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The Effect of Model Choice in Estimation for Domains, 
Including Small Domains 

Risto Lehtonen, Carl-Erik Särndal and Ari Veijanen 1 

Abstract 

In this paper we examine the effect of model choice on different types of estimators for totals of domains, including small 
domains (small areas), for a sampled finite population. The paper asks: How do different estimator types compare for a 
common underlying model statement? We argue that estimator type (Synthetic, GREG, Composite, EBLUP, hierarchical 
Bayes, and so on) is one important aspect of domain estimation, and that the choice of the model, including its parameters 
and effects, is a second aspect, conceptually different from the first. Earlier work has not always kept this distinction clear. 
For a given estimator type, one can derive different estimators, depending on the choice of model. A number of estimator 
types have been proposed in the recent literature, but there is relatively little of an impartial comparison between them. In 
this paper we discuss three types: Synthetic, GREG, and, to a limited extent, Composite. We show that model improvement 
(the transition from a weaker to a stronger model) has very different effects on the different estimator types. We also show 
that the difference in accuracy between the different estimator types depends on the choice of model. For a well-specified 
model the difference in accuracy between Synthetic and GREG is negligible, but it can be substantial if the model is 
misspecified. Synthetic then tends to be highly inaccurate. We rely partly on theoretical results (for simple random sampling 
only), partly on empirical results. The empirical results are based on simulations with repeated samples drawn from two 
finite populations, one artificially constructed, the other constructed from real data from the Finnish Labour Force Survey. 
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1. Background  
Most surveys require that estimates be made not only for 

the entire population under study but also for a number of 
sub-populations, called domains or domains of interest. 
Estevao and Särndal (1999) give a general outline of 
estimation for domains from a design-based perspective, 
with the use of auxiliary information. The sampling design 
is general, and so is the vector of auxiliary variables. The 
framework is also called model-assisted. Several national 
statistical agencies have in recent years constructed software 
that routinely handles domain estimation within the design-
based, model-assisted framework. Examples of such 
software include CLAN97 by Statistics Sweden and GES 
by Statistics Canada. In a typical survey, some domains of 
interest are large enough, and the auxiliary information 
strong enough, so that the design-based estimators will be 
sufficiently accurate. But other domains may be so small 
(contain so few sampled units) that the design-based 
estimates will be too erratic. The statistical agency may then 
decide to suppress the publication of statistics for such 
domains. 

Model-dependent estimates are less volatile, but an 
unattractive feature is their unknown bias, which can be 
substantial. The model-dependent synthetic estimator has 
occupied a prominent place in research on small area 
estimation from around 1970 and on, see for example, 
National Center for Health Statistics (1968), National 
Research Council (1980). Different estimators built on 

nested error regression models (Fuller and Battese 1973), 
random regression coefficients models (Dempster, Rubin 
and Tsutakawa 1981) and simple random effects models 
(Fay and Herriot 1979) provide examples of early prop-
ositions for alternatives to the synthetic estimator. Various 
composite estimators, constructed as weighted combinations 
of a model dependent estimator and a design-based 
estimator, were also proposed in the literature (for example 
Holt, Smith and Tomberlin 1979).  

It was in connection with the synthetic estimator that the 
term “borrowing strength” began to be widely used. Today 
this term is invoked in virtually every one of the many 
published articles on small area estimation. Together, these 
articles now provide a rich source of possibilities for small 
area estimation, a majority of them model dependent. They 
draw on a variety of established statistical arguments and 
principles, such as generalized linear mixed models, 
composite estimation, empirical Bayes estimation, hierar-
chical Bayes, and so on.  

Borrowing strength (or information) via modeling is a 
recurring theme in recent literature on small area estimation 
(for example Ghosh and Rao 1994; Pfeffermann 1999; Rao 
1999). Borrowing strength is generally understood to mean 
that the estimator in use depends on data on the variable of 
interest, denoted y, from “related areas” or more generally 
from a larger area, in an effort to improve the accuracy for 
the small area. The resulting estimator is called indirect, in 
contrast to the one that uses data−y  strictly from the 
domain itself, in which case it is called direct. 
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Underlying models and their features is another 
prominent theme in recent literature (for example Ghosh, 
Natarajan, Stroud and Carlin 1998; Marker 1999; Moura 
and Holt 1999; Prasad and Rao 1999; Feder, Nathan and 
Pfeffermann 2000). Small area estimates, and domain 
estimates more generally, are intrinsically linked to the idea 
of modeling. Holt and Rao (1995) hint that the use of 

ninformatio−y  from other areas, although in a sense 
“necessary”, should not be carried to an extreme. Instead 
there should be “specific allowance for local variation” 
through a model formulation that includes area-specific 
effects. This raises a certain ambiguity: borrowing strength 
from other areas is desirable, even necessary, but only 
within limits. It is unclear what these limits should be. 

There is an extensive recent literature on small area 
estimation from a Bayesian point of view, including 
empirical Bayes and hierarchical Bayes techniques (for 
example Datta, Lahiri, Maiti and Lu 1999; Ghosh and 
Natarajan 1999; You and Rao 2000). Some recent 
publications relate frequentist and Bayesian approaches in 
small area estimation (for example Singh, Stukel and 
Pfeffermann 1998). Rao (2003) provides a good overview 
of current literature on model-based small area estimation.  

The discussion in recent literature of domain estimation, 
including small area estimation, revolves around three 
crucial concepts: (i) borrowing strength; (ii) the type of 
(implicit or explicit) model, (iii) the parameters or effects 
admitted in the model statement, that is, whether they 
should be area specific or defined at some higher level of 
aggregation such as a set of “similar areas”. We agree that 
these concepts are central and we use them in this paper. 

Our starting point for the paper is summarized by (i) to 
(iii) as follows: (i) a number of different estimator types 
have been proposed for domain estimation and small area 
estimation: Synthetic estimator, Generalized Regression 
(GREG) estimator, Composite estimator, Empirical Best 
Linear Unbiased Predictor (EBLUP), empirical Bayes (EB) 
estimator, hierarchical Bayes estimator and so forth; (ii) for 
every estimator type, different estimators result from the 
choice of model; (iii) to borrow or not to borrow strength 
becomes an issue for some of the model choices. Attempts 
at borrowing strength takes place when the estimation of the 
parameters and effects in the model requires the use of 

values−y  for units outside the domain itself. 

 
2. Statement of Objectives  

An objective in this paper is to examine domain 
estimation through a separation of two ideas: estimator type 
on the one hand, the choice of the underlying model on the 
other. We get a two-dimensional arrangement of possible 
estimators: By estimator type, by model choice. This 
distinction has not been emphasized enough in earlier 
literature. 

