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Minimum Risk, Fixed Cost Sampling Designs for Independent  
Poisson Processes 

Brad C. Johnson and John Deely 1 

Abstract 

Optimal and approximately optimal fixed cost Bayesian sampling designs are considered for simultaneous estimation in 
independent homogeneous Poisson processes. We develop general allocation formulae for a basic Poisson-Gamma model 
and compare these with more traditional allocation methods.  We then discuss techniques for finding representative gamma 
priors under more general hierarchical models and show that, in many practical situations, these provide reasonable 
approximations to the hierarchical prior and Bayes risk. The methods developed are general enough to apply to a wide 
variety of models and are not limited to Poisson Processes. 

                                                           
1. Brad C. Johnson, Department of Statistics, Purdue University, West Lafayette, IN 47907. E-mail: bradj@stat.purdue.edu; John Deely, Department of 

Statistics, Purdue University, West Lafayette, IN 47907. 

  
Key Words: Optimal sampling allocations;  Poisson processes;  Poisson-Gamma hierarchy. 
 
 

 

1. Introduction  
The topic of Bayesian survey sampling techniques is well 

represented in the literature. A number of articles focus on 
sampling from finite populations and most make use of 
normality or a “posterior linearity” property (cf. Godambe 
1955; Ericson 1988; Ericson 1969; Scott and Smith 1971; 
Tiwari and Lahiri 1989). An excellent review of recent 
Bayesian methods for sampling finite populations is 
contained in (Ghosh and Meeden 1997) as well as some 
interesting new approaches. Lindely and Deely (1993) 
discuss optimal allocation in stratified sampling under a 
normal model when only partial information is available. In 
terms of Poisson models, Clevenson and Zidek (1975) 
discuss the simultaneous estimation of means in 
independent Poisson processes and Leite, Rodrigues and 
Milan (2000) discuss a Bayesian analysis when estimating 
the number of species in a population using a non-
homogeneous Poisson process. Little work has been done 
on model specific sampling designs from a Bayesian 
perspective. 

In the present paper we take a model based approach to 
develop optimal and approximately optimal fixed cost 
sampling allocations for simultaneous estimation in multiple 
independent Poisson processes. Section 2 introduces the 
model and some notation. Section 3 presents the general 
allocation problem and gives the minimum Bayes risk 
allocations when independent conjugate gamma priors are 
assumed for each process. Comparisons are made with 
classical stratified random sampling allocations. In section 4 
we describe techniques for finding “representative” 
conjugate priors under more general hierarchical models 
thus allowing (at least approximately) optimal sampling 
allocations to be determined for this larger class of models. 
In many situations, these representative conjugate priors can 
be used to reduce the hierarchical model for the purposes of 

posterior analysis as well. A full numerical example is 
presented in section 5. 

 
2. Model and Notation  

To avoid the necessity for subscripting, we first present 
the model and notation in terms of a single homogeneous 
Poisson process. Let ),,( vFΩ  be a measure space, let 

}:)({ FAAN ∈  be a homogeneous Poisson Process on 
),,( vFΩ  with unknown intensity ),0( ∞=Θ∈θ  and, for 

any ,FA∈  let ))(),((),( AvANmX ==X  denote a 
complete sufficient statistic with realization ).,( mx=x  
Less formally, x is the realization of a Poisson count from a 
sample of “size” m. The p.m.f. of X is given by 

).,0(),(
)1(

)(
)|( ,...}2,1,0{ ∞∈θ

+Γ
θ=θ

θ−

xI
x

em
f

mx

x  (1) 

We express our prior beliefs about the parameter θ  by a 
conjugate gamma distribution with shape parameter α  and 
scale parameter ,β  denoted Gamma ),,( βα  with density 

.),0(),(),(
)(

)|( 2
),0(

/1

∞∈βα=θ
αΓβ

θ=θπ ∞α

βθ−−α

λλ I
e

 (2) 

We presently restrict our attention to the case when λ  can 
be specified; the addition of hyper-priors on λ  is 
considered in section 4. 

