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Solving the Error Localization Problem by Means of Vertex Generation 

Ton de Waal 1 

Abstract 

To automate the data editing process the so-called error localization problem, i.e., the problem of identifying the erroneous 
fields in an erroneous record, has to be solved. A paradigm for identifying errors automatically has been proposed by Fellegi 
and Holt in 1976. Over the years their paradigm has been generalized to: the data of a record should be made to satisfy all 
edits by changing the values of the variables with the smallest possible sum of reliability weights. A reliability weight of a 
variable is non-negative number that expresses how reliable one considers the value of this variable to be. Given this 
paradigm the resulting mathematical problem has to be solved. In the present paper we examine how vertex generation 
methods can be used to solve this mathematical problem in mized data, i.e., a combination of categorical (discrete) and 
numerical (continuous) data. The main aim of this paper is not to present new results, but rather to combine the ideas of 
several other papers in order to give a “complete”, self-contained description of the use of vertex generation methods to 
solve the error localization problem in mixed data. In our exposition we will focus on describing how methods for numerical 
data can be adapted to mixed data. 

                                                           
1. Ton de Waal, Statistics Netherlands, PO Box 40000, 2270 JM Voorburg, The Netherlands. E-mail: twal@cbs.nl. 
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1. Introduction 
 

An important problem that has to be solved in order to 
automate the data editing process is the so-called error 
localization problem, i.e., the problem of identifying the 
erroneous fields in an erroneous record. Fellegi and Holt 
(1976) describe a paradigm for identifying errors in a record 
automatically. According to this paradigm the data of a 
record should be made to satisfy all edits by changing the 
values of the fewest possible number of variables. In due 
course the original Fellegi-Holt paradigm has been 
generalized to: the data of a record should be made to satisfy 
all edits by changing the values of the variables with the 
smallest possible sum of reliability weights. A reliability 
weight of a variable is a non-negative number that expresses 
how reliable one considers the value of this variable to be. A 
high reliability weight corresponds to a variable of which 
the values are considered trustworthy, a low reliability 
weight to a variable of which the values are considered not 
so trustworthy. 

Describing a paradigm for identifying the erroneous 
fields in an erroneous record is only a first step towards 
solving the error localization problem, however. The second 
step consists of actually solving the resulting mathematical 
problem. This mathematical problem can be solved in 
several ways, see e.g., Fellegi and Holt (1976); De Waal and 
Quere (2003), and De Waal (2003). One of these ways is by 
generating vertices of a certain polyhedron. Unfortunately, 
the number of vertices of this polyhedron is often too high 
for this approach to be applicable in practice. Instead, one 
should therefore generate a suitable subset of the vertices 

only. There are a number of vertex generation algorithms 
that efficiently generate such a suitable subset of vertices of 
a polyhedron. An example of such a vertex generation 
algorithm is an algorithm proposed by Chernikova (1964, 
1965). Probably most computer systems for automatic edit 
and imputation of numerical data are based on adapted 
versions of this algorithm. The best-known example of such 
a system is GEIS (Kovar and Whitridge 1990). Other 
examples are CherryPi (De Waal 1996), AGGIES (Todaro 
1999), and a SAS program developed by the Central 
Statistical Office of Ireland (see Central Statistical Office 
2000). The original algorithm of Chernikova is rather slow 
for solving the error localization problem. It has been 
accelerated by various modifications (see Rubin 1975 and 
1977; Sande 1978; Schiopu-Kratina and Kovar 1989; 
Fillion and Schiopu-Kratina 1993). 

Only the last three of these papers focus on the error 
localization problem. Sande (1978) discusses the error 
localization problems for numerical data, categorical data 
and mixed data. The discussion of the error localization 
problem in mixed data is very brief, however. Schiopu-
Kratina and Kovar (1989) and Fillion and Schiopu-Kratina 
(1993) propose a number of improvements on Sande’s 
method for solving the error localization problem for 
numerical data. They do not consider the error localization 
problems for numerical data. They do not consider the error 
localization problems for categorical or mixed data. 

In the present paper we examine how vertex generation 
methods can be used to solve the error localization problem 
in mixed data, i.e., a combination of categorical (discrete) 
and numerical (continuous) data. The main aim of this paper 
is not to present new results, but rather to combine the ideas 



De Waal: Solving the Error Localization Problem by Means of Vertex Generation                                                             5
 

 
Statistics Canada, Catalogue No. 12-001

of the above-mentioned papers in order to give a 
“complete”, self-contained description of the use of vertex 
generation methods to solve the error localization problem 
in mixed data. We will especially describe how modifica-
tions to accelerate Chernikova’s algorithm for numerical 
data can also be used for mixed data. 