We study the effect of model choice, and of model 
improvement, on selected estimator types: the Generalized 

Regression (GREG) estimator (which is design-based), the 
Synthetic (SYN) estimator (which is model dependent) and 
the Composite estimator with Empirical Best Linear 
Unbiased Predictor EBLUP as a special case (which also is 
model dependent). By construction, each type has its own 
particular features. For example the GREG estimator type is 
constructed to be design unbiased, the model dependent 
ones usually are not. The GREG estimator’s variance, 
although of order ,1−n  can be very large for a small domain 
if the “effective sample size” is small; GREG is a “strongly 
design consistent” estimator in that its relative bias (bias 
divided by standard deviation) tends to zero as .2/1−n  The 
SYN estimator is usually design biased; its bias does not 
approach zero with increasing sample size; its variance is 
usually smaller than that of GREG. The EBLUP is design 
consistent (although not strongly design consistent in the 
manner of GREG); is design biased for any fixed finite 
sample size; its variance ordinarily falls between that of 
GREG and that of SYN.  

The chosen model specifies a hypothetical relationship 
between the variable of interest, y, and the vector of 
predictor variables, x, and makes assumptions about its 
perhaps complex error structure. For every specified model, 
we can derive one GREG estimator, one SYN estimator, 
one composite estimator, by observing the respective con-
struction principles. An “improved model” will influence all 
of GREG, SYN and composite, usually so that the MSE 
decreases. In other words, if Model A is better than Model 
B, the SYN estimator for Model A is usually better than the 
SYN estimator for Model B. The same is usually the case 
for GREG. 

Model choice has two aspects: (i) the mathematical form, 
or the type, of the model, and (ii) the specification of the 
parameters and effects in the model. For a given variable of 
interest, some models are more appropriate than others. 
Model improvement can result either from a more 
appropriate model type, or from a better parametization, or 
both. We can distinguish linear models and nonlinear 
models. Logistic models are a special case of the latter. For 
a binary or polytomous variable of interest y, a (multi-
nomial) logistic model type is arguably an improvement on 
a linear model type, because the fitted values under the 
former will necessary fall in the unit interval, which is not 
always true for a linear model. Lehtonen and Veijanen 
(1998) introduced the logistic GREG estimator and studied 
it in the context of the Finnish Labour Force survey. 
Another example is when a Bayesian model formulation is 
preferred to other forms. 

The second aspect of model choice is the specification of 
the parameters and effects in the model. Some of these may 
be defined at the fully aggregated population level, others at 
the level of the domain (area specific parameters), yet others 
at some intermediate level (for a set of “related areas”). 
Using a multi-level model type, we can introduce stochastic 
effects that recognize domain differences, as in Goldstein 
(1995) for the SYN estimator and by Lehtonen and 
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Veijanen (1999) for the GREG estimator. They found 
improved accuracy in small domains, compared to the 
GREG estimator based on a model with fixed effects at the 
population level. Generally, model improvement occurs 
when more parameters or effects are added to the model, as 
for example when it is formulated to include area specific 
effects reflecting local variation. 

We show in this paper (i) that model improvement will 
generally, for any estimator type considered here, be 
accompanied by a decrease in MSE; (ii) that the effect on 
the MSE of model improvement is very different for 
different estimator types; (iii) that for a well-specified 
model, there are negligible differences only in the accuracy 
(the MSE) achieved by the estimator types under study, but 
under model failure the differences can be substantial. We 
emphasize that a comparison of estimators of different types 
should only take place under “similar conditions”. That is, 
the model choice must be the same for all alternatives 
considered. An estimator is shown to be better than another 
estimator only if the MSE of the former is smaller than that 
of the latter, for one and the same model choice. (It is 
difficult to establish that one estimator type is uniformly 
better than another, that is, better under all model choices.) 

Table 1 shows the estimators to be discussed, in a two-
way arrangement by estimator type and by model choice. 
This table also shows our notation for the estimators to be 
considered. There are six SYN type estimators and six 
GREG type estimators in the table. Each of the six rows 
corresponds to a different model choice. A population 
model ( model;P−  rows 1 and 2) is one whose only 
parameters are fixed effects defined at the population level; 
it contains no domain specific parameters. A domain model 

model)(D−  is one having at least some of its parameters or 
effects defined at the domain level. These are fixed effects 
for rows 3 and 4, or mixed with random effects for rows 5 
and 6. “Linear” and “logistic” refer to the mathematical 
form. In this paper we discuss all estimators in Table 1 
except the two in the last row.  

 
Table 1 

Schematic Presentation of the SYN and GREG Estimators 
by Model Choice and Estimator Type  

Model choice Estimator type 
 Model-

dependent 
synthetic 

Model-assisted 
generalized 
regression 

Linear PSYN−  PGREG−  Population 
models Logistic PLSYN−  PLGREG−  

Linear DSYN−  DGREG−  
Fixed-effects 
models Domain 

models Logistic DLSYN−  DLGREG −  

Linear DMSYN−  DMGREG−  Mixed models 
including fixed 
and random 
effects 

Domain 
models 

Logistic DMLSYN− DMLGREG −  

 
In addition to the SYN and GREG estimator types listed 

in Table 1, we can consider composite estimators of the type 
SYN)ˆ1(GREGˆ dd γ−+γ , being appropriately weighted 

combinations of the corresponding GREG and SYN 
estimators. In this paper we examine one estimator of this 
type, the EBLUP estimator. 

The paper is organized as follows: Section 3 introduces 
three types of estimators for a domain total. In section 4, we 
describe the models used in the construction of these 
estimators. In section 5 we derive analytically the effect of 
model improvement, in a simple case. (Only simple cases 
can be treated analytically, because the formulas quickly 
attain a high degree of complexity, depending on the 
sampling design and other factors.) Section 6 is devoted to 
Monte Carlo simulations for two finite populations, 
illustrating the effect of model improvement on the three 
selected estimator types. Summary and discussion is given 
in section 7. 

 
3. Estimators of Domain Totals  

The finite population is denoted =U }....,,...,,2,1{ Nk  
A probability sample s is drawn from U by a given sampling 
design such that unit k is given the inclusion probability kπ . 
The sampling weight of unit k is then kka π= /1 . Denote 
by y the variable of interest and by ky  its value for unit k. 
We consider a set of mutually exhaustive and exhaustive 
domains ....,,...,,1 Dd UUU  The target parameters are the 
set of domain totals, ,∑=

dU kd yY ....,,1 Dd =  
Auxiliary information is essential for building accurate 

domain estimators, and increasingly so when domains of 
interest get smaller. Let x be the auxiliary vector of 
dimension 1≥J  with a known value kx  for every unit 

.Uk ∈  In a survey on individuals, kx  may specify known 
data about person k, such as age class, sex and other 
continuous or qualitative variable values. We assume that 
the vector value kx  and domain membership is known and 
specified in the frame for every .Uk ∈  (For some esti-
mators, it suffices to know the total of kx  for each domain 
of interest.) 