For an arbitrary action a  in the action space ,Θ=A  we 
consider the loss functions 

.1,0,
)(

),(
2

=
θ
−θ

=θ k
a

aL
kk  (3) 

0L  is the ordinary squared error loss and 1L  is the relative 
squared error loss. For 1L  we require that 1>α  which 
implies the gamma prior is unimodal. 
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Under the loss functions kL  the above model is 
extremely well understood. To simply notation somewhat, 
let )|( λλ θπ=π  and let λ

kδ  denote the Bayes procedure for 
λπ  under the loss function .kL  We recall that the posterior 

distribution of θ  given x is 

.
1

,Gamma ~| ⎟
⎠
⎞

⎜
⎝
⎛

+β
β+αθ

m
xx  

The Bayes procedure for loss function kL  is given by 

.,
1

)(
)( k

m

kx
k >α

+β
−+αβ=δ xλ  (4) 

The posterior expected loss in using λ
kδ  under the loss 

function kL  is 

;,)(
1
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kkx
m

L k
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kk >α−+α⎟
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β=δπρ −
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with Bayes risk 

.,
1

),,(
21

k
m

Lr
kk

kk >α
+β
βα=δπ

−−
λλ  (6) 

It is interesting to note that under ,1L  (4) and (5) imply 
that the Bayes procedure )(1 xλδ  is the mode of the posterior 
and that ),,( 11 Lλλ δπρ  does not depend on the observed 
count x and hence is constant. 

It is often more convenient, in terms of the elicitation 
process, to allow the shape parameter α  of the gamma prior 
for θ  to depend on the scale parameter .β  In particular, the 
following alternate parameterizations are used throughout: 

;)|(),,(),,/(Gamma~| μ=θβμ=ββμθ λλλ E  (7) 

.)|(Mode),,(),,1/(Gamma~| η=θβη=β+βηθ λλλ (8) 

Unless specified otherwise, results and formulae for these 
alternate parameterizations can be obtained by simply 
substituting the proper value for α . For λ  as in (7) or (8) 
we substitute βμ=α /  or 1/ +βη  respectively. 

 
3. Optimal Allocation  

We now discuss the allocation of sampling effort when 
},:)({ ss FAAN ∈  for Ss ...,,1=  are independent 

homogeneous Poisson processes on corresponding measure 
spaces ),,( sss vFΩ  with unknown intensities .sθ  The 
realization of a sample is now denoted )...,,( 1 Sxxx =  
where the ),( sss mx=x  have the same meanings as 

),( mxs =x  in section 2. For each process, ,...,,1 Ss =  
we assume that  

).,(),,Gamma(~|

);Poisson(~|

s ssssss

ssss m

βα=βαθ

θθ

λλ

X
 

Notice that we have not assumed that the sθ  are 
exchangeable so that prior information about one process is 
not influenced by the others. 

Let ))(...,),(()( 1
Skkkk

s xxx λλλλ δδ δδ==  be the 
component-wise vector of Bayes procedures for estimating 

)...,,( 1 Sθθ=θ  under the loss function kL  and let λπ  
denote the overall prior specification. We assume that the 
overall loss for estimating some (possibly vector valued) 
function )(θg  with )( λδkg  can be expressed as 

)),(,())(),((
1

sksks

S

s
kk

sLwggL xλλδθ δθ=∑
=

 (9) 

where the sw  are known arbitrary non-negative weights. In 
particular this covers the case when we are interested in the 
simultaneous estimation of Wθ  where )( jsw=W  is a 

SJ ×  matrix and the loss structure is of the form 
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(10)

 

The weights in (9) become ∑ =
−= J

j
k

jss ww 1
2  and, by the 

linearity of the expectation operator, the overall Bayes risk 
is given by 

).,,(),,( kks
s

kk LrwLr ss λλλλ δ δπ=π ∑W  

Let )...,,( 1 Sξξξ =  denote the full specification where 
),,,( sssss cwβα=ξ  denotes the specification for process 

s and sc  is the per unit sampling cost within that process.  
The general allocation problem involves finding an 

)...,,( 1 Smm=m  that minimizes the total risk 
)),(,( kLgr λλ δπ  of )( λδg  subject to the constraint 

;
1

ss

S

s

mcC ∑
=

=  

where C is the fixed total sampling budget. The proof of the 
following result is routine and deferred to the appendix. 
 