The remainder of the present paper is organized as 
follows. Section 2 gives a formal definition of the edits that 
we consider as well as a number of examples. Section 3 
formulates the error localization problem as a mixed integer 
programming problem. Section 4 describes how the error 
localization problem can be solved by generating vertices of 
an appropriate polyhedron. We describe how Chernikova’s 
algorithm can be used to generate these vertices in sections 
5 and 6. In these sections we also describe modifications to 
the algorithm in order to improve its performance. Section 7 
concludes the paper with a brief discussion. In the Appendix 
we give Rubin’s description of Chernikova’s algorithm. In 
this paper proofs are omitted for most results. The interested 
reader is referred to the literature for those proofs. 

 
2. The Edits 

 

2.1 Formal Definition of the Edits  
We denote the categorical variables by )...,,1( mivi =  

and the numerical variables by )....,,1( nixi =  For cat-
egorical data we denote the domain, i.e., the set of possible 
values, of variable i  by .iD  We assume that every edit 

)...,,1( JjE j =  is written in the following form: edit jE  
is satisfied by a record )...,,,...,,( 11 nm xxvv  if and 
only if the following statement holds true: 
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where )....,,1( JjDF i
j

i =⊂  Numerical variables may 
attain negative values. For non-negative variables an edit of 
type (2.1) needs to be introduced in order to ensure non-
negativity. A numerical equality can be expressed as two 
inequalities. 

All edits have to be satisfied simultaneously. A record 
that satisfies all edits is called a consistent record. The con-
dition after the statement,IF −  i.e., “ j

ii Fv ∈  for all =i  
m...,,1 ”, is called the conditionIF − of edit =jj (  
)....,,1 J  The condition after the statementTHEN −  is 

called the condition.THEN −  If the conditionIF −  does 
not hold true, the edit is always satisfied, irrespective of the 
values of the numerical variables. If the set in the 

conditionTHEN −  of (2.1) is the entire −n dimensional 
real vector space, then the edit is always satisfied and may 
be discarded. If the set in the conditionTHEN −  of (2.1) is 
empty, then the edit is failed by any record for which the 

conditionIF − holds. 

In many practical cases, certain kinds of missing values 
are acceptable, e.g., when the corresponding questions are 
not applicable to a particular respondent. We assume that 
for categorical variables such acceptable missing values are 
coded by special values in their domains. Non-acceptable 
missing values of categorical variables are not coded. The 
optimization problem of section 3 will identify these 
missing values as being erroneous. We also assume that 
numerical conditionsTHEN − are only be triggered if none 
of the values of the variables involved may be missing.  
Hence, If – in a certain record – a conditionTHEN −  
involving a numerical variable of which the value is missing 
is triggered by the categorical values, then either the missing 
numerical value is erroneous or at least one of the 
categorical values.  
2.2 Examples of Edits  

Below we illustrate what kind of edits can be expressed 
in the form (2.1) by means of a number of examples.  
1. Turnover – Profit .0≥  (2.2) 
 

 This is an example of a numerical edit. For every 
combination of categorical values the edit should be 
satisfied. The edit can be formulated in our standard 
form as: 

 

 IF ii Dv ∈   for all  mi ...,,1=  
 THEN (Profit, Turnover) ∈  
 {(Profit, Turnover)│Turnover – Profit }.0≥  (2.3)  
 In the remaining examples we will be slightly less 

formal with our notation. In particular, we will omit the 
terms “ ii Dv ∈ ” from the edits.  

2. IF (Gender = “Male”)  
 THEN (Pregnant = “No”). (2.4)  
 This is an example of a categorical edit. It can be 

formulated in our standard form as:  
 IF (Gender = “Male”) AND (Pregnant = “Yes”) 
 THEN Ø. (2.5)  
3. IF (Occupation = “Statistician”) 
 THEN (Income ≥  1,000 Euro). (2.6)  
 This is a typical example of a mixed edit. Given 

certain values for the categorical variables, a certain 
numerical constraint has to be satisfied. 

 
4. IF (Occupation = “Statistician”) 
 OR (Education = “University”) 
 THEN (Income ≥  1,000 Euro). (2.7) 
 
 This edit can be split into two edits given by (2.6) and 
 
 IF (Education = “University”) 
 THEN (Income ≥  1,000 Euro). (2.8) 
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5. IF (Tax on Wages > 0) 
 THEN (Number of Employees ≥  1). (2.9) 
 
 Edit (2.9) is not in standard form (2.1), because the 

conditionIF −  involves a numerical variable. To handle 
such an edit, one can carry out a pre-processing step to 
introduce an additional categorical variable TaxCond 
with domain {“False”, “True”}. Initially, TaxCond is 
given the value “True” if Tax on Wages > 0 in the 
unedited record, and the value “False” otherwise. The 
reliability weight TaxCond is set to zero. We can now 
replace (2.9) by the following three edits to type (2.1): 

 
 IF (TaxCond = “False”) 
 THEN (Tax on Wages ),0≤  (2.10) 
 
 IF (TaxCond = “True”) 
 THEN (Tax on Wages ),ε≥  (2.11) 
 
 IF (TaxCond = “True”) 
 THEN (Number of Employees ),1≥  (2.12) 
 
 where ε  is a sufficiently small positive number. 