The estimators we consider are constructed as follows: 
The first step is to estimate the designated model, using the 
sample data }.);,{( sky kk ∈x  Next, using the estimated 
parameter values, the vector value kx  and the domain 
membership of k, we compute the predicted value kŷ  for 
every ,Uk ∈  which is possible under our assumptions 
because kx  is known for every .Uk ∈  The predictions, 

},;ˆ{ Uky k ∈  and the observations, },;{ skyk ∈  provide 
the material for the estimator types considered here.  

Consider a fixed-effects model specification, linear or 
nonlinear, such that ),;()(E β= kkm fy x  for a given 
function ),;( β⋅f  where β  is an unknown parameter vector 
requiring estimation, and mE  refers to the expectation under 
the model. The model fit yields the estimate .β̂  The supply 
of predicted values )ˆ;(ˆ β= kk fy x  is computed for .Uk ∈  
Similarly, for a linear mixed model involving random 
effects in addition to the fixed effects, the model 
specification is )()|(E dkdkm y uxu +β′=  where du  is a 
vector of random effects defined at the domain level. Using 
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the estimated parameters, predicted values =kŷ  
)ˆˆ( dk ux +β′  are computed for all .Uk ∈  The models used 

in this paper are described in more detail in section 4. In 
more general terms, the models for the construction of 
GREG and SYN type estimators of domain totals are often 
members of the family of generalized linear mixed models 
(for example McCullogh and Searle 2001). 

The predictions };ˆ{ Uky k ∈  differ from one model 
specification to another. For a given model specification, the 
estimator of the domain total ∑=

dU kd yY  has the 
following structure for the three estimator types (Synthetic, 
Generalized Regression, Composite) to be studied:  

∑=
dU kd yY ˆˆ

SYN  (3.1) 

)ˆ(ˆˆ
GREG ks kkU kd yyayY

dd
−+= ∑∑  (3.2) 

)ˆ(ˆˆˆ
COMP ks kkdU kd yyayY

dd
−γ+= ∑∑  (3.3) 

where ,/1 kka π= dd Uss ∩=  is the part of the full 
sample s that falls in ,dU  and ....,,1 Dd = SYN

ˆ
dY  relies 

heavily on the truth of the model, and is usually biased. On 
the other hand, GREG

ˆ
dY  has a second term that protects 

against model misspecification. The domain-specific weight 
dγ̂  in COMP

ˆ
dY  is appropriately constructed to meet certain 

optimality properties, as explained in section 6. The weight 
dγ̂  approaches unity for increasingly large domain sample 

sizes, so that COMP
ˆ

dY  approaches .ˆ
GREGdY  At the other 

extreme, when dγ̂  is near zero, COMP
ˆ

dY  is close to .ˆ
SYNdY  

We note that for a given model specification, (3.2) and (3.3) 
reduce to (3.1) for a domain d with no sample elements in 

.ds   
4. Models  

4.1 Fixed-Effects Linear Models  
Let )...,,...,,,1( 1 ′= Jkjkkk xxxx  be a −+ )1(J  

dimensional vector containing the values of 1≥J  predictor 
variables ....,,1, Jjx j =  This vector is used to create the 
predicted values kŷ  in the estimators (3.1), (3.2) and (3.3).  

The estimators PSYN−  and PGREG−  build on the 
model specification (called the model)P−  

β′= kkm y x)(E  (4.1) 

for ,Uk ∈  where )'...,,,( 10 Jβββ=β  is a vector of fixed 
effects defined for the whole population. If data−y  were 
observed for the whole population, we could compute the 
generalized least squares (GLS) estimator of β  given by 

( ) kkU kU kkk cyc //
1∑∑ −′= xxxB  (4.2) 

where the kc  are specified positive weights. With no 
significant loss of generality we specify these to be of the 
form kkc xλ′=  for ,Uk ∈  where the vector)1( −+J  λ  
does not depend on k. Because (4.2) cannot be computed, 

the fit is carried out in practice on the observed sample data, 
yielding 

( ) kkks ks kkkk cyaca //ˆ 1
xxxB ∑∑ −′=  (4.3) 

where kka π= /1  is the sampling weight of unit  k. The 
resulting predicted values are .ˆˆ Bx kky ′=  They can be 
computed for all .Uk ∈  

The estimators DSYN−  and DGREG−  are built with 
the same predictor vector ,kx  but with an improved model 
specification (called the model)D−  allowing a fixed-effects 
vector dβ  separately for every domain, so that 

dkkm y β′= x)(E  (4.4) 

for ,...,,1 , DdUk d =∈  or equivalently, 

dk

D

d
dkkm y β′δ=∑

=
x

1

)(E  (4.5) 

for ,Uk ∈  where dkδ  is the domain indicator of unit k, 
defined by 1=δdk  for all ,dUk ∈  and 0=δdk  for all 

,dUk ∉ ....,,1 Dd =  If the model (4.3) could be fitted to 
data for the whole population, the GLS estimator of dβ  
would be 

( ) .//
1

kkU kU kkkd cyc
dd

∑∑ −′= xxxB  (4.6) 

In practice, the fit must be based on the observed sample 
data, leading to 

( ) .//ˆ 1
kks kks kkkkd cyaca

dd
∑∑ −′= xxxB  (4.7) 

The resulting predicted values are given by dkky Bx ˆˆ ′=  
for ,dUk ∈ ....,,1 Dd =  Because of the specification 

,kkc xλ′=  we have .0)ˆ( =−∑ ks kk yya
d

 Consequently, 
DSYN−  and DGREG−  are identical, that is, =−DdY SYN

ˆ  
DdY −GREG

ˆ  for every sample  s. 
The transition from PGREG−  to D,GREG−  and from 

PSYN−  to D,SYN−  affects the MSE in a way to be 
analyzed in section 5. PSYN−  and PGREG−  will be 
examined empirically in section 6.  
4.2 Linear Mixed Models  

The estimators DMSYN−  and DMGREG−  build on a 
two-level linear model (called the )modelD−  involving 
fixed as well as random effects recognizing domain 
differences, 

)(

)(...