Result 1. Let ( )Sξξξ ...,,1=  be given. The allocation =m  

)...,,( 1 Smm  that minimizes )),(,( 00 Lgr λλ δπ  for fixed 
total cost C is 

.
1/
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ssssss

ssss
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m
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 (11) 

The allocation that minimizes )),(,( 11 Lgr λλ δπ  is 

.
1/
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ss
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c
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m

β
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⎠

⎞
⎜⎜
⎝

⎛
β

+= ∑∑
 (12) 

Equations (11) and (12) can result in one or more 0≤sm  
(i.e., we take no samples from the offending processes) in 
which case we would remove these processes and re-
allocate C among the remaining processes. Of course, for 
the removed processes, our posterior mean and variance are 
equivalent to the prior mean and variance of .sθ  
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We also comment that the allocation which minimizes 
),,( 11 Lr λλ δπ  in (12) also minimizes ),,( 11 Lλλ δπρ  since 

this latter quantity is free of the observed counts .xs  

 
3.1 Comparisons with Traditional Frequentist 

Sampling Allocations  
A special case of the above result is when the 

}:)({ ss FAAN ∈  can be thought of as a stratification of a 
single non-homogeneous Poisson process }:)({ FAAN ∈  
and we are interested in estimating the overall population 
mean, say θ . To this end, let sW  denote the relative size of 
each sΩ  (which is assumed to be finite) and consider 
estimating the overall population mean ,Wθ=θ  where 

),...,,( 1 SWW=W  with the decision rule .0δW  The 
weights in this case are 2

ss Ww =  and, substituting into (11), 
we obtain 

.
1/

ss

s

ssssss

ssss
s

c
C

cW

cW
m

β
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β

+
βα

βα
= ∑∑

 

Letting ∞→β s  and 0→α s  such that sss μ→βα  
simultaneously for each process is equivalent to letting 

ssE μ→θ )(  and Var )( ∞→θs  for all s and we obtain 

.
/

ssss

sss
s cW

cCW
m

μ
μ

=
∑

 (13) 

This expression, up to the finite population correction factor, 
is the traditional frequentist allocation under the parametric 
model )(μPoisson~)1,( sss X=X  where sμ  represents 
our “best guess” for the mean (and hence variance) of sX  
(cf. Cochran 1977). When 1=sc  for all s, this becomes the 
Neyman allocation when the finite population correction 
factor is ignored. 

Assuming that all of the sμ  are the same in (13) yields 

;
sss

ss
s cW

cCW
m

∑
=  (14) 

and, when 1=sc  for all s, we obtain the usual proportional 
allocation for fixed total sample size .NC =  

In this sense, we see that the traditional frequentist 
solutions to the allocation problem can be obtained as the 
appropriate limit of Bayes solutions just as the traditional 
frequentist estimates can be obtained as a limit of Bayes 
procedures. 

 
4. Representative Conjugate Priors Under 

Hierarchical Models  
Up until now we have assumed that the sλ  were known.  

Returning to the notation of section 2 we now consider 
amore general hierarchical model 

.)(~

);,(Gamma~|

);(Poisson~|

Ηh

m

∈

βαθ

θθ

λλλ

λ

X

 

(15)

 

We restrict our attention to choices of )(λh  where the 
Bayes risk is finite and this precludes, among other things, 
the use of improper )(λh . The unconditional prior for θ  
under this model can, at least in principle, be obtained as 

).|()( )( λλ θπ=θπ hE  

In practice however, there is little to be gained since the 
resulting )(θπ  will usually not be expressible in closed 
form. Indeed, it is usually the case that numeric integration 
and/or simulation is required to obtain the required posterior 
quantites and the Bayes risk. 

