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M odel-Based Unemployment Rate Estimation for the Canadian L abour

Force Survey: A Hierarchical Bayes Approach

Yong You, J.N.K. Rao and Jack Gambino*

Abstract

The Canadian Labour Force Survey (LFS) produces monthly direct estimates of the unemployment rate at national and
provincia levels. The LFS dso releases unemployment estimates for sub-provinciad areas such as Census Metropolitan
Areas (CMAs) and Census Agglomerations (CAs). However, for some sub-provincia areas, the direct estimates are not
very reliable since the sample size in some areasis quite small. In this paper, a cross-sectional and time-series model is used
to borrow strength across areas and time periods to produce model-based unemployment rate estimates for CMAs and CAs.
This model is a generalization of awidely used cross-sectional model in smdl area estimation and includes a random walk
or AR(1) model for the random time component. Monthly Employment Insurance (El) beneficiary data at the CMA or CA
level are used as auxiliary covariatesin the mode. A hierarchical Bayes (HB) approach is employed and the Gibbs sampler
is used to generate samples from the joint posterior distribution. Rao-Blackwellized estimators are obtained for the posterior
means and posterior variances of the CMA/CA-level unemployment rates. The HB method smooths the survey estimates
and leads to substantia reduction in standard errors. Bayesian modé fitting is al so investigated based on posterior predictive
distributions.

Key Words: Gibbs sampling; Hierarchical Bayes; Labour Force Survey; Small area estimation; Unemployment rate.

1. Introduction

but not both. In recent years, several approaches to

The unemployment rate is generaly viewed as a key
indicator of economic performance. In Canada, athough
provincia and national estimates get the most media atten-
tion, subprovincia estimates of the unemployment rate are
also very important. They are used by the Employment
Insurance (El) program to determine the rules used to
administer the program. In addition, the unemployment
rates for Census Metropolitan Areas (CMAS, i.e, citieswith
population more than 100,000) and Census Agglomerations
(CAs, i.e, other urban centres) receive close scrutiny at
locd levels. However, many CAs do not have a large
enough sample to produce adequate direct estimates. Our
objective in this paper is to obtain model-based estimators
that lead to improvement over the direct estimator which is
based solely on the sample falling in agiven CMA or CA in
agiven month. For convenience, since CMAs are dso CAs,
wewill refer to both CMAsand CAsas CAs.

In Canada, unemployment rates are produced by the
Labour Force Survey (LFS). The LFS is a monthly survey
of 53,000 households selected using a stratified, multistage
design. Each month, one-sixth of the sample is replaced.
Thus five-sixths of the sample is common between two
consecutive months. This sample overlap induces correla
tions which can be exploited to produce better estimates by
any method which borrows strength across time. For a
detailed description of the LFS design, see Gambino, Singh,
Dufour, Kennedy and Lindeyer (1998).

Traditional small area estimators borrow strength either
from similar small areas or from the same area across time,

borrowing strength smultaneoudy across both space and
time have been developed. Estimators based on the
approach developed by Rao and Y u (1994), such asthose in
Ghosh, Nangia and Kim (1996), Datta, Lahiri, Maiti and Lu
(1999) and in this paper, successfully exploit the two
dimensions simultaneoudy to produce improved estimates
with desirable properties for small areas. Datta et al. (1999)
gpplied their modd to long time series (T =48 months)
data across small areas from the U.S. Current Population
Survey. In this paper, we apply a smilar modd to the
Canadian LFS. Unlike Datta et al. (1999), we have used
short time series data across small areas. Therefore, our
model does not contain seasonal parameters. This reduces
substantially the number of parameters that need to be
estimated; details on modelling and analysis are given in
section 2 and section 4. Despite this smplification, we
obtain both an adequate model fit and large reductionsin the
coefficients of variation (CVs) of the smal area estimators
of the unemployment rate. The CV reduction is due in part
to our approach to computing covariance matrices, which
uses smoothed CV's and lag correlations to obtain smoothed
estimates of the sampling covariance matrices of the direct
LFS egtimators.