)(

)|(E

1110

0

dk

JkJdJ

kdd

dkm

xu

xuu

y

ux

u

+β′=

+β++

+β++

β=

 

(4.8)

 

for ,dUk ∈ ....,,1 Dd =  Each coefficient is the sum of a 
fixed component and a domain specific random component: 

du00 +β  for the intercept and Jju jdj ...,,1, =+β  for 
the slopes. The components of )...,,,( 10 ′= Jdddd uuuu  
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represent deviations from the coefficients of the fixed-
effects part of the model, 

,....)(E 110 β′=β++β+β= kJkJkkm xxy x  (4.9) 

which agrees with (4.1). More generally, we can have that 
only some of the coefficients in (4.8) are treated as random, 
so that, for some 0, =jduj  for every d. One of the 
simplest special cases of (4.8), commonly used in practice, 
is the one that includes a domain-specific random intercept 

du0  as the only random term, as in one of the models used 
in section 6. Another model used in section 6 is the special 
case of (4.8) for ,1=J  with a random slope du1  and a 
random intercept .0du  

We insert the resulting fitted ,values−y =kŷ  
),ˆˆ( dk ux +β′  into (3.1) to obtain the two-level DMSYN−  

estimator. Inserting the fitted values, ),ˆˆ(ˆ dkky ux +β′=  
into (3.2), we obtain the two-level DMGREG−  estimator, 
introduced by Lehtonen and Veijanen (1999). DMSYN−  
and DMGREG−  will be examined empirically in section 
6. 

For the simulations reported in section 6, we fitted the 
two-level model (4.8) by the iterative least squares fitting 
(IGLS) algorithm of Goldstein (1995). Random effects were 
estimated by equation (2.2.2) in Goldstein (1995). This 
algorithm appeals to an assumption that the random effects 
follow a joint normal distribution ).,( Ω0N  Note however 
that this assumption of normality is in no way necessary to 
obtain favorable properties for the resulting DMGREG−  
estimator. It is nearly unbiased regardless of any such 
assumption. The fitting of a multi-level model is more 
demanding than the fitting of a linear fixed-effects model, 
since estimation of the covariance matrix Ω  is required.  
4.3 Logistic Models  

The estimators PLSYN−  and PLGREG−  build on a 
multinomial logistic model.P−  Assume an class−m  
polytomous response defined by the class variables iy  with 
value 1=iky  if k belongs to class i and 0=iky  otherwise, 

,...,,1 mi =  and modeled by 

∑
=

β′

β′
=

m

r
rk

ik
ikm yE

1

)exp(

)exp(
)(

x

x
 (4.10) 

for ,Uk ∈  where )...,,...,,,1( 1 ′= Jkjkkk xxxx  and 
)...,,,( 10 ′βββ=β iJiii  are vectors of fixed effects defined 

for whole population. To avoid identifiability problems, we 
set .01 =β  The PLSYN−  and PLGREG−  estimators of 
the population frequency of class i in domain d, =idY  
∑

dU iky , are defined by (3.1) and (3.2), respectively, if we 
replace ky  and kŷ  by iky  and  /)ˆexp(ˆ ikiky β′= x  

)),ˆexp( (1 2 r
m
r k β′+ ∑ = x  where iβ̂  is the estimate of iβ  

obtained from the fit of (4.10).  
PLGREG−  was introduced and studied in Lehtonen 

and Veijanen (1998). PLSYN−  and PLGREG−  will be 

examined empirically in section 6, where iβ̂  is derived as a 
pseudo-maximum likelihood estimator incorporating the 
sampling weights.  

 
5. Analytic Examination of the Effect 

      of Model Improvement  
In this section we analyze the transition from PGREG−  

to D,GREG−  and from PSYN−  to DSYN−  in the case 
of Simple Random Sampling. For both estimator types, 
GREG and SYN, we find that the accuracy is improved 
when the model changes from the weaker modelP−  (4.1) 
(with fixed effects at the level of the whole population) to 
the stronger modelD−  (4.5) (admitting fixed effects at the 
domain level). Intuitively, this is to be expected. What is of 
interest here is the pattern of improvement. It is very 
different for the two types.  

Our objective is to measure the effect of model 
improvement on ,ˆ

dY  where dŶ  denotes either GREGd̂Y  or 
.ˆ

SYNdY  For this purpose, we use the relative improvement in 
MSE, 

dDdDdPdY MSE/)MSEMSE()ˆ(RELIMP −=  (5.1) 

where dPMSE  and dDMSE  denote the MSE of dŶ  under 
the modelP−  and under the model,D−  respectively. Both 

dPMSE  and dDMSE  depend on the sampling design and 
on the composition of the .vector−kx  The improvement 
factor (5.1) is in general a complex formula. It lends itself to 
easy analytic interpretation only in simple cases. Therefore, 
we examine here the case of Simple Random Sampling 
Without Replacement (SRS). For other designs and model 
formulations, empirical studies are necessary. One such 
study is reported in section 6. 

We use the improvement factor (5.1) to measure the 
effect of changing from the modelP−  (4.1) (the weaker 
model) to the modelD−  (4.5) (the stronger model). The 
Technical Appendix gives the necessary expressions for 
bias and MSE of GREG and SYN estimators in the case of 
an SRS sample of size n from U. The size, ,dn  of the 
sample from the domain dU  is random with expected value 

./ NnNnP dd =  For GREG, we use (A.5) in Technical 
Appendix, and the two different forms of kE  presented 
there, to arrive at 

2

2

2

2

2

2
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)1(

)1(1)ˆ(RELIMP

dd

d

dd
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(5.2)

 

where ∑−=
ddd U dkdUE ENS 22 ))1/(1(  and ))1/(1(2 −= dUE NS

dP
 

∑ −
d dU PUPk EE 2}{  with =

dPUE ./ dU Pk NE
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∑  (Note that 
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).0/ == ∑ dU dkdU NEE
dd

 Similarly, for SYN, we use 
(A.6) in Technical Appendix, and the two different 
expressions for kE  presented there, to arrive at 

2

2

2

2

2

2
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SYN
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1
1)ˆRELIMP(

dd

d

dd

d

dd
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−
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(5.3)

 

where .)())1/(1( 22
)( ∑−= U PkdkUER ERNS

Pd
 The approxi-

mation in (5.3) is a result of keeping only the term 
proportional to the total sample size n. By comparison, the 
other terms are negligible. The approximation in (5.3) is 
adequate in many cases, although the deleted part is not 
always insignificant. Comparing the improvement factors 
(5.2) and (5.3), we note:  
(i) Improvement factor as a function of the bias. 

Comparing (5.2) and (5.3), we see that the improvement 
of SYN is large compared to that of GREG. The main 
reason is that SYN is handicapped, under the model,P−  
by an often considerable squared bias term. As the 
model improves, this handicap is greatly reduced. At the 
same time the variance term may increase moderately, 
so that, somewhat paradoxically, SYN becomes more 
volatile when the model is improved. For GREG, some 
improvement occurs when the model improves, as a 
result of a somewhat reduced variance. The improve-
ment is small, compared to the dramatic improvement of 
SYN.  

(ii) Improvement factor as a function of domain size. 
Suppose that 22 /

ddd UEPU SE  is constant for all domains. 
Then, the presence of the relative domain size dP  in 
(5.3) shows that SYN

ˆ
dY  improves more in larger domains 

than in small domains (where the need for accuracy 
improvement is relatively greater). For ,ˆ

GREGdY  the 
pattern is more natural in that the improvement is more 
pronounced for the smaller domains, due to the factor 

)1( dP−  in (5.2). But if 22 /
ddd UEPU SE  varies consid-

erably between domains, these conclusions would be 
modified. 

