0.11 0.16 0.16 

3 Geometric 0.0184 hk  433 941 2,043 4,434  
   hN  100 255 1,989 74 56 
   hn  2 16 27 20 35 
   hCV  0.22 0.21 0.24 0.21 0.21 
 Cum f  0.0212 hk  1,179 1,669 3,139 6,079  
   hn  50 3 17 15 15 
   hCV  0.40 0.09 0.20 0.19 0.13 

4 Geometric 0.0110 hk  118 200 339 576  
   hN  114 116 64 39 24 
   hn  12 20 24 18 24 
   hCV  0.14 0.14 0.17 0.12 0.16 
 Cum f  0.0119 hk  162 255 395 627  
   hN  207 58 37 36 19 
   hn  44 11 10 19 16 
   hCV  0.23 0.11 0.10 0.13 0.11 
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Table 5 
The Variability of the hCV  for the Geometric and the Cum f  Methods 

 

Population Strata  
1 2 3 4 

3 Geometric 0.035 0.050 0.036 0.038 
 Cum f  0.181 0.045 0.072 0.035 

4 Geometric 0.027 0.010 0.006 0.008 
 Cum f  0.276 0.042 0.062 0.059 

5 Geometric 0.018 0.015 0.013 0.020 
 Cum f  0.166 0.076 0.119 0.054 

 
We see from Table 5 that, with just two exceptions, the 

standard deviations of the hCV  are substantially lower with 
the geometric method of stratum construction than with cum 

.f  In the two cases where the cumulative root has a lower 
standard deviation than the geometric, the differences 
between them is not great, and occur with the smallest 
number of strata, L = 3, in Populations 2 and 4. We may 
conclude therefore that the new algorithm is successful in 
breaking the strata in such a way that the hCV  are near 
equal. 

What remains is to investigate whether the geometric 
breaks lead to more efficient estimation than cum .f  To 
do this, the two methods are compared in terms of the 
relative efficiency or variance ratio obtained with n  =  100 
allocated optimally among the strata using Neyman 
allocation (Neyman 1934): 

.
1

n
SN

SN
n L

i xii

xhh
h ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=
∑ =

 (12) 

The relative efficiency is defined as 

( )
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geomcum,

st

st
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ffe =  (13) 

where )(cum stxV  and )(geom stxV  are the variances of the 
mean respectively with the cumulative root frequency and 
the geometric methods, with n  =  100 and hn  allocated as 
in (12) for each of the stratification methods. In sample size 
planning the relative efficiencies may be interpreted as the 
proportionate increase or decrease in the sample size with 
cum f  to obtain the same precision as that of the 
geometric method with n  =  100. 

The variance calculations are based on the auxiliary 
variable X, and since this is assumed to be highly correlated 
with the unknown survey variable Y, we can assume the 
relative efficiency e f f, given in (13), will be a reasonable 
approximation of the relative efficiency of Y. 

Table 6 gives the variance ratio when the number of 
strata L = 3, 4 and 5. 

From Table 6 we see that, while this new method is not 
always more efficient than the cumulative root frequency 
method of stratum construction, when it is, it is substantially 

so, and when it is not it is only marginally worse. For 
example, large gains in efficiency are observed when L  =  5 
in Populations 2, 3 and 4: here the relative efficiencies are 
1.69, 1.33 and 1.17 respectively indicating that samples of 
sizes n  =  169, 133 and 117 are required with cum f  to 
obtain the sample precision as that of the geometric method 
with n  =  100. 
 

Table 6 
Efficiencies of the Cum f  Relative  

to the Geometric Method 
 

Population Strata 
1 2 3 4 

3 0.97 0.99 0.79 1.16 
4 1.23 1.19 1.16 1.04 
5 0.94 1.69 1.33 1.17  

We also see from Table 6 that while there are four cases 
where the relative efficiency is less than 1, with one 
exception, all are greater than 0.9. The exception is 
Population 3 with L  =  3, the smallest number of strata; the 
relative efficiency in this case is 0.79.  
3.3 Comparison with the Lavallée and Hidiroglou 

Algorithm  
With the Lavallée-Hidiroglou algorithm, the optimum 

boundaries 121 , −Lkkk "  are chosen to minimise the 
sample size n for a given level of precision. The requirement 
on precision is usually stated by requiring the coefficient of 
variation to be equal to some specified level between 1%  –
 10%. Obtaining the minimum n is an iterative process, and 
the SAS code used for implementing it was obtained from 
the web at http://www.ulval.ca/pages/lpr/. 

To compare the performance of the new method with 
Lavallée-Hidiroglou, the CVs from the geometric algorithm 
given in Tables 2, 3 and 4 are used as input for the Lavallée-
Hidiroglou algorithm, and the sample sizes required to 
obtain the same precision as that of the geometric method 
with n = 100 are computed. The results are given in Table 7. 