In section 2, we present the modd, which borrows
srength across small areas and time periods. In section 3,
the mode is placed in a hierarchical Bayes (HB) frame-
work. The use of Gibbs sampling to generate samples from
the joint posterior distribution is described and the corres-
ponding HB estimators are obtained. The HB method is
goplied to the LFS data in section 4 to produce

1. Yong You, Jack Gambino, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K1A 0T6; JN.K. Rao, School of
Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6.
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unemployment rates for CAs. Specifically, subsections 4.2
and 4.3 present model selection and modd fit anaysis.
Subsection 4.4 presents model-based estimates for the small
area (CA) unemployment rates and the CV comparisons.
Finaly some concluding remarks are given in section 5.

2. Cross-Sectional and Time SeriesModdls

Let y, denote the direct LFS estimate of 6,,, the true
unemployment rate of the i™ CA (small areq) a time't, for
i=1 ... m t=1.. T, whee mis the tota number of
CAsand T isthe (current) time of interest. We assume that

Yi =0 +&, i=L..mt=1..T, @

where e,’s are sampling errors. Let Y, =(Yiy, - Vit ),
8, =00, .., 07;), and e =(e,, .., ;). Then g isa
vector of sampling errors for the i™ CA. In the LFS design,
the CAs are treated as strata. Thus the sampling vectors g
are uncorrelated between areas (CAS). Because of the LFS
sample rotation pattern, there is substantial sample overlap
over short time periods within each area. As a reault, the
correlation between e, and e (t #s) has to be taken into
account. It is customary to assume that g follows a multi-
variate normal distribution with mean vector 0 and co-
variance matrix Z,, i.e, € ~ N(0, X;). Using (1), we have

y, ~N(@®,,%), i=1 .., m @

Thus y, is design-unbiased for 6;. The variance-co-
variance metrix X, in model (2) is assumed to be known.
The assumption of normality and known %; in mode (2) is
the customary practice in model-based small area estimation
(see, for example, Fay and Herriot 1979; Ghosh and Reo
1994; Datta et al. 1999; Rao 1999). In this paper, we follow
the customary approach and treat X, as known. Speci-
fication of X, may not be essy in practice. We use a
smoothed estimator of X, in the modd, and then treet it as
the true X, . More details on constructing a smoothed esti-
mator of X, inthe context of the LFS are given in section 4.
Pfeffermann, Feder and Signorelli (1998) proposed asimple
method of estimating the autocorrelations of sampling errors
for rotating-panel designs, such as the Canadian LFS. It
would be useful to study the feasibility of this approach in
our context.

To borrow strength across small areas and time periods,
we model the true unemployment rate 0, by a linear re-
gression model with random effects through auxiliary vari-
ables x, . We assume that

0, =X.B+v.+u,, i=1L...mt=1.,T, (3
where X, = (X, -, X,) is the vector of area level aux-

iliary datafor the i™ CA attimet; B isavector of regres-
sion parameters of length p; v, isarandom area effect with
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v, ~iid N(0, 62); u, is a random time component. For a
given area i, Datta et al. (1999) assumed that u, followsa
random walk processover timeperiod t =1, ..., T, thatis,

Uy =U +&, i =L..mt=2.,T, (4

where g, ~N(0, 62). Then cov(y,, u,)=min(t, s)c?-.
Also {v}, {e,} and {g} ae assumed to be mutualy
independent. The regression parameter B and the variance
components ¢> and > are unknown in the model. Rao
and Yu (1994) used a dationary autoregressive model,
AR(1), for u, thatis u, =pu; _, +¢;, and |p|<1. Data
etal. (1999) included month and year effects as seasond
effects for 6, in (3) using a long time series (T =48
months) in their analysis. In our modelling, we intend to
study the effects of borrowing strength across areas and over
time using short time series data instead of long time series
data. In particular, based on the Canadian LFS design’s six-
month rotation cycle, we used only 6 months of data for
smoothing; see section 4 for details. Thus the linking model
(3) issmpler than Datta et al. (1999)’s model. This smpli-
fication is likely to reduce the instability in the smoothed
covariance matrix Z,.