 
To throw further light on the generally complex im-

provement factors (5.2) and (5.3), consider the simple 
specification kk c== 1x  for all k. Then =−PdY SYN

ˆ ,sd yN  

sddsdPd yPnnfyNY
d

))(/1(ˆ
GREG −−=−  with Nnf /=  

and   .ˆˆ
GREGSYN dsdDdDd yNYY == −−  (Overbar denotes 

the arithmetic mean over the set defined by the subscript.) 
Using ,/)1/()1( NNNN dd ≈−−  we get 
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where 2
yUS  and 2

dyUS  are the variances of ky  over U  and 
,dU  respectively. The patterns are now very clear. The 

term 22 /)(
dd yUUU Syy −  is present in both expressions. 

For SYN, we see from (5.5) that the improvement factor is 
proportional to the whole sample size n, hence it can be very 
large. For GREG, the improvement (5.4) is very small by 
comparison. If 22 /)(

dd yUUU Syy −  is constant over all 
domains, GREG is improved more in smaller domains than 
in larger ones. The opposite holds for SYN. 

The results in this section are limited by the complexity 
of the analytic expressions. Nevertheless they set the pattern 
for more general situations now to be studied by empirical 
examination. As the model improves, we can expect SYN to 
undergo a very large improvement, in terms of reduced 
MSE, compared to GREG.  

 
6. Empirical Examination of the Effect of Model 

      Improvement by Monte Carlo Experiments  
6.1 Experiments and Monte Carlo Summary 
 Measures  

The data for Experiment 1, presented in section 6.2, was 
generated entirely from a specified model, so it has no basis 
in any real data. For the 100 domains of this data set we 
compared the SYN estimator type (3.1) and the GREG 
estimator type (3.2) under different choices of model for a 
continuous variable of interest. We fitted a fixed-effects 
linear model (which created PSYN−  and PGREG−  
estimators) and compared the results with those obtained 
from the fitting of a two-level linear model (which created 

DMSYN−  and DMGREG−  estimators). 
In constructing the population for Experiment 2, 

presented in section 6.3, we took real data on ILO 
unemployment from Finland’s Labour Force Survey (LFS) 
as a starting point for creating a larger artificial population 
with 84 regional domains. There, the variable of interest is 
binary (unemployed or not). We fitted, in addition to a 
fixed-effects linear model (which created PSYN−  and 

PGREG−  estimators) and a two-level linear model (which 
created DMSYN−  and DMGREG−  estimators), a fixed-
effects binomial logistic model (which created PLSYN−  
and PLGREG−  estimators). For this experiment we also 
constructed a composite estimator (3.3) as a weighted 
combination of GREG and SYN estimators, creating a 

DCOMP−  estimator.  
In Experiments 1 and 2, by using estimates )(ˆ

vd sY  
from repeated samples ,...,,2,1; Kvsv =  we computed for 
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each domain Dd ...,,1=  the following Monte Carlo 
summary measures of bias, accuracy and relative 
improvement in MSE. We use two measures of accuracy, 
the relative root mean squared error (RRMSE) and the 
median absolute relative error (MdARE). For Experiment 1, 
where the response variable is continuous, these two 
measures give the same message about the accuracy. But for 
Experiment 2, where the response variable is binary, there is 
sometimes a difference in the conclusions drawn from the 
two measures.  
(i) Absolute relative bias (ARB), defined as the ratio of the 

absolute value of bias to the true value: 

.)(ˆ1

1
d

K

v
dvd YYsY

K
∑

=
−  (6.1) 

(ii) Relative root mean squared error (RRMSE), defined as 
the ratio of the root MSE to the true value:  

.))(ˆ(
1

1

2
d

K

v
dvd YYsY

K
∑

=
−  (6.2) 

(iii) Median absolute relative error (MdARE), defined as 
follows. For each simulated sample ,...,,2,1; Kvsv =  
the absolute relative error is calculated and a median is 
taken over the K samples in the simulation: 

}./|)(ˆ{|
 ...,1,over 

Median
ddvd YYsY

Kν
−

=
 (6.3) 

(iv) RELIMP, the relative improvement in MSE, defined in 
the manner of  (5.1).  

6.2 Experiment 1: Data Generated from a Model  
Monte Carlo design 
 

We used the two-level modelD−  (4.8) with 1=J  to 
generate an artificial population of one million elements 
distributed on 100 domains. The elements were randomly 
allocated to a set of 100 domains with probabilities 
proportional to )exp( dp  where dp  follows a uniform 
distribution in ).3.3(−  In the generation of values for the 

−x variable and variable−y  in the thd  domain, 
,100...,,1=d  we operated in the following way. First, the 

values of the variable−x  were obtained as independent 
realizations of ),,( 2

ddN σμ  where the domain-specific 
parameters ),( 2

dd σμ  had first been generated from a bi-
variate uniform distribution over ).35.15()15.5( ×  Then, the 
response variable values ky  were generated as 

kkddk xuuy ε++β++β= )( 1100  (6.4) 

with 100 =β  and 6.01 =β . In (6.4), the values of kε  are 
independent realizations of ),1,0(N  and the random effects 

du0  and du1  were realized from a bivariate normal 
distribution with ),4,0(0 Nu d ∼  ),01.0,0(1 Nu d ∼  

100...,,1=d . We report results for two values of the 
correlation of the random effects: (a) ,0),(Corr 10 =dd uu  
and (b) .5.0),(Corr 10 −=dd uu  One case of a positive 
correlation, 0.5, was also studied but the results were similar 
with those in the zero correlation case and are thus omitted. 

We examined four estimators: DMSYN−  and 
DMGREG−  based on the two-level modelD−  (4.8), 

,)( 11100 kkddk xuuy ε++β++β=  and PSYN−  and 
PGREG−  based on the fixed-effects modelP−  (4.9), that 

is, .10 kkk xy ε+β+β=  Both sets of SYN and GREG 
estimators were calculated in the zero correlation and 
negative correlation cases. The conditions are thus ideal for 

DMSYN−  and DMGREG−  in the sense that the 
population follows exactly the model that lies behind these 
two estimators.  

From the generated population we drew 000,1=K  
samples, each of size ,000,10=n  with Simple Random 
Sampling Without Replacement (SRS). For each estimator 
and for each domain, we computed the Monte Carlo 
summary measures of bias, accuracy and relative 
improvement in MSE in the manner described in (6.1), 
(6.2), (6.3) and (5.1). The Monte Carlo measures were then 
averaged with respect to a classification of the domains into 
Small (25 domains with average domain sample size < 10), 
Medium-sized (50 domains with average domain sample 
size ≥  10 and < 50), and Large (25 domains with average 
domain sample size ≥  50). 
 
