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Minimum Risk, Fixed Cost Sampling Designsfor Independent
Poisson Processes

Brad C. Johnson and John Deely *

Abstract

Optimal and approximately optimal fixed cost Bayesian sampling designs are considered for simultaneous estimation in
independent homogeneous Poisson processes. We develop generd allocation formulae for a basic Poisson-Gamma model
and compare these with more traditional alocation methods. We then discuss techniques for finding representative gamma
priors under more genera hierarchica models and show that, in many practicad Situations, these provide reasonable
approximations to the hierarchical prior and Bayes risk. The methods developed are genera enough to apply to a wide

variety of models and are not limited to Poisson Processes.

Key Words: Optimal sampling allocations; Poisson processes; Poisson-Gamma hierarchy.

1. Introduction

The topic of Bayesian survey sampling techniquesis well
represented in the literature. A number of articles focus on
sampling from finite populations and most make use of
normality or a “pogterior linearity” property (cf. Godambe
1955; Ericson 1988; Ericson 1969; Scott and Smith 1971;
Tiwari and Lahiri 1989). An excellent review of recent
Bayesan methods for sampling finite populations is
contained in (Ghosh and Meeden 1997) as wdl as some
interesting new approaches. Lindely and Dedy (1993)
discuss optimal dlocation in gratified sampling under a
normal mode when only partial information is available. In
terms of Poisson models, Clevenson and Zidek (1975)
discuss the dmultaneous edstimation of means in
independent Poisson processes and Leite, Rodrigues and
Milan (2000) discuss a Bayesian analysis when estimating
the number of species in a population usng a nhon-
homogeneous Poisson process. Little work has been done
on mode specific sampling designs from a Bayesian
perspective.

In the present paper we take a model based approach to
develop optimal and approximately optimal fixed cost
sampling aloceations for smultaneous estimation in multiple
independent Poisson processes. Section 2 introduces the
model and some notation. Section 3 presents the generd
dlocation problem and gives the minimum Bayes risk
dlocations when independent conjugate gamma priors are
assumed for each process. Comparisons are made with
classica dretified random sampling alocations. In section 4
we describe techniques for finding “representative’
conjugate priors under more general hierarchical models
thus alowing (at least approximately) optimal sampling
dlocations to be determined for this larger class of models.
In many situations, these representative conjugate priors can
be used to reduce the hierarchical modd for the purposes of

posterior andysis as well. A full numericd example is
presented in section 5.

2. Modd and Notation

To avoid the necessity for subscripting, we first present
the model and notation in terms of a single homogeneous
Poisson process. Let (Q, F, v) be a measure space, let
{N(A): Ae F} be a homogeneous Poisson Process on
(Q, F, v) with unknown intensity 6 © = (0, =) and, for
ay AeF, lee X =(X, m)=(N(A), v(A)) denote a
complete sufficient statistic with redization x = (x, m).
Lessformdly, x is the redlization of a Poisson count from a
sample of “size” m. The p.m.f. of X isgiven by

(me)*e™™
I'(x+1)
We express our prior beliefs about the parameter 6 by a

conjugate gamma distribution with shape parameter oo and
scae parameter 3, denoted Gamma(a, ), with dengity

eotflefe/ﬁ
B*I'(c)

We presently restrict our attention to the case when A can
be specified; the addition of hyper-priors on A is
considered in section 4.

For an arbitrary action a in the action space A=0, we
consder the loss functions

(6-a)°

ek

f(x]06)= L0123 (x), 6€(0, «). (1)

m(6[2) = l0.)(0),  h=(a, B)e (0, =) (2)

L, (6, @)= , k=0,1. 3
L, isthe ordinary squared error lossand L, is the relative
squared error loss. For L; we require that o >1 which
implies the gamma prior is unimodal.