Arranging the data {y,} as avector y=(Y;, ..., Yr)’
with y; =(Yiq, - Yir)’, We can write models (2), (3) and
(4) in matrix form as

Y =X;B+L v, +u +e, i=1 .., m 5

where X! =(Xq, ..., X1), U =(Uy, ..., U7), ad 1; isa
T x 1 vector of 1's. Model (5) isaspecia case of ageneral
linear mixed effects moddl. It also extends the well-known
Fay-Herriot modd (Fay and Herriot 1979) by borrowing
strength across both areas and time.

For comparison, we also considered the Fay-Herriot
mode for thetimepointst = 1, ..., T inour data analysis.
The model at timepoint t isgiven as

Vit zeit + 6, |=l ey M, (6)

and

O = X B +Vy, i =1..m )

where the sampling errors g, ~ind N(0, ) and the area
random effectsv,, ~iid N(0, o2) for eachtime point t and
independent of v,,, t’#t. The sampling variances o are
assumed to be known (smoothed estimates) and o, is
unknown. The Fay-Herriot model combines cross-sectional
information a each t for estimating 0,, but does not
borrow strength over the past time periods.

We are interested in obtaining a model-based estimator
of 0,, in paticular, for the current time t=T . Datta,
Lahiri and Maiti (2002) and Y ou (1999) obtained two-stage
esimators for 6, and MSE approximations for the
estimators through the empirical best linear unbiased
prediction (EBLUP) approach. In this paper, we study both
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AR(1) and random walk models on u,,’s, under a complete
HB approach using the Gibbs sampling method.

3. Hierarchical BayesAnalysis

In this section, we apply the hierarchical Bayes approach
to the cross-sectional and time series model given by (2),
(3) and (4) and the Fay-Herriot model given by (6) and (7).
Estimates of the posterior mean and posterior variance of
the small area means, 6,;, are obtained using the Gibbs
sampling method.

3.1 TheHierarchical Bayes Model

We now present the cross-sectional and time series
mode in ahierarchical Bayes framework asfollows:

—Conditional on the parameters 6, =(8, ..., 6;1)",
[y 6,1 ~ind N(6;, );

—Conditional on the parameters B, u, ad o,
[0, 1B, Uy, 671 ~ind N(XB +puy, 67);
—Conditional on the parameters U, ad o?,

[y 1U; 0y 021~ ind N(pU; 5, ©7);

Margindly B, o2 and 62 are mutually independent with
priors given a Bl 62~1G(a,b), ad o~
IG(a,, b,), where IG denotes an inverted gamma distrib-
ution and a;, b, a,, b, are known positive constants and
usually set to be very small to reflect our vague knowledge
about 62 and o”. For the random walk model, we take
p =1 and for the AR(1) moddl, |p <1 and p isassumed to
be known.

We are interested in estimating 0;, and in particular, the
current unemployment rate 8. Inthe HB analysis, 0;; is
estimated by its posterior mean E(6,; |y) and the un-
certainty associated with the estimator is measured by the
posterior variance V(0,7 |y). We use Gibbs sampling
(Gelfand and Smith 1990; Gelman and Rubin 1992) to
obtain the posterior mean and the posterior variance of 0.

Similarly, the Fay-Herriot mode (6)-(7) can be
expressed as.
—Conditional on the paameters 6, [V |6;]~

indN(®,, 63);

—Conditional on the parameters f,, and o
[0 IB:, G\i] ~ind N(Xi/t B., 051);

Margindly B, and o2 are mutualy independent with
priorsgivenas B, =<1, o, ~1G(a,, b).

3.2 Gibbs Sampling Method

2
v?

The Gibbs sampling method is an iterative Markov chain
Monte Carlo sampling method to simulate samples from a
joint distribution of random variables by sampling from low
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dimensiona densities and to make inferences about the joint
and margina distributions (Gelfand and Smith 1990). The
most prominent application is for inference within a
Bayesian framework. In Bayesan inference one is inter-
ested in the posterior distribution of the parameters. Assume
thet y, |6 has conditiona density f(y,|6)for i=1 ... n
and that the prior information about 6=(0,, ..., 8,)" is
summarized by aprior density n(6). Let n(6|y) denotethe
posterior density of © given the data y=(y,, ..., ¥,)" It
may be difficult to sample from 7t(6]y) directly in practice
due to the high dimensional integration with respect to 6.
However, one can use the Gibbs sampler to construct a
Markov chain {6@ = (8!?, ..., 619)} with n(6|y) asthe
limiting distribution. For illustration, let 6=(8,, 6,)".