Results  

The results for the cases of zero correlation (a) and 
negative correlation (b) are given in Tables 2 and 3. In both 
cases, PSYN−  has a large bias (measured by the average 
ARB) for all the three domain size categories (Table 2). The 
bias is slightly larger in the zero correlation case. The bias in 

PSYN−  is considerably reduced by D,MSYN−  but is still 
significant in small domains. In the smallest domains, the 
estimated residuals (the estimates of the random effects) 
were biased towards zero, which created some bias in the 
estimates. The accuracy (measured by the average RRMSE 
and the average MdARE) of DMSYN−  (based on the 
“ideal model”) is much better than that of PSYN−  (which 
is based on a population model). Accuracy gains are larger 
for the zero correlation case, and gains are substantial 
especially in larger domains. This result is in line with our 
theoretical results in section 5.  

PGREG−  and DMGREG−  are essentially unbiased, 
confirming theory. Out of these two, accuracy is clearly 
better for D,MGREG−  especially in small domains. In 
larger domains, accuracy gains are much smaller for the 
GREG estimator type than for the SYN estimator type. 
Bias and accuracy of GREG estimators are quite similar 
in both zero correlation and negative correlation cases.  
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Table 2 
Average Absolute Relative Biais (ARB) (%), Average Relative Root Mean Squared Error (RRMSE) (%) and Average Median Absolute 

Relative Error (MdARE) (%) of Total Estimators in Small, Medium-Sized and Large Domains of a Synthetic Population with (a) Random 
Slope and Intercept Independent or (b) Random Slope and Intercept Negatively Correlated  

 Average ARB (%) Average RRMSE (%) Average MdARE (%) 
 Expected domain size in sample Expected domain size in sample Expected domain size in sample 
 Small 

)91( −  
Medium 

)4910( −  
Large 

)50( +  
Small 

)91( −  
Medium 

)4910( −  
Large 

)50( +  
Small 

)91( −  
Medium 

)4910( −  
Large 

)50( +  

(a)  Zero correlation 

      Model-dependent SYN estimators 

     PSYN−  10.29 12.37 10.54 10.3 12.4 10.6 10.3 12.4 10.5 

     DMSYN−  1.32 0.09 0.01 4.7 1.1 0.4 2.6 0.7 0.2 

      Model-assisted GREG estimators 

     PGREG−  0.21 0.06 0.01 7.5 2.5 0.8 5.0 1.7 0.5 

     DMGREG−  0.83 0.03 0.01 4.8 1.1 0.4 2.7 0.7 0.2 

(b) Negative correlation )5.0(−  

      Model-dependent SYN estimators 

     PSYN−  7.92 9.51 8.26 7.9 9.5 8.3 7.9 9.5 8.3 

     DMSYN−  1.20 0.09 0.01 4.2 1.1 0.4 2.5 0.7 0.2 

      Model-assisted GREG estimators 

     PGREG−  0.18 0.05 0.01 6.4 2.1 0.6 4.2 1.4 0.4 

     DMGREG−  0.67 0.02 0.01 4.4 1.1 0.4 2.6 0.7 0.2 
 
 
As the theoretical discussion in section 5 has also 

suggested, the effect on the SYN estimator type of model 
improvement depends strongly on the size of the domain. 
This is confirmed here: The modelD−  leads to a consid-
erable MSE improvement (measured by the average 
RELIMP) for SYN. The improvement is striking for the 
large domains (Table 3). By contrast, the effect on the 
GREG estimator type of model improvement is modest, by 
comparison, and essentially independent of the domain size, 
as also suggested by the theoretical results.  

Table 3 
Average Relative Improvement in MSE (%) of Total Estimators in 

Small, Medium-Sized and Large Domains of a Synthetic 
Population with (a) Random Slope and Intercept Independent 

or (b) Random Slope and Intercept Negatively Correlated  
Average relative improvement in MSE (%) 

 Expected domain size in 
sample 

 Small 
)91( −  

Medium 
)4910( −  

Large 
)50( +  

(a) Zero correlation 
     DMSYN−  versus PSYN−  8.3 332.5 1,278.3 
     DMGREG−  versus PGREG−  1.9 6.0 3.7 
(b) Negative correlation )5.0(−  
     DMSYN−  versus PSYN−  5.1 197.0 734.7 
     DMGREG−  versus PGREG−  1.3 3.6 2.3 

 
The reason for an improved behavior of SYN and GREG 

estimators is that a two-level (or more generally, a multi-
level) model, because of the presence of domain parameters, 

produces fitted values kŷ  that are on the average closer to 
the (unobserved) ky  than those obtained by fitting simply 
the fixed part of the model. In addition, since DMSYN−  
takes domain differences into account, it is expected to be 
less biased than the PSYN−  estimator based on the fixed 
part of the two-level model. Still, we find that the 

DMSYN−  estimator has a significant bias, particularly in 
the smallest domains, for which the estimated random 
effects tend to be biased towards zero, which pulls the fitted 
values in the direction of those of the fixed part of the 
model. DMSYN−  and DMGREG−  estimators do not 
differ considerably in their accuracy, even in small domains. 
 
6.3 Experiment 2: Data Adapted from Finland’s 

Labour Force Survey  
Monte Carlo design  

The empirical data for our Experiment 2 came from the 
Finnish Labour Force Survey (LFS), conducted monthly by 
Statistics Finland. Details on the design and the estimation 
procedure of the LFS are described in Djerf (1997). In this 
experiment, we estimate the number of unemployed in 84 
administrative regions of Finland, based on the NUTS4 
classification (European Union’s Nomenclature of Territo-
rial Units for Statistics).   

To emulate the sampling design of the Finnish LFS, in a 
fairly realistic manner, we generated a large  artificial 
population by expanding a one-quarter sample data set of 
the Finnish LFS. The original data set of 32,564 individuals 



12                                                                                                                                       Survey Methodology, June 2003
 

 
Statistics Canada, Catalogue No. 12-001

contained 29,024 respondents. The respondents were 
replicated by Simple Random Sampling With Replacement 
until we had reached a total of 3 million records 
approximating the size of the labour force in Finland.  

The variable of interest, y, was a binary variable 
describing whether a person was unemployed of not. In 
LFS, the definition of unemployment is based on the ILO 
(International Labour Organisation) concept. Our population 
data included four auxiliary variables available from 
administrative registers (and used by Statistics Finland in 
their LFS): age, sex, region (NUTS2 level regional unit) and 
the job-seeker indicator, which is a dichotomous indicator 
showing whether or not a person is registered as an 
unemployed job-seeker in the administrative records of 
Finland’s Ministry of Labour.  Indicator variables were used 
for 6 age-by-sex classes (3 age groups, 2 sexes). These 
register-based data were merged with the survey data at the 
micro level by using personal identification numbers, which 
are unique in both data sources.  