1. Brad C. Johnson, Department of Statistics, Purdue University, West Lafayette, IN 47907. E-mail: bradj @stat.purdue.edu; John Deely, Department of
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Under the loss functions L, the above modd is
extremely well understood. To simply notation somewhat,
let T =n(0]|1) andlet &} denote the Bayes procedure for
n* under the loss function L,. We recall that the posterior
distribution of 6 givenxis

0] x ~Gamma(oc+x,

1)
mp+1)
The Bayes procedure for loss function L, isgiven by

B(o+x-Kk)

Sﬁ(x): mB+1

o>k )

The posterior expected loss in using & under the loss
function L, is

2-k
B j (a+x-K™, a>k; (5

P(foa 3y, L) =[m

with Bayesrisk

1-k p2-k
o

mp+1 "

It is interesting to note that under L, (4) and (5) imply
that the Bayes procedure 82 (x) isthe mode of the posterior
and that p(rn*, 8}, L)) does not depend on the observed
count x and hence is constant.

It is often more convenient, in terms of the dlicitation
process, to alow the shape parameter o of the gamma prior
for 6 to depend on the scale parameter B. In particular, the
following aternate parameterizations are used throughout;

0% ~Gamma(u/p, B), A=(u, B), E(6]2)=p; (7)
0]% ~ Gamma(n/B +1,B), = (n,B),Mode(8 ) =n.(8)

r(c*, &, L,)= o> k. (6)

Unless specified otherwise, results and formulae for these
dternate parameterizations can be obtained by simply
substituting the proper value for o.. For & asin (7) or (8)
we substitute o= /B or n/B+1 respectively.

3. Optimal Allocation

We now discuss the alocation of sampling effort when
{N;(A):AeF}, for s=1 .. S ae independent
homogeneous Poisson processes on corresponding measure
spaces (Qg, Fg, v,) with unknown intensties 6,. The
redization of a sample is now denoted X =(X, ..., Xg)
where the x,=(x,, m,) have the same meanings as
X =(X, m) in section 2. For esch process, s=1, ..., S,
we assume that

X, |, ~ Poisson(m, 6,);
0 “"s - Gamma(as’ Bs)’ A= (as’ Bs)

Notice that we have not assumed that the 6, are
exchangeable so that prior information about one process is
not influenced by the others.
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Let 8% =8%(x)=(8}* (X), .., 8% (Xg)) be the
component-wise vector of Bayes procedures for estimating
0=(0,,.., 6g) under the loss function L, and let ="
denote the overdl prior specification. We assume that the
overdl loss for estimating some (possibly vector valued)
function g(0) with g(3;) can beexpressed as

L(9(0), 961N =3 w, L (6., 3(x)), (9

where the w, are known arbitrary non-negative weights. In
particular this covers the case when we are interested in the
smultaneous estimation of W@ where W =(w;;) is a
J xS matrix and the loss structure is of theform

J S
Lk (WO'WSﬁ)Zz z Lk (steslessﬁs)

j=1 s=1
S J 2-k s

= (Z Wi ij (65.8:°). (10)
s=1 j=1

The weights in (9) become w, =¥],w%* and, by the
linearity of the expectation operator, the overall Bayes risk
isgiven by

r(mh, Wop, L) =Y wir (™, &, L).
S

Let (§=¢&,,..., &) denote the full specification where
&, = (o, Bs, W, C,) denotes the specification for process
sand c, is the per unit sampling cost within that process.
The general dlocation problem involves finding an

m=(m, .., mg) that minimzes the tota risk
r(c*, g(d*), L) of g(8") subject to the constraint
S
C=> cm;
s=1

where C is the fixed total sampling budget. The proof of the
following result is routine and deferred to the appendix.

Result 1. Let £=(&,, ..., &) begiven. Theallocation m =
(m, ..., mg) that minimizes r (x*, g(85), L,) for fixed

total cost Cis
(mz E—SJ—i. (11)

A WsasBs/Cs
ms=es———
ZS WsasBsCs Bs

The allocation that minimizes r (t*, g(82), L,) is

=_JWS/CS(C &J_i 1
s > YW +§ Bs) B 12

Equations (11) and (12) can result in oneor more m, <0
(i.e, we take no samples from the offending processes) in
which case we would remove these processes and re-
dlocate C among the remaining processes. Of course, for
the removed processes, our pogterior mean and variance are
equivalent to the prior mean and variance of 6.