Starting with an initial set of values 00 — Gl 6(&’) we

generate 0@ = (09, 09)" by samplmg e“ﬁ from
(0,169, y) ad 6% from n(o, |9({9) ) Under
cartain regularity condltlons 99 = e<g> 09)" converges

in digtribution to w(0]y) as g — . Magind inferences
about w(O; |y) can be based on the marginal samples
{6(9): k=1, 2, ...} forlargeg.

For the hierarchicad Bayes models in section 3.1, to
implement the Gibbs sampler we need to generate samples
from the full conditiona distributions of the parameters J3,
o2 and o2, u, and 8;. These conditional distributions are
given in Appendix A.1. All the full conditional distributions
in the Appendix are standard normal or inverted gamma
distributions that can be easily sampled.

3.3 Posterior Estimation

To implement Gibbs sampling, we follow the recom-
mendation of Gelman and Rubin (1992) and independently
run L(L >2) pardle chains, each of length 2d. The first d
iterations of each chain are deleted. After d iterations, al the
subsequent iterates are retained for calculating the posterior
means and posterior variances, aswell as for monitoring the
convergence of the Gibbs sampler. The convergence
monitoring is discussed in section 4.

We use the Rao-Blackwellization approach to obtain
estimators for the posterior mean and the posterior variance
of interest. The Rao-Blackwellization can substantidly
reduce the simulation errors compared to naive estimates
based on the smulated samples (Gelfand and Smith 1991,
Y ou and Rao 2000). For the cross-sectional and time series
model, the Rao-Blackwellized estimates of E(6; |y) and
V (6, | y) areadbtained as

o 1y=3 S

=1 k=d+1

(0, M1; +21)

(L)
x(Zy, + 0,20 (X +u))

and

Statistics Canada, Catalogue No. 12-001
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V (6, |y)=Z|L:1 (621 +27Y)/(Ld)
DD I
(020917 + 2 (2, +0,2%0 (6B +u))]
(271, + 079 (X1 +uM))’
X (Ld)

x(0y 1, + 5

-2(Ik) -1y-1
ZI =1 k= d+1(0 I +2 )

X(Zy, +6,20 (XM +ul))

ZI 1Zk d+1( ;Z(Ik)lT +Ziﬁl)71

X (Zty, + 6,20 (X B +ul™))

(Ld)?,

whee {B™, 2™ u™:k=d +1, .., 2d,1=1 .., L}
are the samples generated from the Gibbs sampler and 1 is
the identity matrix of order T. Thus by using Gibbs
sampling, we can estimate the current time small area mean
0, and the small area means 6, for the past time periods
t=1 .., T—1 smultaneoudy for each area. The posterior
covariance matrix estimate V (6, |y) aso provides an
egsimate of the posterior covariance of 6, and 6, for
tzs=1..,T

Under the Fay-Heriot modd, letting vy, =
(Yyr+ - Vo) denote the current time cross-sectional data
and using the conditional distributions given in Appendix
A.2, we can similarly obtain the Rao-Blackwellized esti-
matorsof E(0r |y;) and V(0 | y):

N

d

E® [y) =Y

=1 k

[(@=58) yir +159 X BF91/(Ld)

I
o

+1

and
Lo« 2 (k)
V(elleT ZZ [ofr (1-r77’)]/(Ld)
I=1 k=d+1
L 2d ,
£33 I 180) i 418 BT (L)

1=1 k=d+1

2d

13 8 e s faa

1=1 k=d+1
where 1% =62 /(62 +062™M). Notethat E(6; |y;) and
V(07 | y;) useonly the cross-sectional dataat t=T. Asa
result, E(©; |y;) will be less efficient than the HB
estimator E(0,; | y;) based on all the data; see section 4.