 
3. The Error Localization Problem as a Mixed 

      Integer Programming Problem  
We assume that the values of the numerical variables are 

bounded. That is, we assume that for the thi  numerical 
variable )...,,1( ni =  constants iα  and iβ  exist such that 

iii x β≤≤α  (3.1) 

for all consistent records. In practice, such values iα  and 
iβ  always exist although they may be very large, because 

numerical variables that occur in data of statistical offices 
are bounded. The values of iα  and iβ  may be negative. If 
the value of the thi  numerical variable is missing, we code 
this by assigning a value less than iα  or larger than iβ  to 

.ix  Numerical variables for which the value should be 
missing, e.g., because the corresponding question was non-
applicable, will nonetheless receive a value after the 
termination of the algorithm that is described in subsequent 
sections, but this value may subsequently be ignored. 

For the thi  categorical variable, let == kcD iki ,{  
)...,,1(}...,,1 mig i =  be its domain. We introduce the 

binary variable ikγ  

⎪⎩

⎪
⎨
⎧

=γ
otherwise.0

equalsvariable
lcategoricaofvaluetheif1

ikik ci  (3.2) 

To the thi  categorical variable there corresponds a vector 
)...,,( 1 iigi γγ  such that 1=γ ik  if and only if the value of 

this categorical variable equals ,ikc  otherwise .0=γ ik  For 
each categorical variable i  of a consistent record the 
relation 

∑ =γ
k

ik 1  (3.3) 

has to hold, i.e., exactly one categorical value should be 
filled in. The vector )...,,( 1 iigi γγ  will also be denoted by 

.iγ  If the value of the thi  categorical variable 
)...,,1( mi =  is missing, we set all ikγ  equal to zero 

)....,,1( igk =  In terms of the binary variables ikγ  an edit 
j  given by (2.1) can be written as 

,1
1

11 ⎟⎟
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where a positive M  is chosen so that M−  is less than the 
lowest possible value of .11 jnnjj bxaxa +++K  If the 

conditionIF − of (2.1) and condition (3.3) hold true, the 
right-hand side of (3.4) equals zero. Consequently, the 

conditionTHEN − of (2.1) has to hold true for the 
numerical variables. If the conditionIF − of (2.1) does not 
hold true, by (3.2) the right-hand side of (3.4) equals a large 
negative value. Consequently, (3.4) holds true irrespective 
of the values of numerical variables. 

If (2.1) is not satisfied by a record ,...,,( 00
1 mvv  

),...,, 00
1 nxx  or equivalently if (3.4) is not satisfied by 

),...,,,...,,( 00
1 nxx0

m
0
1 γγ  then we seek values =ke P

ik (  
),...,,1;...,,1 mig i = ),...,,1;...,,1( migke i

N
ik ==  

=iz P
i ( )...,,1 n  and )...,,1( niz N

i =  that have to satisfy 
certain conditions mentioned below. The P

ike  and the N
ike  

correspond to positive and negative changes, respectively, in 
the value of .0

ikγ  Likewise, the P
iz  and the N

iz  correspond 
to positive and negative changes, respectively, in the value 
of .0

ix  The vector  )...,,( 1
P
ig

P
i i

ee  will also be denoted as 
P
ie  and the vector )...,,( 1

N
ig

N
i i

ee  as .N
ie  

The objective function we consider in this paper is given 
by 

,))()((
1 1
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where c
iw  is the reliability weight of the thi  categorical 

variable r
iwmi ),...,,1( =  the reliability weight of the thi  

real-valued variable ( ) 1),...,,1( =δ= xni  if 0≠x  and 
0)( =δ x  otherwise. The objective function (3.5) is the sum 

of the reliability weights of the variables for which a new 
value must be imputed. Note that minimizing (3.5) is 
equivalent to minimizing 

.))()((
1 1
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i
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N
ik

c
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The objective function (3.6) is the sum of the reliability 
weights of the variables of which the original values must 
be modified. The value of the objective function (3.5) is 
equal to the value of the objective function (3.6) plus the 
sum of reliability weights of the categorical variables for 
which the original value was missing. 
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The objective function (3.5) is to be minimized subject to 
the following constraints: 

 },1,0{, ∈N
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ik ee  )...,,1( mi =  (3.7) 
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for all edits ....,,1 Kj =  
Relation (3.9) expresses that a negative correction and a 

positive one may not be applied to the same reported value 
of a categorical variable. Relation (3.10) expresses that at 
most one value may be imputed, i.e., estimated and 
subsequently filled in, for a categorical variable, and relation 
(3.11) that a negative correction may not be applied to a 
categorical value that was not filled in. Relation (3.12) 
ensures that a value for each categorical variable is filled in, 
even if the original value was missing. Relation (3.13) states 
that the value of a numerical variable must be bounded by 
the appropriate constants. In particular, relation (3.13) also 
states that the value of a numerical variable may not be 
missing. Finally, relation (3.14) expresses that the modified 
record should satisfy all edits given by (2.1). 