We aso comment that the allocation which minimizes
r(c*, 8, L) in(12) dso minimizes p(n*, &1, L) since
this latter quantity isfree of the observed counts X .

3.1 Comparisonswith Traditional Frequentist
Sampling Allocations

A gpecia case of the above result is when the
{N;(A): Ae F.} can be thought of as a Stretification of a
single non-homogeneous Poisson process { N (A): Ae F}
and we are interested in estimating the overall population
mean, say 0. Tothisend, let W, denote the relative size of
eech Q. (which is assumed to be finite) and consider
estimating the overall population mean 6=W6, where
W=W, .., W), with the decison rule W$,. The
weightsin this case are w, =W and, substituting into (11),
we obtain

e

Letting B, — < and a,—0 such that af, —u,
smultaneoudy for each process is equivalent to letting
E(©,) >, andVar (6, — o) for al sand weobtain

Cwq/uslc (13)
Z W, y/1<C,

This expression, up to the finite population correction factor,
is the traditional frequentist allocation under the parametric
modd X, =(X,, 1) ~Poisson(u,) where u  represents
our “best guess’ for the mean (and hence variance) of X
(cf. Cochran 1977). When ¢, =1 for al s, this becomes the
Neyman allocation when the finite population correction
factor isignored.
Assuming that al of the u, arethesamein (13) yields

oW/ yE
"YW o

and, when ¢, =1 for dl s, we obtain the usual proportional
alocation for fixed total samplesize C = N.

In this sense, we see that the traditional frequentist
solutions to the allocation problem can be obtained as the
appropriate limit of Bayes solutions just as the traditiona
frequentist estimates can be obtained as a limit of Bayes
procedures.

4. Representative Conjugate PriorsUnder
Hierarchical Models

Up until now we have assumed thet the A, were known.
Returning to the notation of section 2 we now consider
amore genera hierarchical model
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X |6 ~ Poisson(me);
0| A ~ Gamma(a, B);
A~h() AreH. (15)

We redtrict our attention to choices of h(h) where the
Bayes risk is finite and this precludes, among other things,
the use of improper h(L). The unconditiona prior for 6
under thismodd can, at least in principle, be obtained as

n(0)=E"®r(6]2).

In practice however, there is little to be gained since the
resulting w(6) will usualy not be expressible in closed
form. Indeed, it is usudly the case that numeric integration
and/or smulation is required to obtain the required posterior
quantites and the Bayesrisk.

We propose two methods for finding a “representative’
sngle conjugate prior which, in most cases, can be
subgtituted for m(6) for the purposes of dlocation. Indeed,
for many practicd dtuations, we find that these “represent-
tetive” conjugate priors can replace the hierarchical model
completely, greatly smplifying the posterior analysis.

We assume that it is relatively easy to smulate a
sequence of random variables, {1}, from h{}} and, as
such, a sequence of random variables, {6,}),, can be
obtained easily from =t(6) by taking 6, ~m(6]|%;).

We now discuss the two techniques for finding the
representative conjugate prior.

4.1 TheMinimum L_ Conjugate Prior

Let F(0) and F (6]1) dencte the distribution functions
of m(0) and m(6|A) respectively. The L_ conjugate prior,
or L_C prior, is defined to be the prior ©” =m(6]|17)
where L™ ischosen such that

| F(8)-F(812")]. =i)m;|| F(6)-F(OIM)]...

That is, the L__C prior is the prior m(6|A) which
minimizesthe L_ distance between F(6) and F (6]1).