We propose two methods for finding a “representative” 
single conjugate prior which, in most cases, can be 
substituted for )(θπ  for the purposes of allocation.  Indeed, 
for many practical situations, we find that these “represent-
tative” conjugate priors can replace the hierarchical model 
completely, greatly simplifying the posterior analysis. 

We assume that it is relatively easy to simulate a 
sequence of random variables, ,}{ 1

N
nn =λ  from }{λh  and, as 

such, a sequence of random variables, ,}{ 1
N
nn =θ  can be 

obtained easily from )(θπ  by taking ).|(~ ii λθπθ  
We now discuss the two techniques for finding the 

representative conjugate prior.  
4.1 The Minimum ∞L  Conjugate Prior  

Let )(θF  and )|( λθF  denote the distribution functions 
of )(θπ  and )|( λθπ  respectively. The ∞L  conjugate prior, 
or CL −∞  prior, is defined to be the prior )|( ∞∞ θπ=π λ  
where ∞λ  is chosen such that 

.)|()(inf)|()( ∞
Η∈

∞
∞ θ−θ=θ−θ λλ

λ
FFFF  

That is, the CL −∞  prior is the prior )|( λθπ  which 
minimizes the ∞L  distance between )(θF  and ).|( λθF  

In order to estimate such a )|( ∞θπ λ  let N
ii 1}{ =θ  be N 

simulated values from the unconditional prior );(θπ  let 
Ni:θ  denote the thi  ordered value of the };{ iθ  and define 

the function 

.
5.0

)|(max)( : N

i
Fd Ni

i
N

−−θ= λλ  (16) 

It is usually a routine matter to numerically find an (at least 
approximate) minimizing λ  for (16) and our CL −∞  prior is 

)|( ∞θπ λ  where ∞λ  satisfies 

).(inf)( λλ
λ NN dd

Η∈

∞ =  

Note that we are essentially minimizing the 
Kolmogorov-Smirnov statistic and the obvious appeal of 
estimating )(θπ  in this manner is that )( ∞λNd  can be 
directly interpreted as the estimated maximum difference of 
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cumulative probabilities under )(θπ  and ).|( ∞θπ λ  In the 
sequel, we will denote the Bayes procedure under the prior 

∞π  and loss function kL  as ).(x∞δk  
 
4.2 The ML Conjugate Prior 
 

Let Nθθ ...,,1  be N simulated values from ).(θπ  The 
ML conjugate prior, or ML-C prior, when it exists, is 
defined to be the prior )|( mlλθπ  where mlλ  satisfies 

);|(sup)|(sup)|(
1

ml λθλλ
λλ

i

N

i

L θπ==θπ ∏
=Η∈Η∈

 

or, equivalently, 

∑
=Η∈Η∈

θπ==θπ
N

i
il

1

ml ).|(lnsup)|(sup)|(ln λθλλ
λλ

 

That is, mlλ  is the usual maximum likelihood estimator of 
λ  if Nθθ ...,,1  were i.i.d. from ).|( λθπ  Again, it is 
usually a simple matter to obtain mlλ  by numerical or 
simulation techniques. As in the ∞L  method, we will let 

mlπ  and ml
kδ  denote the estimated prior and the Bayes 

procedure under mlπ  and loss function .Lk   
Examples. The following four examples give an indication 
of how these procedures perform for a few different choices 
of ).(λh  In all of the examples we consider the general fist 
stage setup to be 

),(),1/(Gamma~|

)(Poisson~|

βη=β+βηθ

θθ

λλ

mX
 

Furthermore, we assume η  and β  are independent so that 
)(λh  may be written as ).()( 21 βη hh  Adopting the 

notational conventions 

);()(),(InvGamma~

);()()()(),(Beta~

),0(
/1)1(

),(
11

21),(
21

yIeyyfbaY

yIybayyfY

yba

baba

∞
−+−

−ζ−ζ

∝⇒

−−∝⇒ζζ

 

the four examples considered are 
 

Example η  β  

(a) Uniform (4, 6) )5,2(Beta )2,5.0(  

(b) Gamma (6.25, 0.8) InvGamma (11, 1/30) 

(c) Uniform (2, 18) Uniform (0.2, 0.5) 