The first thing to notice from Table 7 is that the sample 
size required with the Lavallée-Hidiroglou algorithm to 
obtain the same precision as the geometric method is greater 
than 100 in all but four cases. In Population 2 with 5 strata, 
it is necessary to increase the sample size by 36% to 
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n  =  136, to obtain the same precision as the geometric 
method with n  =  100. With three and four strata, sample 
sizes of n  =  121 and 113 are required in Population 1, and 
samples sizes of n  =  123 and n  =  117 are required in 
Population 2, to obtain the same precision as the geometric 
method. When the sample size falls below n  =  100, the 
drop is not as large. In Population 4, with four and five 
strata, n  =  93 and n  =  99 respectively, and in Population 1 
with 5 strata a sample size of n  =  90 will suffice with the 
Lavallée-Hidiroglou algorithm to obtain the same precision 
as the geometric method. 

The results in Table 7 might appear to indicate that the 
geometric method outperforms the Lavallée-Hidiroglou 

method in terms of the minimum sample size required for a 
specified precision. We observe however that the geometric 
method does not give a take-all stratum. If this is required it 
is more appropriate to use the Lavallée-Hidiroglou to obtain 
the strata. Often, in financial applications the top stratum is 
decided judgementally; for example US state taxing 
authorities typically decide their take-all stratum based on a 
total percentage of purchase amounts (Falk, Rotz and 
Young 2003). If after such a take-all stratum has been 
removed the skewness remains, the geometric method is 
probably the easier and more efficient way of obtaining the 
remaining strata. 

Table 7 
Boundaries and Sample Size Required with the Lavallée-Hidiroglou Method to Obtain the Same  

CV as the Geometric Method when  n = 100 
 

3 Strata   
Population n CV  1 2 3   

1 121 0.0600 hk  1,248 8,676    
   hN  2,867 464 38   
   hn  42 41 38   
   hCV  0.87 0.57 0.37   

2 123 0.0270 hk  35 102    
   hN  795 202 41   
   hn  47 35 41   
   hCV  0.31 0.31 0.17   

3 107 0.0317 hk  1,398 4,197    
   hN  481 135 61   
   hn  28 18 61   
   hCV  0.41 0.30 0.24   

4 100 0.0184 hk  172 361    
   hN  212 85 60   
   hn  22 18 60   
   hCV  0.23 0.21 0.32   
    4 Strata  
    1 2 3 4  

1 113 0.0430 hk  442 1,828 8,411   
   hN  2,086 915 327 41  
   hn  16 21 35 41  
   hCV  0.64 0.41 0.45 38  

2 117 0.0194 hk  19 37 95   
   hN  393 420 176 49  
   hn  13 21 34 49  
   hCV  0.19 0.16 0.28 0.21  

3 103 0.0214 hk  740 1,505 3,819   
   hN  256 234 118 69  
   hn  9 10 15 69  
   hCV  0.32 0.18 0.25 0.27  

4 93 0.0142 hk  117 188 359   
   hN  111 112 74 60  
   hn  7 9 17 60  
   hCV  0.14 0.12 0.19 0.32  
    5 Strata 
    1 2 3 4 5 

1 90 0.0360 hk  342 1,153 3,431 10,301  
   hN  1,846 993 357 147 26 
   hn  12 14 17 21 26 
   hCV  0.58 0.34 0.31 0.31 0.32 

2 136 0.0144 hk  14 21 35 80  
   hN  189 270 336 164 79 
   hn  4 7 16 30 79 
   hCV  0.12 0.10 0.12 0.24 0.30 

3 105 0.0184 hk  512 869 1,577 3,675  
   hN  133 180 185 110 69 
   hn  4 5 10 17 69 
   hCV  0.27 0.15 0.16 0.23 0.27 

4 99 0.0119 hk  99 130 189 339  
   hN  70 68 85 71 63 
   hn  4 4 8 20 63 
   hCV  0.10 0.08 0.10 0.18 0.33 
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4. Summary  
This paper derives a simple algorithm for the 

construction of stratum boundaries in positively skewed 
populations, for which it is shown that the stratum breaks 
may be obtained using the geometric distribution. The 
proposed method is easier to implement than approxi-
mations previously proposed. Comparisons with the com-
monly used cumulative root frequency method using four 
positively skewed real populations divided into three, four 
and five strata, showed substantial gains in the precision of 
the estimator of the mean; the greatest gains occurring when 
the number of strata was five. Comparisons with the 
Lavallée-Hidiroglou method indicated that a greater sample 
size was required to obtain the same precision as the 
geometric method is most cases; the greatest increase in the 
required sample size occurred with the largest number of 
strata. One limitation of the new algorithm compared to the 
Lavallée-Hidiroglou method of stratum construction is that 
it does not determine a take-all top stratum. 
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