In order to estimate such a ©(8|A~) let {6,}, be N
smulated vaues from the unconditiona prior w(0); let
0., denotethe i™ ordered vaue of the {6,}; and define
the function

d, (1) =max F(G,NM)—% (16)

It is usualy aroutine matter to numerically find an (at least
approximate) minimizing 2 for (16) andour L__C prior is
n(0|1A") where A~ satisfies

dy (A7) =inf dy (3).
Note that we are essentidly minimizing the
Kolmogorov-Smirnov dtatistic and the obvious appea of

estimating w(0) in this manner is that d,(A™) can be
directly interpreted as the estimated maximum difference of

Statistics Canada, Catalogue No. 12-001
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cumulative probabilities under ©t(6) and w(6|A7). Inthe
sequel, we will denote the Bayes procedure under the prior
n” andlossfunction L, as & (X).

4.2 TheML ConjugatePrior

Let 6, ..., 6y be N smulated values from w(6). The
ML conjugate prior, or ML-C prior, when it exigs, is
defined to bethe prior (6 |2™) where ™ satisfies

r(6]2™)=supL(%10) =sup [T n(6, [1);

heH j=1

or, equivalently,

In T(8]A™)=supl (1|0)=sup i In (6, |2).

reH j=1

That is, A™ is the usual maximum likelihood estimator of
A if 0, .., 0y were iid from wm(8|A). Agan, it is
usudly a simple matter to obtain 2™ by numerical or
smulation techniques. As in the L method, we will let
™ and &' denote the estimated prior and the Bayes
procedure under =™ and lossfunction L, .

Examples. The following four examples give an indication
of how these procedures perform for afew different choices
of h(1). Inal of the examples we consider the general fist
Stage setup to be

X |6 ~ Poisson (mB)

6| ~Gamma(m/p+1, B) A=, B)

Furthermore, we assume n and 3 are independent so that
h(A) may be written a h(n)h,(B). Adopting the
notationa conventions

Y~Beta, 1y (G1, o) = f () o (y-a) 5 (b=y)* ™1 (o 1y (V)

Y~InvGamma(a, b) = f(y) e y @ Ve, (y);
the four examples considered are

Example n B
@ Uniform (4, 6) Betags, 2 (2 5)
(b) Gamma (6.25, 0.8) InvGamma (11, 1/30)
(c) Uniform (2, 18) Uniform (0.2, 0.5)

(d) Betas 15 (2 1) Betay, 05 (1 2

Table 1 gives the estimated 2~ and A™ with dy (1~)
and, for comparison, dy (A™) for each of these examples
where al of the estimates are based on N =100,000
smulated values from m(6). In examples (a) and (b) both
methods give very similar results and provide very good fits
to ©(0) asindicated by the small valuesof d, . Examples
(c) and (d) were chosen to illustrate what happens when
n(0) deviates noticesbly from a gamma distribution.
Examples (c) hasa“plateau” distribution and example (d) is

Statistics Canada, Catalogue No. 12-001

skewed in the wrong direction. As expected, the fits are less
convincing in these examples. Figure 1 shows the simulated
n(8) dongwith ©= and ™ for each of these examples.

Tablel
Estimated 1~ and ™ for examples (a) — (d)
Example A dy (&) A™ dy (™)
(a (4.94, 0.98) 0.003  (4.93,1.00) 0.006
(b) (4.42,3.53) 0.003  (4.35,3.63) 0.006
(© (7.72,2.92) 0.043  (7.38,2.93) 0.065
(d)  (10.44,1.01) 0.040 (10.12, 1.10) 0.068

A more important consideration, for the purposes of the
dlocations discussed in section 3, is how well the Bayes
risks are gpproximated under n~ and ™. Table 2 gives
the Bayes risk, r (m, 8y, L,) under the hierarchical model
and the valuesfor r, (n™) and r, (t™) where

r(m, 8¢, L) —r(x’, 8, L)
r(m, o, L)

f(n') =

1)

and where e=o or ml for each of the examples. The
vaues r(m, &, L) in this table were obtained by
simulation and are subject to a certain amount of variation.
Repeated simulations produced similar results. In examples
(a) and (b) the correspondence between the Bayes risk under
the representative priors is very close, especidly for the
ML-C priors. In examples (c) and (d) the correspondence is
dtill quite good considering these relatively smal sample
sizes. Overdl, the ML-C prior appears to perform dightly
better in the sense that the Bayesrisks r (z™, 8}, L,) tend
to be closer to r (w, &y, L,) with the exception of example
(c) under the loss function L, where the L__C prior is
dightly better.