(d) )1,2(Beta )15,3(  )2,1(Beta )5.0,1.0(  

 
Table 1 gives the estimated ∞λ  and mlλ  with )( ∞λNd  

and, for comparison, )( mlλNd  for each of these examples 
where all of the estimates are based on 000,100=N  
simulated values from ).(θπ  In examples (a) and (b) both 
methods give very similar results and provide very good fits 
to )(θπ  as indicated by the small values of .d N  Examples 
(c) and (d) were chosen to illustrate what happens when 

)(θπ  deviates noticeably from a gamma distribution.  
Examples (c) has a “plateau” distribution and example (d) is 

skewed in the wrong direction. As expected, the fits are less 
convincing in these examples. Figure 1 shows the simulated 

)(θπ  along with ∞π  and mlπ  for each of these examples.  
Table 1 

Estimated ∞λ  and mlλ  for examples )d()a( −  
 

Example ∞λ  )( ∞λNd  mlλ  )( mlλNd  

(a) (4.94, 0.98) 0.003 (4.93, 1.00) 0.006 
(b) (4.42, 3.53) 0.003 (4.35, 3.63) 0.006 

(c) (7.72, 2.92) 0.043 (7.38, 2.93) 0.065 
(d) (10.44, 1.01) 0.040 (10.12, 1.10) 0.068 

 
A more important consideration, for the purposes of the 

allocations discussed in section 3, is how well the Bayes 
risks are approximated under ∞π  and .mlπ  Table 2 gives 
the Bayes risk, ),,( kk Lr πδπ  under the hierarchical model 
and the values for )(* ∞πkr  and )( ml* πkr  where 

),,(

),,(),,(
)(*

kk

kkkk
k

Lr

LrLr
r π

••π
•

δπ
δπ−δπ=π  (17) 

and where ∞=•  or ml for each of the examples. The 
values ),,( kk Lr πδπ  in this table were obtained by 
simulation and are subject to a certain amount of variation. 
Repeated simulations produced similar results. In examples 
(a) and (b) the correspondence between the Bayes risk under 
the representative priors is very close, especially for the 
ML-C priors. In examples (c) and (d) the correspondence is 
still quite good considering these relatively small sample 
sizes. Overall, the ML-C prior appears to perform slightly 
better in the sense that the Bayes risks ),,( mlml

kk Lr δπ  tend 
to be closer to ),,( kk Lr πδπ  with the exception of example 
(c) under the loss function 1L  where the CL −∞  prior is 
slightly better. 

In examples (a) and (b) on may ask why a hierarchical 
model would be considered in the first place. The answer 
lies in the relative ease of eliciting absolute or probabilistic 
bounds on the hyper-paramteres involved and taking )(λh  
to represent this uncertainty. The methods above can then, 
in many pratical situations, be used to determine a 
representative single conjugate gamma prior for θ  thus 
greatly simpligying the posterior analysis. The next section 
illustrates this with an example. 

We also point out that it is relatively easy to construct 
examples where the methods described in this section will 
fail miserably at not only approximating π  but also the 
Bayes risk. The method is best suited to cases where )(λh  
is chosen to represent uncertainty about .λ  In situations 
when )(λh  is being used to change the fundamental 
behavior of the first stage gamma prior (to create a bimodal 
prior for example) the presentative priors ∞π  and mlπ  
would normally not be used as a placement for π  in the 
posterior analysis but may still give suitable approximations 
of the Bayes risk for the purposes of allocation. 