Statistics Canada, Catalogue No. 12-001

4. ApplicationtotheLFS

4.1 DataDescription and | mplementation

We used the 1999 LFS unemployment estimates, Yij; , in
our HB andyss. There are 64 CAs across Canada
Employment Insurance (EI) beneficiary rates were used as
auxiliary data, x,, inthemode. But the El beneficiary data
were available for only 62 CAs. So we included only those
m= 62 CAsin the model. Within each CA, we considered
Sx consecutive monthly estimates y,, from January 1999 to
June 1999, so that T =6 and the parameter of interest 6,
is the true unemployment rate for areai in June, 1999. The
reason that we only used six months of data is that the LFS
sample rotation is based on a six-month cycle. Each month,
one sixth of the LFS sample is replaced. Thus after six
months, the correlation between estimatesis very weak. The
one-month lag correlation coefficient is about 0.48, and the
lag correlation coefficients decrease as the lag increases.
Figure 1 shows the edimated (smoothed) lag correlation
coefficients for the LFS unemployment rate estimates. It is
clear that after 6 months the lag correlation coefficients are
al below 0.1.

Unemployment Rate Monthly Estimate Lag
i Correlation Coefficients

45 891011

Lag-1to Lag-11

Figure 1. LFS unemployment rate lag correlation coefficients. '

To obtan a smoothed estimate of the sampling
covariance matrix X, used in the model, we first computed
the average coefficient of variation (CV) for each CA over
time (12 months in this study), denoted as CVi, and the
average lag correlation coefficients over time and all CAs.
By using these smoothed CVs and lag correlation coef-
ficients, we obtained asmoothed estimate Z with diagonal

dements 6, —(CV) yIt and off- dlagonal elements
equal to 6 = Py_g (G4 6. )" andtreated X, asthetrue
Z;, where p, 4 Isthe averagelag correlation coeff|C|ent of
lag |t—s|. Our study found that using the smoothed

estimate of X, in the model can significantly improve the
estimatesin terms of CV reduction.

To implement the Gibbs sampling, we considered
L =10 pardld runs, each of length 2d = 2,000. The first
d =1,000 “burn-in" iterations were deleted. To monitor the
convergence of the Gibbs sampler, for the parameters of
interest 0, (i=1 .., m), we followed the method of
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Gelman and Rubin (1992) involving the following steps:
For each 0,;, let 8% denote the k™ simulated value in
the I™ chain, k=d+1, .., 2d, =1, ..., L. In the first
step, compute the overall mean

~ L ~—2d
O = Z| :1Zk:d +1ei(ITk) /(Ld)

and the within sequence mean

2d

al) _
eiT T Lik=d+1

0% /d, I =1, ..., L.

Then compute B;; /d, the variance between the L sequence
means as B, /d=3},(8,; —6Y)?/(L-1). In the second
sep, calculate W, the average of the L within sequence
variances, gzﬂ, each based on (d —1) degrees of freedom;
that is, W; = Xh,s% /L. In the third step, calculate s% =
(d-)W,/d+B,/d ad V, =s>+B;/(Ld). In the
last step, find the potential scale reduction factors R, =
Vi IW; (i=1, ..., m). If these potential scale reduction
factors are near 1 for &l of the scalar estimands 6,; of
interest, then this suggests that the desired convergence is
achieved by the Gibbs sampler. In our study, the Gibbs
sampler converged very well interms of the valuesof R;.