In examples (a) and (b) on may ask why a hierarchica
model would be considered in the first place. The answer
lies in the relative ease of diciting absolute or probabiligtic
bounds on the hyper-paramteres involved and taking h(1.)
to represent this uncertainty. The methods above can then,
in many pratica dtuations, be used to determine a
representative single conjugate gamma prior for 6 thus
greatly smpligying the posterior analysis. The next section
illustrates this with an example.

We dso point out that it is relatively easy to construct
examples where the methods described in this section will
faill miserably at not only approximating © but aso the
Bayes risk. The method is best suited to cases where h(i)
is chosen to represent uncertainty about A. In Stuations
when h()) is being used to change the fundamental
behavior of the first stage gamma prior (to create a bimoda
prior for example) the presentative priors n~ and n™
would normally not be used as a placement for n in the
posterior andysis but may still give suitable approximations
of the Bayesrisk for the purposes of alocation.
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Figurel. Simulated prior (0) (histogram) and the representative

priors =™ and x™ for examples (a) — (d).

Table2
Bayes Risks for Examples (a) — (d)
Example ()
I-0 I-1
m rmd") o) ro@r™) r(m,8") rym”)  ri@™)
1 2.997 —0.018 —0.006 0.500 —0.006 —0.002
5 0.986 —0.004 0.001 0.167 —0.003 0.000
10 0.540 —0.006 —0.002 0.091 —0.002 0.000
Example (b)
I-0 I-1
m  rmd") o) ro@r™) r(m,8") ry@”)  ri@™)
1 6.320 —0.021 —0.009 0.791 —0.015 —0.008
5 1.524 —0.014 —0.007 0.190 —0.003 —0.002
10 0.779 —0.008 —0.002 0.097 —0.002 —0.001
Example (c)
I-0 I-1
m rmd") o) ro@r™) r(m,8") ry@”)  ri@™)
1 6.861 0.154 0.121 0.725 0.027 0.028
5 1.836 0.084 0.052 0.183 0.023 0.024
10 0.968 0.062 0.031 0.095 0.015 0.015
Example (d)
L0 L1
m o rmd") ro(m”) ro@r™) r(m,8") rym”)  ri@™)
1 5.251 0.096 0.121 0.523 —0.040 0.002
5 1.778 0.075 0.068 0.165 0.013 0.027
10 0.986 0.057 0.043 0.090 0.013 0.021

Statistics Canada, Catalogue No. 12-001
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5. Numeric Example

We now present a numerical example based on data in
Lindley and Dedy (1993). The data consigts of traffic
counts between the hours of 7 am. and 6 p.m. over a 341
day period (3,751 hours) for a particular street in Auckland,
New Zedland. The hours are dratified into M, =2,673
weekday hours and M, =1,078 weekend hours and we
assume that the number of vehicles per hour can be modeled
by two independent Poisson processes. For the purposes of
this example we assume a total budget of $1,500 is to be
alocated and that per hour sampling costs are ¢, = $10 and
c,=%$5 for weekdays and weekends respectively. The
relative drata sizes in this case are W, =0.71261 and
W, =0.28739 for weekdays and weekends respectively.

The prior belief is that the weekend traffic rate is 40
vehicles per hour and that weekend traffic accounts for 5%
of the total weekly traffic which yields a weekday traffic
rate of 304 vehicles per hour. Suppose dso that, for
weekday traffic, we have dicited that the number of
vehicles per hour will rarely exceed 400 and that, for
weekend days, the number of vehicles per hour will rarely
exceed 60, that is, say

Pr(X,<400)=095 and Pr(X,<600)=0.95.

Making use of the fact thet the marginal distribution of X
given i, is a “number of falure’ negative binomial
distribution of “size’ o=n/p+1 and success probability
1/(mB +1) we find that, when m, =304 and n, =40, the
Bs’'s that come closest to satisfying these dlicited
probabilitiesare B, = 7.51 and B, =1.74 respectively.