 
 
 
 
 
 



8
 

 
Statistics Canada, Catalogue No. 12-001

 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Simulated prior )(θπ  (histogram) and the representative  
priors ∞π  and mlπ  for examples ).d()a( −  

 

Table 2 
Bayes Risks for Examples )d()a( −  

 

 Example (a) 
 0L   1L  

m  ),( πδπr  )(*
0

∞πr  )( ml*
0 πr   ),( πδπr  )(*

1
∞πr  )( ml*

1 πr  

1 2.997 – 0.018 – 0.006  0.500 – 0.006 – 0.002 
5 0.986 – 0.004 0.001  0.167 – 0.003 0.000 

10 0.540 – 0.006 – 0.002  0.091 – 0.002 0.000 
 Example (b) 
 0L   1L  

m  ),( πδπr  )(*
0

∞πr  )( ml*
0 πr   ),( πδπr  )(*

1
∞πr  )( ml*

1 πr  

1 6.320 – 0.021 – 0.009  0.791 – 0.015 – 0.008 
5 1.524 – 0.014 – 0.007  0.190 – 0.003 – 0.002 

10 0.779 – 0.008 – 0.002  0.097 – 0.002 – 0.001 
 Example (c) 
 0L   1L  

m  ),( πδπr  )(*
0

∞πr  )( ml*
0 πr   ),( πδπr  )(*

1
∞πr  )( ml*

1 πr  

1 6.861 0.154 0.121  0.725 0.027 0.028 
5 1.836 0.084 0.052  0.183 0.023 0.024 

10 0.968 0.062 0.031  0.095 0.015 0.015 
 Example (d) 
 0L   1L  

m  ),( πδπr  )(*
0

∞πr  )( ml*
0 πr   ),( πδπr  )(*

1
∞πr  )( ml*

1 πr  

1 5.251 0.096 0.121  0.523 – 0.040 0.002 
5 1.778 0.075 0.068  0.165 0.013 0.027 

10 0.986 0.057 0.043  0.090 0.013 0.021 
 
 
 

 

(b) 

          (c)              (d) 

(a) 
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5. Numeric Example 
 

We now present a numerical example based on data in 
Lindley and Deely (1993). The data consists of traffic 
counts between the hours of 7 a.m. and 6 p.m. over a 341 
day period (3,751 hours) for a particular street in Auckland, 
New Zealand. The hours are stratified into 673,21 =M  
weekday hours and 078,12 =M  weekend hours and we 
assume that the number of vehicles per hour can be modeled 
by two independent Poisson processes. For the purposes of 
this example we assume a total budget of $1,500 is to be 
allocated and that per hour sampling costs are 10$1 =c  and 

5$2 =c  for weekdays and weekends respectively. The 
relative strata sizes in this case are 71261.01 =W  and 

28739.02 =W  for weekdays and weekends respectively. 
The prior belief is that the weekend traffic rate is 40 

vehicles per hour and that weekend traffic accounts for 5% 
of the total weekly traffic which yields a weekday traffic 
rate of 304 vehicles per hour. Suppose also that, for 
weekday traffic, we have elicited that the number of 
vehicles per hour will rarely exceed 400 and that, for 
weekend days, the number of vehicles per hour will rarely 
exceed 60, that is, say 

.95.0)600(Prand95.0)400(Pr 21 ≈≤≈≤ XX  

Making use of the fact that the marginal distribution of sx  
given sλ  is a “number of failure” negative binomial 
distribution of “size” 1/ +βη=α  and success probability 

)1/(1 +βm  we find that, when 3041 =η  and ,402 =η  the 
sβ ’s that come closest to satisfying these elicited 

probabilities are 51.71 =β  and 74.12 =β  respectively. 
We now assume that the modes of the traffic rates for 

weekdays and weekends are equally likely to be within 
approximately 10% of the elicited traffic rates of 304 and 40 
respectively and take 

).44,36(Uniform~and)334,274(Uniform~ 21 ηη  

To represent our uncertainty about the sβ  we take 

)0136.0,11(InvGamma~1β  

and 

);043.0,25.14(InvGamma~2β  

which yields 5.7)( 1 =βE  with 95.0)4.134(Pr 1 ≈≤β<  
and 75.1)( 2 =βE  with .95.0)97.203.1(Pr 1 ≈≤β≤  

Using the ML-C technique in section 4 with 
,000,100=N  the specifications for weekday )1( =s  and 

weekend )2( =s  hourly traffic rates along with the values 
)( mlπNd  are 

 

s  sc  sW  ml
sη  ml

sβ  )( mlπNd  

1 10 0.71261 302.98 8.303 0.0055 
2 5 0.28739 39.876 1.889 0.0060 

 