After solving this optimization problem the resulting, 
modified record is given by 

)....,,

,...,,(
00

11

0
1

N
nnn

NP zzxzz

x
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−+−+ N

m
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m

0
m

N
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This modified record is consistent, i.e., satisfies all edits. 
A solution to the above mathematical problem corresponds 
to a solution to the error localization problem, which simply 
consists of a list of variables of which the values have to be 
changed without specifying their new values. There may be 
several optimal solutions to the error localization problem. 
Our aim is to find all these optimal solutions. Note that the 
above optimization problem is a translation of the gener-
alized Fellegi-Holt paradigm in mathematical terms. 

We end this section with two remarks. First, note that in 
practice only one variable−N

ike  for each variable i  is 
needed, namely for the index k  for which .10 =γ ik  The 
other N

ike  equal zero. In the present paper we use ig  binary 
variables−N

ike  for each variable i  to cover all possible 
cases. Second, note that in an optimal solution to the above 
optimization problem either 0=P

iz  or ,0=N
iz  and that, 

similarly, in any feasible solution either 0=P
ike  or 0=N

ike  
(or both). 

 
4. Vertex Generation Methods and Error 

       Localization for Mixed Data  
In this section we explain how vertex generation methods 

can be used to solve the error localization problem in mixed 
data. To this end we show that a minimum of (3.5) subject 
to (3.7) to (3.14) is attained in a vertex of a certain 
polyhedron P  described by linear, non-integer constraints. 
Suppose a minimum of (3.5) subject to (3.7) to (3.14) is 
attained in a point given by:  

1. ( ) otherwise,1,,for0 =∈= N
ik

N
e

N
ik eIkie  

 
2. ( ) otherwise,1,,for0 =∈= P

ik
P
e
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ik eIkie  
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P
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4. otherwise,0and,for0 ≠∈= N
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N
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for certain index sets N
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N
e III ,,  and .P

zI  We now 
consider the problem of minimizing the linear function 
given by 
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(4.1)

 

subject to (3.8) to (3.14) and 

.1,0 ≤≤ P
ik

N
ik ee  (4.2) 

Subject to (3.8) to (3.14) and (4.2), which together form 
our polyhedron ,P  the function (4.1) is non-negative. 
Moreover, its value equals zero only for the point given by 1 
to 4 above. In other words, our selected minimum of (3.5) 
subject to (3.7) to (3.14) is also the minimum of (4.1) 
subject to (3.8) to (3.14) and (4.2). 

It is well known that a linear function subject to a set of 
linear constraints attains its minimum, if such a minimum 
exists, in a vertex of the feasible polyhedron described by 
the set of linear constraints (see e.g., Chvátal 1983). So, the 
minimum of (4.1) subject to (3.8) to (3.14) and (4.2), zero, is 
attained in a vertex of the feasible polyhedron P described 
by (3.8) to (3.14) and (4.2). We conclude that the point 
given by 1 to 4 above, i.e., an arbitrary optimum of (3.5) 
subject to (3.7) to (3.14), is a vertex of the polyhedron 
defined by (3.8) to (3.14) and (4.2). 
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The above observation implies that the minimum of (3.5) 
subject to (3.7) to (3.14) can be found by generating all 
vertices of the polyhedron given by (3.8) to (3.14) and (4.2). 
From these vertices we select the vertices that satisfy (3.7). 
From those latter vertices we subsequently select the 
vertices for which the value of the objective function (3.5) is 
minimal. These vertices correspond to the optimal solutions 
to the error localization problem. 

 
5. Chernikova’s Algorithm and the Error 

      Localization Problem  
Chernikova’s algorithm (Chernikova 1964 and 1965) 

was designed to generate the edges of a system of linear 
inequalities given by 

0Cx ≥  (5.1) 

and 

,0x ≥  (5.2) 

where C  is a constant −× cr nn matrix and x  an 
−cn dimensional vector of unknowns. The algorithm is 

described in the Appendix. It can be used to find the vertices 
of a system of linear inequalities because of the following 
lemma (see Rubin 1975 and 1977).  
Lemma 5.1. The vector 0x  is a vertex of the system of 
linear inequalities 

bAx ≤  (5.3) 

and 

0x ≥  (5.4) 

if and only if  }0,)|{( ≥λλλ T0x  is an edge of the cone 
described by 

( ) 0
x

bA ≥⎟
⎠
⎞

⎜
⎝
⎛

ξ
−  (5.5) 

and 

.0
x

≥⎟
⎠
⎞

⎜
⎝
⎛

ξ
 (5.6) 

Here A  is an ,matrixnn cr −× b  an ,vectornr − x  an 
,vectornv −  and ξ  and λ  scalar variables. 