We examined seven estimators. Three model choices 
were used. First, we constructed the estimators (3.1) and 
(3.2), based on the linear fixed-effects modelP−  (4.9) 
incorporating the main effects for variables age, sex, region 
and the job-seeker indicator. The model also incorporates 
the two-variable interaction of age with the job-seeker 
indicator. The variables and terms in the model were 
selected in an exploratory data analysis. The resulting 
domain total estimators are PSYN−  and P.GREG−  

Secondly, we constructed the estimators (3.1) and (3.2) 
based on a binomial logistic model (4.10) involving the 
same model structure as the modelsP−  for PSYN−  and 

P.GREG−  The resulting estimators are PLSYN−  and 
P.LGREG−  

Thirdly, we constructed the estimators (3.1) and (3.2) 
based on the two-level modelD−  (4.8) again involving the 
same structure in the fixed part as the previous models. The 
random component of the model, recognizing domain 
differences, consisted of random intercepts at the domain 
(NUTS4) level. The resulting estimators are DMSYN−  
and D.MGREG−  For this model choice, we also 
constructed the composite estimator (3.3). The resulting 
estimator is denoted by D.COMP−  The weight dγ̂  in 

DCOMP−  was computed as ),/ˆˆ/(ˆ 222
duu nεσ+σσ  where 

2ˆ uσ  and 2ˆ εσ  are sample based estimates for unknown 
parameters in the model’s error structure (Ghosh and Rao 
1994). The DCOMP−  estimator is perhaps best described 
as a pseudo EBLUP (Prasad and Rao 1999), by the fact that 
the residuals kk yy ˆ−  are sample weighted. (A more 
conventional EBLUP uses unweighted residuals.) 

We carried out four independent Monte Carlo 
experiments. In each experiment, we drew from the 
generated LFS population 000,1=K  samples, each of size 

000,12=n  individuals, with SRS. We generated non-
response in each sample using a model for the non-response. 
We modeled the non-response by a logistic model incor-
porating the same auxiliary variables as the PLGREG−  

model. The non-response probabilities were estimated from 
each sample, and the sampling weights were adjusted 
accordingly. For each estimator and for each domain, we 
computed the Monte Carlo summary measures defined in 
section 6.1. These measures were then averaged with 
respect to a classification of the domains into Small (32 
domains with average domain sample size < 60) and Large 
(52 domains with average domain sample size ≥  60). We 
finally averaged these figures over the four experiments.  
Results  

Table 4 shows the results for the seven estimators. In this 
experiment based on a real population, the results are far 
less dramatic than in Experiment 1. For all the models, the 
model-dependent SYN estimators P,SYN− PLSYN−  and 

DMSYN−  had a substantial bias. The bias was smallest, 
even though still substantial, for the multilevel-model based 
estimator D.MSYN−  The bias continued to be large even 
in the large domains. Large bias might be due to the poor fit 
of the models, even if we used the best models available, 
and because the inclusion of random effects in the models 
was quite limited (only a random intercept term was 
included at the domain level). Accuracy in model-dependent 
estimators was best again for D.MSYN−  As shown in 
Table 5, there was a slight positive effect of model 
improvement in MSE. 

 
Table 4 

Average Absolute Relative Bias (ARB) (%), Average Relative 
Root Mean Squared Error (RRMSE) (%) and Average Median 

Absolute Relative Error (MdARE) (%) of Estimators of the 
Number of ILO Unemployed in Small and Large  

Domains (LFS Data)  
 Average  

ARB (%) 
Average  

RRMSE (%) 
Average  

MdARE (%) 
 Expected domain 

size in sample 
Expected domain 

size in sample 
Expected domain 

size in sample 
 Small 

)591( −
  

Large 
)60( +  

Small 
)591( −

 

Large 
)60( +  

Small 
)591( −

 

Large 
)60( +   

Model-dependent SYN estimators 

PSYN−  36.5 14.2 37.6 16.3 36.6 14.9 

PLSYN−  36.4 14.1 37.3 16.2 36.5 14.8 

DMSYN−  27.3 9.1 31.8 15.9 29.0 12.1 

Model-assisted GREG estimators 

PGREG−  1.2 0.6 46.7 24.0 30.6 16.0 

PLGREG−  1.2 0.6 46.8 24.0 30.7 16.0 

DMGREG−  1.2 0.6 46.4 24.0 30.6 16.0 

Composite estimators 

DCOMP−  26.9 8.8 31.8 16.0 28.9 12.1 
 

In model-assisted GREG estimators, the differences in 
bias and accuracy were small between the multilevel-model 
assisted DMGREG−  estimator and the PGREG−  and 

PLGREG−  estimators assisted by population-level fixed 



Lehtonen, Särndal and Veijanen: The Effect of Model Choice in Estimation for Domains                                                13
 

 
Statistics Canada, Catalogue No. 12-001

effects models. The fixed-effects linear and logistic models 
yielded quite similar results, but the multilevel model 
improved the results slightly, as shown in Table 5. 
 

Table 5 
Average Relative Improvement in MSE (%) of Estimators of the 

Number of ILO Unemployed in Small and Large  
Domains (LFS Data)  

Average relative improvement in MSE (%) 
 Expected domain size in sample 

 Small )591( −  Large )60( +  

DMSYN−  versus PSYN−  32.4 1.3 
DMGREG−  versus PGREG−  0.4 0.2 

 
As measured by the average MdARE, the difference in 

accuracy between DMSYN−  and DMGREG−  is small in 
small domains.  

The composite estimates DCOMP−  were close to the 
synthetic estimates because the estimated variance of the 
random intercept was, in most cases, quite small.  

 
7. Summary and Discussion  

In the introduction we made a point that, in our opinion, 
has not been emphasized in earlier literature on domain 
estimation, namely that the concept “model choice” must be 
distinguished from the concept “estimator type” when 
estimation methods are compared. To one and the same 
choice of model (same mathematical form, same 
specification of parameters or effects in the model) 
corresponds one estimator for each of the traditional 
estimator types discussed in the literature, Synthetic, 
Generalized Regression, Composite, EBLUP and so on. A 
first consequence of this is that one cannot make a fair 
comparison of estimators of different types unless all share 
the same model choice. Secondly, a change of model, say 
from a weaker to a stronger model, may have quite different 
impact on different estimator types. It is this second aspect 
that is highlighted in this paper.  