4.2 Model Selection

In this section, we compare the proposed modd with the
Rao and Yu (1994) AR(1) time component mode. A
number of methods for model comparison in a Bayesian
framework have been developed, and several are
implemented in the well-known BUGS program (see
Spiegelhalter, Thomas, Best and Gilks 1996). In practice,
when there is more than one model of interest, Bayesian
model selection or model choice can be made on the basis
of a Bayes factor, which is difficulty to calculate directly.
Alternative strategies for model selection involve the
predictive likelihood and predictive log-likelihood. In
particular, Dempster (1974) suggested examining the
posterior distribution of the log-likelihood of the observed
data. The quantities of the posterior distribution of the log-
likelihood may be obtained from the predictive posterior
distribution of the deviance, —2log f (y|6). The posterior
deviance is draightforward to estimate using the Gibbs
sampling output snce it is the expectation of
—2log f(y|6) over the posterior m(6|y). For non-
hierarchical models, the minimum fessble value of
—2log f(y|0) is the traditiona deviance datistic. For
hierarchical models, the minimum of the deviance is likely
to be very poorly estimated by the sample minimum, and
the mean is a more reasonable measure (Karim and Zeger
1992; Gilks, Wang, Yvonnet and Coursagt 1993). For the
AR(1) time component model, we considered two choices
of p:p=075 and p=05. We caculated the log-
likelihood at each iteration of the Gibbs sampler. Then we
obtained the mean of the predictive posterior deviance:
1,311.5 for the proposed model, 1,372.8 for the AR(1) with
p =0.5 and 1,358.3 for the AR(2) with p =0.75. Thus, the
deviance measure suggests that the random walk model on
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u,, ‘s provides a dightly better fit to the data than the AR(1)
model.

For model comparison, we also computed the divergence
measure of Laud and Ibrahim (1995) based on the posterior
predictive distribution. Let 8 represent a draw from the
posterior distribution of @ giveny, and let y* represent a
draw from f(y|0"). Then, margindly y  isasamplefrom
the posterior predictive distribution f(y|Y,), where y .
represents the observed data The expected divergence
messure of Laud and Ibrahim (1995) is given by
d(Y"s Yors) = EQM 1Y = Yos ] Yo), Where ke is the
dimension of y,.. Between two models, we prefer amode!
that yields a smaller value of this measure. Asin Datta, Day
and Maiti (1998) and Datta et al. (1999), we approximated
the divergence measure d(y’, v,,.) by using the smulated
samples from the posterior predictive distribution. Using the
Gibbs sampling output, we obtained a divergence measure
of 13.36 for the proposed modd, 14.62 for the AR(1) with
p=0.5 and 14.52 for the AR(1) with p=0.75. Thus the
divergence measure aso suggests a dightly better fit of the
random walk model compared to the AR(1) model.

It should be mentioned that the posterior deviance and
the divergence measure are intended for comparing two or
more alternative models. After selecting a model, we need
to check if the selected modd fits the data, which we turn to
next.

4.3 Test of Model Fit

To check the overdl fit of the proposed model, we used
the method of posterior predictive p values (Meng 1994;
Gelman, Carlin, Stern and Rubin 1995). In this approach,
smulated values of a suitable discrepancy measure are
generated from the posterior predictive distribution and then
compared to the corresponding measure for the observed
data. More precisely, let T(y, 6) be adiscrepancy measure
depending on the datay and the parameter 6. The posterior
predictive p valueis defined as

p=prob(T(Y", 8)>T (Yops: 6) | Vots) -

where y' is a sample from the posterior predictive
distribution f (y|y,,)- Note that the probability is with
respect to the posterior distribution of 6 given the observed
data This is a natural extension of the usual p value in a
Bayesian context. If amodel fits the observed data, then the
two values of the discrepancy measure are similar. In other
words, if the given model adequately fits the observed data,
then T(Y,, 6), should be near the central part of the
histogram of the T(y', 8) vaues if y is generated
repeatedly from the posterior predictive distribution.
Consequently, the posterior predictive p valueis expected to
be near 0.5 if the model adequately fits the data. Extreme p
values (near 0 or 1) suggest poor fit. The p vaue is salf-
contained in the sense that it is computed without regard to
an alternative model.

Computing the p value is relatively easy using the
smulated values of @ from the Gibbs sampler. For each

Statistics Canada, Catalogue No. 12-001
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smulated value 6", we can smulate y* from the model
and compute T(y", 8°) and T(Y,,, 8). Then the p value
is approximated by the proportion of times T(y', 0')
exceeds T (Y, ) For the cross-sectiona and time series
modéel, the discrepancy measure used for overdl fit is given
by d(y, )=XT(y, —6;) = (y, —6,) . Dattaet al. (1999)
used the same discrepancy measure. We computed the p
value by combining the simulated 8" and y* from all 10
parallel runs. We obtained a p value equa to 0.615. Thus
we have no indication of lack of overall modd fit for the
random walk time series and cross-sectional moddl.