For notational convenience we write 

1+= vc nn  (5.7) 

throughout this paper. The matrix in (5.5) is then an 
matrix−× cr nn  just like in (5.1), so we can use the same 

notation as in Rubin’s formulation of Chernikova’s 
algorithm. 

If Chernikova’s algorithm is used to determine the edges 
of (5.5) and (5.6), then after the termination of the algorithm 
the vertices of (5.3) and (5.4) correspond to those columns 

j  of rnL  (see Appendix) for which .0, ≠r

c

n
jnl  The entries 

of such a vertex x ′  are given by 

....,,1for/ , v
n

jn
n
iji nillx r

c

r ==′  (5.8) 

Now, we explain how Chernikova’s algorithm can be 
used to solve the error localization problem in mixed data. 
The set of constraints (3.8) to (3.14) and (4.2) can be written 
in the form (5.3) and (5.4). We can find the vertices of the 
polyhedron corresponding to this set of constraints by 
applying Chernikova’s algorithm to (5.5) and (5.6). Vertices 
of the polyhedron defined by (3.8) to (3.14) and (4.2) are 
given by columns rn

sy∗  for which 0≥rn
isu  for all i  and 

,0, >r

c

n
snl  where cn  is the number of rows of the final 

matrix rnL  (see Appendix). In our case, cn  equals the total 
number of variables P

ik
N
i

P
i ezz ,,  and N

ike  plus one 
(corresponding to ξ  in (5.5) and (5.6)), i.e., += nnc 2  

,12 +G  where .∑= i igG  The values of the variables 
P
ik

N
i

P
i ezz ,,  and N

ike  in such a vertex are given by the 
corresponding values ./ ,

r

c

r n
sn

n
js ll  

Two technical problems must be overcome when 
Chernikova’s algorithm is applied to solve the error 
localization problem for mixed data. First, the algorithm 
must be sufficiently fast. Second, the solution found must be 
feasible for the error localization problem for mixed data, 
i.e., the values of the variables P

ike  and N
ike  must be either 0 

or 1. Both problems can be overcome by removing certain 
“undesirable” columns from the current matrix ,kY  i.e., by 
deleting columns that cannot yield an optimal solution to the 
error localization problem. That such undesirable columns 
may indeed be removed from the current matrix kY  is 
essentially demonstrated by Rubin (1975 and 1977). We 
state this result as Theorem 5.1.  
Theorem 5.1. Columns that cannot yield an optimal 
solution to the error localization problem because they 
contain too many non-zero entries may be removed from an 
intermediate matrix.  

To accelerate Chernikova’s algorithm, we aim to limit 
the number of vertices that are generated as much as 
possible. Once we have found a (possibly suboptimal) 
solution to the error localization problem for which the 
objective value (3.5) equals ,η  say, we from then on look 
only for vertices corresponding to solutions with an 
objective value at most equal to .η  A minor technical 
problem is that we cannot use the objective function (3.5) 
directly when applying Chernikova’s algorithm, because the 
values of N

i
N
ik

P
ik zee ,,  and P

iz  are not known during the 
execution of this algorithm. Therefore, we introduce a new 
objective function that associates a value to each column of 
the matrix kY  (see Appendix). Assume that the first G  
entries of a column k

sl∗  of kL  correspond to the 
,variables−P

ike  the next G  entries to the ,variables−N
ike  

the next n  entries to the ,variables−P
iz  and the 

subsequent n  entries to the variables.−N
iz  We define the 

following objective function  
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k
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(5.9)

 

where ∑ −
= += 1

1
i
l l rgt  for each pair },{ ri ...,,1( =i  

)....,,1; igrm =  Differences between (3.5) and (5.9) are 
that for each P

ike  or N
ike  in (3.5) several variables k

stl ,  occur 
in (5.9), and that the P

ike  and N
ike  attain values in }1,0{  

whereas the k
stl ,  can attain any value between zero and one. 

If column k
sy∗  of kY  corresponds to a solution to the error 

localization problem, then the value of the objective 
function (5.9) for k

sy∗  equals the value of the objective 
function (3.5) for this solution. This implies that we can use 
the objective function (5.9) to update the value of .η  