We now assume that the modes of the traffic rates for
weekdays and weekends are equally likely to be within
approximately 10% of the elicited traffic rates of 304 and 40
respectively and teke

N, ~Uniform(274,334) and mn, ~ Uniform(36, 44).

To represent our uncertainty about the 3 we take
B, ~ InvGamma(11, 0.0136)
and
B, ~ InvGamma(14.25, 0.043);

which yieds E(B,)=7.5 with Pr(4<p,; <13.4)=0.95
and E(B,) =1.75 with Pr(1.03<B, <2.97) = 0.95.

Using the ML-C technique in section 4 with
N =100,000, the specifications for weekday (s=1) and
weekend (s=2) hourly traffic rates aong with the values
dy(n™) are

s Cs W T]in rSnI dN(TCmI)
1 10 0.71261  302.98 8.303 0.0055
2 5 0.28739  39.876 1.889 0.0060
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For the remainder of this section we will dispense with the
superscript “ml” and simply refer the prior specification as
n* and let 8*(x)=(8}, ..., 8%) denote the component-
wise vector of Bayes procedures for estimating 0=
(0,,..., 65) under the prior specification n* and loss
function L.

We condgder three different dlocations based on
estimating W,0, W,0 and WO where

10 W
Wl{o J, W, =[W, W,] and W{Wj.

With W, we are primarily interested in estimating the
weekday and weekend traffic rates 6, and 0, individualy;
with W, we are only interested in estimating the overall
traffic rate 6 =W,0, + w,0,; and, with W, we are interested
in estimating al of these. In the sequel, we will refer to the
dlocationsas m(W,), m(W,) and m(W) respectively.

Table 3 gives the dlocations and corresponding weights
w, for these examples based on (11) and table 4 shows the
Bayes risks in estimating ©,, 6,, W,0, W,0 and W6
under these 3 dlocations. While allocation m(W,) is
optimal for estimating the overdl traffic rate 6, it resultsin
large increases in the Bayes risks when estimates for the
weekday and weekend traffic rates are dso desired — the
Bayes risk for estimating 6, under m(W,) is amost
double compared to the Bayesrisk under m(W).

Table3
Weights and Allocations for W,, W, and W
m(W,) m(W5) m(W)
S Wy mg Wy mg Ws ms
1 1 11933 05078 136.04 15078 12320
2 1 6135 00826 2792 10826 53.60
Table4
Bayes Risks Under Allocations m(W;), m(W;)
and m(W,)
Estimand
m 0, 6, W0 W,0 WO

m(w,) 261 068 328 138 4.66
m(W,) 229 147 375 128 504
m(W) 252 077 329 135 464

6. Concluding Comments

The techniques employed in the present paper are genera
enough to apply to a wide variety of Bayesan models.
Optimal allocation equations for other Bayesan models.
Optimal dlocation equations for other Bayesian models in
which the prior beliefs can, at least approximately, be
modeled by conjugate priors are usualy easy to abtain. The
idea of finding “representative’ conjugate priors, as discus-
sed in section 4, is aso applicable to a wide variety of
hierarchical models with first stage conjugate priors. Aress
of additional research in this area include alocations under



10

loss functions other that L, and L, as well as more
complicated cost functions.
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Appendix A. Proof of Result 1

Proof of Result 1. Introducing the Lagrange multiplier A,
wewish to minimize, for lossfunction L,,

s, w (xl—kBZ—k ( )
—=5 75 4 A c,—-C|
; myBs+1 Z m

Differentiating with respect to m,, setting equd to 0 and
solving for m, yields

_AWo B e 1
A B

Therefore, to minimize therisk for fixed cost, we take

C:Z mscs:z - B_
s s=1 s=1 s

or

i > w.ot “Brkc
~ C+Y /B,

Substituting this back into the equation for m, yields

JWo B /e .| 1
Tk ik [C+Z _J__'
ZS \/Ws(xs Bs Cs BS

m= )

Taking k=0 or 1 givesthe desired resuilt.
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