We have studied the impact of model improvement 
especially for the Synthetic (SYN) type and Generalized 
Regression (GREG) type estimators, and found that the 
impact is very different, and the impact depends heavily of 
the size of the domain concerned, that is, of the number of 
sampled units in a domain. Especially in larger domains, the 
impact of model improvement is very large for SYN type 
estimators, and modest only for GREG type estimators. The 
progression is such that a SYN type estimator goes from 
being highly inaccurate estimator for a weaker model to a 
much improved estimator for a stronger model. In other 
words, SYN is highly dependent on the strength of the 
model. This is not the case for a GREG type estimator. It is 
slightly more accurate for the stronger model while 
maintaining a high accuracy for both kinds of models. Its 
improvement factor is modest compared to a SYN type 
estimator. We have not carried out our analysis in detail for 

other estimator types. This is an objective for future 
research. 

The possibilities for efficient estimation for domains and 
small areas depend on the available statistical infrastructure. 
As evidenced in many recent papers on small area 
estimation, one must often start from a set of premises, 
where the data for model fitting are available not at a unit 
level, but at some aggregated level (this situation is typical 
for example in the United Kingdom and in the United 
States). The background for the methods described in this 
paper is typical in statistical infrastructures where a good 
supply of administrative registers exists, with data at the unit 
level (this holds for example the Scandinavian countries). In 
such an infrastructure it is often possible to use unit keys, 
such as personal identification numbers, to merge two or 
more administrative files at the micro level in building the 
vector of auxiliary variables. Also, domain membership is 
often specified for all units in the target population, as 
assumed in this paper. We can also assume that the collected 
survey data file can be merged with the auxiliary data file 
using the unit keys. The situation described above is 
increasingly found in many countries, for example in several 
member states of the European Union, where an increasing 
emphasis is being put on the use of administrative registers 
for purposes of statistics production.  

 
Technical Appendix  

This technical appendix includes the derivation of bias 
and MSE approximations for GREG and SYN estimators 
needed for the examination of the effect of model 
improvement in the case of Simple Random Sampling 
presented in section 5. 

To measure how the accuracy GREGd̂Y  and SYNd̂Y  
changes as the model progresses from (4.1) to  (4.5), we 
need to evaluate the variance of each estimator, as well as 
the bias of .ˆ

SYNdY  By contrast, GREGd̂Y  is nearly unbiased. 
An obstacle in the analysis of GREGd̂Y  and SYNd̂Y is their 
nonlinear form. Therefore we work with the corresponding 
linearized forms, for which we can easily obtain the bias and 
the variance. The results are then used to approximate the 
corresponding characteristics of GREGd̂Y  and .ˆ

SYNdY  Taylor 
linearization is a standard technique for these types of 
estimators, as illustrated, for example, in Särndal, Swensson 
and Wretman (1992), Chapter 6. 

Consider first the GREG estimators, PGREG−  and 
D.GREG−  Let GREGd̂Y  denote either of those two. With 

linear approximation, the estimation error (the estimator’s 
deviation from the target parameter )dY  is 

kU dkkdks kdd EEaYY ∑∑ δ−δ≈−GREG
ˆ  (A.1) 

where kE  is the population fit residual for k. The difference 
between PGREG−  and DGREG−  lies in the residuals 

.kE  For P,GREG−  they are ,Pkk EE =  where 
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PkkPk yE Bx′−=  for ,Uk ∈  with PB  given by (4.2). For 
D,GREG−  they are ,dkk EE =  with dkkdk yE Bx′−=  for 

,dUk ∈ ,...,,1 Dd =  with dB  given by (4.6). 
In (A.1), kdks k Ea δ∑  is the Horvitz-Thompson (HT) 

estimator for the variable .kdk Eδ  Using basic results for the 
HT estimator we get ,0)ˆ( GREG ≈− dd YYE  that is, GREG

ˆ
dY  

is nearly unbiased. It is easy to state the variance for a 
general design. We need it here for the special case of 
Simple Random Sampling Without Replacement (SRS). 
The MSE of GREG

ˆ
dY  equals the variance of ,ˆ

GREGdY  to the 
order of approximation used here. 

Next, consider the SYN estimators, PSYN−  and 
D.SYN−  Let SYN

ˆ
dY  denote either of those two. After 

linearization, the estimation error is approximated as 

∑∑ δ−≈−
U kdkkdks kdd EEraYY SYN

ˆ  (A.2) 

where ,dkk EE = dkdkr δ=  for D,SYN−  and ,Pkk EE =  
dkdk Rr =  for P,SYN−  with 

( ) .
1

k

k
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k

kk
U kdk cc

R
d

xxx
x

−
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⎠

⎞
⎜⎜
⎝

⎛ ′
= ∑∑  

The term ks dkk Era∑  in (A.2) is the HT estimator for the 
variable .kdk Er  The quantities dkR  vary around a central 
value at or near the relative domain size, ./ NNP dd =  The 
mean ∑U dkRN )/1(  equals dP  if kx  contains the constant  
“1” for every k. From (4.2) we get 

.)ˆ( SYN ∑−≈−
dU kdd EYYE  (A.3) 

The right hand side of (A.3) is zero for D,SYN−  which 
is therefore nearly unbiased, but is different from zero for 

P,SYN−  which is therefore biased. 
For the fixed-effects linear model formulations in section 

4.1, we now examine the relative improvement factor (5.1) 
under SRS with a sampling fraction equal to ./ Nnf =  

Consider first the two GREG estimators. We get 
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(A.4)

 

where the index T indicates the approximations derived via 
the linearized ,ˆ

GREGdY  and Pkk EE =  for the modelP−  and 
dkk EE =  for the model.D−  Developing the square in 

(A.4) and using dd NN /)1( − 1≈  and ≈−− )1/()1( NNd  
NN d /  we get 

})1({
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22
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dd UdEU
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n

f
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(A.5)

 

where  )/(0 NNnPnn ddd ==   is  the  expected  size  of  
the  domain  portion  of  the  sample,  dd Uss ∩= ,  and 

=2
dEUS ∑ −−

d dU Ukd EEN 2}{))1(/1(  with =
dUE  

.))/(1( ∑
dU kd EN  If 0dn  is small, GREG

ˆ
dY  has a poor 

precision (a high variance), except if the model fits extremely 
well so that the residual kE  is small for all units in the 
domain. For D,GREG− 0=

dUE , so the second term 
within curly brackets disappears. 

Next, consider the two SYN estimators. We get 

22

22
SYN )(

1
11

)ˆ(MSE

dUd

U kdkdT

EN

Er
Nn

f
NY

+

−
−

= ∑
 
(A.6)

 

where dkr  and kE  are as specified in (A.2). The first term 
in (A.6) is the variance; the second is the squared bias 
obtained from (A.3). The variance term is often very small 
because the sample size in the denominator is that of the 
entire sample, not the perhaps much smaller size of the 
domain part of the sample. The squared bias term is zero for 

D,SYN−  but non-zero, perhaps large, and not tending to 
zero for P.SYN−  
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