The computing time of Chernikova’s algorithm can be 
further reduced by noting that in an optimal solution to the 
error localization problem either 0=P

iz  or 0=N
iz  (or 

both). This implies that in Step 7 of Chernikova’s algorithm 
(see Appendix) columns k

sy∗  and k
ty ∗  need not be 

combined if one of these columns corresponds to 0≠P
iz  

and the other to .0≠N
iz  Theorem 5.1 implies that not 

combining such columns is allowed. 
We now consider the problem of constructing a feasible 

solution to the error localization problem for mixed data. 
This problem can, of course, be solved by first generating 
vertices without taking into account that values of P

ike  and 
N
ike  must be either 0 or 1 and then selecting the best vertices 

that possess this property, but this rather inefficient so we 
suggest a different approach. It suffices to ensure that for 
each variable )...,,1( mii =  at most one P

ike  differs from 
zero, and that the N

ike  and P
ike  equal either zero or one after 

the termination of the algorithm. We can ensure that for 
each i  at most one P

ike  differs from zero in the following 
way. If in Step 7 of Chernikova’s algorithm the entry of k

sy∗  
corresponding to P

ike
1

 differs from zero and the entry of k
ty ∗  

corresponding to   )( 122
kke P

ik ≠  differs from zero as 
well, then  columns   k

sy∗  and k
ty ∗  are not combined to gen-

erate a new column. We can also ensure that the N
ike  equal 

either zero or one after the termination of the algorithm. For 
each i  this is a problem only for the unique N

ike
0

 for which 
.10

0
=γ ik  We introduce variables ie~  that can attain values 

between zero and one. These variables have to satisfy 

.1~
0

=+ i
N
ik ee  (5.10) 

Relation (5.10) is treated as a constraint for the values of 
the variables N

ike
0

 and .~
ie  Because the value of N

ike
0

 has to 
be either zero or one, we demand that either 0

0
=N

ike  or 
.0~ =ie  This can be ensured in the same manner as for the 

p
iz  and the .N

iz  Finally, we have to ensure that the P
ike  

equal either zero or one after the termination of the 

algorithm. This is automatically the case if for each i  at 
most one P

ike  differs from zero, at most one N
ike  equals one 

and the remaining N
ike  equal zero, because relation (3.12) 

has to hold true. We have already ensured that these 
conditions are satisfied, so all P

ike  equal zero or one after the 
termination of the algorithm. With the adaptations described 
above Chernikova’s algorithm can be applied to solve the 
error localization problem in mixed data. Theorem 5.1 again 
implies that these modifications are allowed.  
6. Adapting Chernikova’s Algorithm to the Error 

       Localization Problem  
6.1 Advanced Adaptations  

In this section we consider more advanced adaptations of 
Chernikova’s algorithm in order to make the algorithm 
better suited for solving the error localization problem. 
Sande (1978) notes that when two columns in the initial 
matrix 0Y  have exactly the same entries in the upper 
matrix ,0U  they will be treated exactly the same in the 
algorithm. The two columns are always combined with the 
same other columns, and never with each other. Keeping 
both columns in the matrix only makes the problem 
unnecessarily bigger. One of the columns may therefore be 
temporarily deleted. After the termination of the algorithm, 
the solutions to the error localization problem involving the 
temporarily deleted column can easily be generated. 

A correction patter associated with column k
sy∗  in an 

intermediate matrix ,kY  where kY  can be split into an 
upper matrix kU  and lower matrix kL  with rn  and cn  
rows respectively (see Appendix), is defined as the 

−cn dimensional vector with entries )( k
jsyδ  for 

.crr nnjn +≤<  For each ,,, P
ik

N
i

P
i ezz  and N

ike  a 
correction pattern contains an entry with value in }.1,0{  
Sande (1978) notes that Theorem 5.1 implies that once a 
vertex has been found, all columns with correction patterns 
with ones on the same places as in the correction patter of 
this vertex can be removed. 

The concept of correction patterns has been improved 
upon by Fillion and Schiopu-Kratina (1993), who note that 
it is not important how the value of a variable is changed, 
but only whether the value of a variable is changed or not. A 
generalized correction pattern associated with column k

sy∗  
in an intermediate matrix kY  is defined as the 

−+ )( nm dimensional vector of which the thj  entry equals 
1 if and only if an entry corresponding to the thj  variable in 
column k

sy∗  is different from 0, and 0 otherwise. Here m  
denotes the number of categorical variables and n  the 
number of numerical variables. For each variable involved 
in the error localization problem, a generalized correction 
pattern contains an entry with value in }.1,0{  Again 
Theorem 5.1 implies that once a vertex has been found, all 
columns with generalized correction patterns with ones on 
the same places as in the generalized correction pattern of 
this vertex can be deleted. 
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Fillion and Schiopu-Kratina (1993) define a failed row as 
a row that contains at least one negative entry placed on a 
column of which the last entry is non-zero. They note that in 
order to solve the error localization problem we can already 
terminate Chernikova’s algorithm as soon as all failed rows 
have been processed. This result is stated as Theorem 6.1.  
Theorem 6.1. If an intermediate matrix contains no failed 
rows, then all (generalized) patterns corresponding to 
vertices for which (5.9) is minimal have been found. 
 