For the remainder of this section we will dispense with the 
superscript “ml” and simply refer the prior specification as 

λπ  and let )...,,()( 1
λλλδ Sδδ=x  denote the component-

wise vector of Bayes procedures for estimating =θ  
)..,.,( 1 Sθθ  under the prior specification λπ  and loss 

function .0L  
We consider three different allocations based on 

estimating θWθW 21 ,  and Wθ  where 

.and][,
1

0

0

1

2

1
2121 ⎥

⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡=
W
W

WW WWW  

With 1W  we are primarily interested in estimating the 
weekday and weekend traffic rates 1θ  and 2θ  individually;  
with 2W  we are only interested in estimating the overall 
traffic rate ;2211 θ+θ=θ wW  and, with W, we are interested 
in estimating all of these. In the sequel, we will refer to the 
allocations as ),( 1Wm )( 2Wm  and )(Wm  respectively. 

Table 3 gives the allocations and corresponding weights 
sw  for these examples based on (11) and table 4 shows the 

Bayes risks in estimating θWθW 2121 ,,, θθ  and Wθ  
under these 3 allocations. While allocation )( 2Wm  is 
optimal for estimating the overall traffic rate ,θ  it results in 
large increases in the Bayes risks when estimates for the 
weekday and weekend traffic rates are also desired – the 
Bayes risk for estimating 2θ  under )( 2Wm  is almost 
double compared to the Bayes risk under ).(Wm   

Table 3 
Weights and Allocations for 21, WW  and W  

 

 )( 1Wm  )( 2Wm  )(Wm  

s  sw  sm  sw  sm  sw  sm  

1 1 119.33 0.5078 136.04 1.5078 123.20 
2 1 61.35 0.0826 27.92 1.0826 53.60  

Table 4 
Bayes Risks Under Allocations ),( 1Wm )( 1Wm   

and )( 1Wm  
 

 Estimand 
m  1θ  2θ  θW1  θW2  θW  

  )( 1Wm  2.61 0.68 3.28 1.38 4.66 

  )( 2Wm  2.29 1.47 3.75 1.28 5.04 

  )(Wm  2.52 0.77 3.29 1.35 4.64 

 
6. Concluding Comments  

The techniques employed in the present paper are general 
enough to apply to a wide variety of Bayesian models. 
Optimal allocation equations for other Bayesian models. 
Optimal allocation equations for other Bayesian models in 
which the prior beliefs can, at least approximately, be 
modeled by conjugate priors are usually easy to obtain. The 
idea of finding “representative” conjugate priors, as discus-
sed in section 4, is also applicable to a wide variety of 
hierarchical models with first stage conjugate priors. Areas 
of additional research in this area include allocations under 
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loss functions other that 0L  and 1L  as well as more 
complicated cost functions. 
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Appendix A. Proof of Result 1  

Proof of Result 1. Introducing the Lagrange multiplier ,λ  
we wish to minimize, for loss function ,kL  

.
1

21

1

⎟
⎠

⎞
⎜
⎝

⎛ −λ+
+β
βα ∑∑

−−

=
Ccm

m

w
ss

sss

k
s

k
ss

S

s

 

Differentiating with respect to ,sm  setting equal to 0 and 
solving for sm  yields 

.
1/11

s

s
k

s
k

ss
s

cw
m

β
−

λ
βα

=
−−

 

Therefore, to minimize the risk for fixed cost, we take 

s

s
S

s

s
k

s
k

ss
S

s
ss

s

ccw
cmC

β
−

λ
βα

== ∑∑∑
=

−−

= 1

11

1

 

or 

.
/

11

sss

s
k

s
k

sss

cC

cw

β+
βα

=λ
∑

∑ −−

 

Substituting this back into the equation for sm  yields 

.
1/

11

11

ss

s

ss
k

s
k

sss

s
k

s
k

ss
s

c
C

cw

cw
m

β
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β

+
βα

βα
= ∑
∑ −−

−−

 

Taking 0=k  or 1 gives the desired result. 
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