The final adaption of Fillion and Schiopu-Kratina (1993) 
to Chernikova’s algorithm is a method to speed-up the 
algorithm in case of missing values. Suppose the error 
localization problem has to be solved for a record with 
missing values. For each numerical variable of which the 
value is missing we first fill in an arbitrary value, say zero. 
Next, only the entries corresponding to variables with non-
missing values are taken into account when calculating the 
value of function (5.9) for a column. An optimal solution to 
the error localization problem is given by the variables 
corresponding to a determined optimal generalized correc-
tion pattern plus the variables with missing values. In this 
way, unnecessary generalized correction patterns according 
to which many variables with non-missing values should be 
changed are discarded earlier than in the standard algorithm.  
6.2 Duffin’s Rules  

Chernikova’s algorithm does not generate any redundant 
columns, i.e., columns whose information is already 
contained in another column. Its problem is, however, that 
in order to achieve this the algorithm requires a considerable 
amount of computing time. This is for a substantial part 
caused by its Step 7 where a time-consuming check has to 
be performed to prevent the generation of redundant 
columns. Duffin (1974) demonstrates that this step can be 
split into two parts. In Duffin’s version of the algorithm 
Step 7 consists of two parts:  

– For each pair ),( ts  for which 0<× k
rt

k
rs yy  we 

choose 0, 21 >μμ  such that 021 =μ+μ k
rt

k
rs yy  

and adjoin the column k
t

k
s yy ∗∗ μ+μ 21  to .1kY +   

– Delete (some of ) the redundant columns of .1kY +   
Duffin (1974) gives the following two rules to delete 
redundant columns of .1kY +  
 
Refined elimination rule: When t  rows have been 
processed, delete any columns that have been generated by 
combining 2+t  or more original columns. 

This first rule allows the generation of redundant 
columns, but is much faster to apply than Step 7 of 
Chernikova’s algorithm. The second rule, the dominance 
rule, makes sure that no redundant columns are generated. A 
column k

uy∗  is called dominated by another column k
vy∗  if 

0=k
ivy  implies .0=k

iuy   

Dominance rule: Delete any column k
uy∗  in kY  that is 

dominated by some other column .k
vy∗  

One could consider using the refined elimination rule 
during most iterations of Chernikova’s algorithm and only 
resort to the dominance rule when the number of columns 
becomes too high to be handled efficiently. After all failed 
rows have been processed the dominance rule has to be 
applied to remove redundant columns from the final matrix 

.kY  One may hope that this leads to an algorithm that is 
faster than Chernikova’s algorithm, but this remains to be 
tested. 

 
7. Discussion  

At Statistics Netherlands a prototype computer program 
based on the adapted version of Chernikova’s algorithm 
described in section 5 and 6.1 of the present paper has been 
developed. The possibly more efficient rules described in 
section 6.2 have not been implemented in this prototype 
program. For purely numerical data a production version of 
this program has been used for several years in the day-to-
day routine at Statistics Netherlands in order to produce 
clean data for most of our structural business statistics. 

For Statistics Netherlands improving the efficiency of the 
data editing process for economic, and hence mainly 
numerical, data is much more important than for social, and 
hence mainly categorical, data. In particular, edits of type 1 
(see e.g., (2.2)) mentioned in section 2.2 are the most 
important ones for us, followed by edits of type 5 (see e.g., 
(2.9)). Because improving the efficiency of data editing for 
numerical data is much more important to us than for social 
data, the developed prototype program has only been 
evaluated for purely numerical test data. For these numerical 
test data, the program has been compared to several other 
prototype programs, namely a program based on a standard 
mixed integer programming problem formulation (see e.g., 
De Waal 2003), a program based on cutting planes (see 
Garfinkel, Kunnathur and Liepins 1988; Ragsdale and 
McKeown 1996, and De Waal 2003), and a program based 
on a branch-and-bound algorithm (see e.g., De Waal and 
Quere 2003). Our evaluation results show that the com-
puting speed of our program based on the adapted version of 
Chernikova’s algorithm is acceptable in comparison to other 
algorithms (for details on our evaluation experiments we 
refer to De Waal 2003). They also show, however , that this 
program is out-performed by the program based on the 
branch-and-bound algorithm. Besides being faster than the 
adapted version of Chernikova’s algorithm, the branch-and-
bound algorithm is less complex, and hence easier to 
maintain. 

Further improvements to the adapted version of 
Chernikova’s algorithm may reduce its computing time. 
Examples of such potential improvements are: better 
selection criteria for the row to be processed, and better 
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ways to handle missing values. However, these improve-
ment would at the same time increase the complexity of the 
algorithm, thereby making it virtually impossible for 
software-engineers at Statistics Netherlands to maintain the 
program. For the above reasons, computing time for 
numerical data and complexity of the algorithm, we recently 
decided to switch to the branch-and-bound algorithm 
instead of the adapted version of Chernikova’s algorithm for 
our production software. In our latest version of our 
production software, a version of the branch-and-bound 
algorithm suitable for a mix of categorical, continuous, and 
integer data has been implemented. We sincerely hope, 
however, that the present paper will inspire some readers to 
find further improvements to Chernikova’s algorithm.  
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Appendix: Chernikova’s Algorithm  
Rubin’s formulation (Rubin 1975 and 1977) of 

Chernikova’s algorithm is as follows:  
1. Construct the −×+ ccr nnn )( matrix  

,⎟
⎠
⎞

⎜
⎝
⎛=

0

0
0

L

U
Y  

 where CU 0 =  and :
cn

0 IL =  the −× cc nn identity 
matrix. The thj  column of ,, 0

* jy0Y  will also be 
denoted as  

,
0

0
0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∗

∗
∗

j

j
j

l

u
y  

 where 0
* ju  and 0

* jl  are the thj  columns of 0U  and ,0L  
respectively.  

2. 0:=k    
3. If any row of kU  has all components negative, 0x =  is 

the only point satisfying (5.1) and (5.2), and the 
algorithm terminates.  

4. If all the elements of kU  are non-negative, the columns 
of kL  are the edges of the cone described by (5.1) and 
(5.2), and the algorithm terminates.  

5. If neither 3 nor 4 holds:  choose a row of ,kU  say row 
,r  with at least one negative entry.  

6. Let }.0|{ ≥= k
rjyjR  Let v  be the number of elements 

in .R  Then the first v  columns of the new matrix 1kY +  
are all the columns k

jy∗  of kY  for .Rj ∈   
7. Examine the matrix .kY   

a. If kY  has only two columns and 
,021 <× k

r
k
r yy  then choose 0, 21 >μμ  such 

that    .0, 2211 =μ+μ k
r

k
r yy   Adjoin the col-

umn  kk yy 2211 ∗∗ μ+μ  to .1kY +  Go to Step 9. 
 

b. If kY  has more than two columns then let 
0|),{( <×= k

rt
k
rs yytsS  and },st >  i.e., let 

S  be the set of all pairs of columns of kY  
whose elements in row r have opposite signs. Let 

0I  be the index set of all non-negative rows of 
,kY  i.e., all rows of kY  with only non-

negative entries. For each ,),( Sts ∈  find all 
0Ii∈  such that .0== k

it
k
is yy  Call this set 

).,(1 tsI  
 

– If =),(1 tsI Ø, then k
sy∗  and k

ty∗  do not 
contribute another column to the new 
matrix. 

 

– If =),(1 tsI Ø, check to see if there is a v 
not equal to s or t  such that 0=k

ivy  for all 
).,(1 tsIi ∈  If such a v exists, then k

sy∗  
and k

ty∗  do not contribute a column to the 
new matrix. If no such v exists, then choose 

0, 21 >μμ  such that =μ+μ k
rt

k
rs yy 21  

.0  Adjoin the column k
t

k
s yy ∗∗ α+μ 21  

to .1kY +  
 

8. When all pairs in S  have been examined, and the 
additional columns (if any) have been added, we say that 
row r  has been processed. We then define matrices 

1kU +  and 1kL +  by  

,⎟
⎠
⎞

⎜
⎝
⎛= +

+
+

1k

1k
1k

L

U
Y  

where 1kU +  is a matrix with rn  rows and 1kL +  a 
matrix with cn  rows. The thj  column of ,, 1+

∗
+ k

jy1kY  
will also be denoted as 

,
1

1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= +

∗

+
∗+

∗ k
j

k
jk

j
l

u
y  

where 1+
∗
k

ju  and 1+
∗
k

jl  are the thj  columns of 1kU +  and 
,1kL +  respectively. 

 

9. ,1: += kk  and go to Step 3. 
 

Chernikova’s algorithm can be modified in order to handle 
equalities more efficiently than treating them as two 
inequalities. Steps 3, 5 and 6 should be replaced by 
 

3. If any row of kU  corresponding to an inequality or 
equality has all components negative or if any row of 

kU  corresponding to an equality has all components 
positive, 0=x  is the only point satisfying (5.1) and 
(5.2), and the algorithm terminates. 

 

5. If neither 3 nor 4 holds: choose a row of ,kU  say row 
,r  with at least one negative entry if the row 

corresponds to an inequality, and with at least one non-
zero entry if the row corresponds to an equality. 

 

6. If row r  corresponds to an inequality, then apply Step 6 
of the standard algorithm. If row r  corresponds to an 
equality then let }.0|{ == k

rjyjR  Let v  be the number 
of elements in .R  Then the first v columns of the new 
matrix 1kY +  are all the columns k

jy∗  of kY  for .Rj ∈  
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In Step 5 of Chernikova’s algorithm a failed row has to 
be chosen. Rubin (1975) proposes the following simple rule. 
Suppose a failed row has z  entries equal to zero, p  
positive entries, and q  negative ones. We then calculate for 
each failed row the value qppzN ++=max  if the row 
corresponds to an inequality and the value qpzN +=max  
if the row corresponds to an equality, and choose a failed 
row with the lowest value of .maxN  
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