For the Fay-Herriot moddl that uses only the current
cross-sectiond data, an approximate discrepancy measureis
given by

m 2
dey (Y, 67) =Zi:1(yw —6;r) /0%,

where 6; =(0y1, ..., 0,;)". In this case, the estimated p
vaue is about 0.587, indicating a good fit of the Fay-Herriot
mode for the current cross-sectiona data only. However,
the associated HB estimates are substantidly less efficient
compared to the HB estimates based on the proposed cross-
sectional and time series modd that borrows strength across
regions and over time simultaneoudy; see Figures 3 and 4.

A limitation of the posterior predictive p value is that
it makes “double use” of the observed data, vy, firstto
generate samples from f(y|y,.) and then to compute
the p value. This double use of the data can induce
unnatural behaviour, as demonstrated by Bayarri and
Berger (2000). To avoid double use of the data, Bayarri
and Berger (2000) proposed two alternative p—measures,
named the partial posterior predictive p value and the
conditional predictive p value. These measures, however,
seem to be more difficult to implement than the posterior
predictive p value, especialy for a complex model like
the time series and cross-sectional small area model.

4.4 Estimation

We now obtain the posterior estimates of the unemploy-
ment rates under the random walk time series and cross-
sectional model given by (3) and (4). We used the Rao-
Blackwellized estimators, given in section 3.3, to obtain
estimates for the posterior mean and the posterior variance
of 8. We denote these estimates by HB1. To study the
impact of using a smoothed estimate of the sampling covari-
ance matrix X,, we aso used the direct survey estimate of
Y, in the model. We denote the estimates obtained in this
case by HB2. To study the effect of borrowing strength over
time, we aso obtained the HB estimates of 0, under the
Fay-Herriot model based only on the current cross-sectiona
data, denoted by HB3. Figure 2 displays the LFS direct
estimates and the three HB estimates of the June 1999
unemployment rates for the 62 CAs across Canada. The 62
CAs appear in the order of population size with the smallest
CA (Dawson Creek, BC, population is 10,107) on the left
and the largest CA (Toronto, Ont., population is 3,746,123)
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on the right. For the point estimates, the Fay-Herriot model
(HB3) tends to shrink the estimates towards the average of
the unemployment rates, which leads to estimates that are
too smooth in general. HB2 has more variation and tends to
have more extreme vaues than HB1, since HB2 uses the
direct estimatesof X, subject to sampling errors. HB1 leads
to moderate smoothing of the direct LFS estimates. For the
CAs with large population sizes and therefore large sample
sizes, the direct etimates and the HB edtimates are very
close to each other; for smaler CAs, the direct and HB esti-
mates differ substantidly for some regions.

Comparison of Estimates (June 1999)

5]
o

Py
w
L

Unemployment rate %
o o

o

CMA/CAs By Population Size

[~e—HB1 —+—HB2 —» HB3 —=—Direct
Figure 2. Comparison of direct and HB estimates.

Figure 3 displays the coefficients of variation (CV) of the
estimates. The CV of the HB egtimate is taken astheratio of
the square root of the posterior variance and the posterior
mean. It is clear from Figure 3 that the direct estimate has
the largest CV and HBL1 has the smalest CV. HB1 has
smaller CV than HB2 for al CAs, and HB2 has smaller CV
than HB3 for al CAs except two relatively smal CAs. The
efficiency gain of the HB estimates is obvious, particularly
for the CAswith smaller population sizes.

Comparison of CV's (June 1999)

Coefficient of Variation

CMA/CAs By Population Size '
|——HB1 —+ HB2 —+— HB3 —=—Direct

Figure 3. Comparison of CVs.

Figure 4 shows the percent CV reduction over the direct
survey estimates for HB1, HB2 and HB3. The percent CV
reduction is defined as the difference of the LFS CV and the
HB CV rdative to the LFS CV and is expressed as a
percentage. It is clear that HB1 achieves the largest CV
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reduction and that HB3 has the smallest reduction. The
average percent reduction in CVs over the direct LFS
estimates for the Fay-Herriot modd (HB3) is 21%, for HB2
is 40%, and for HB1 is 62%. Also the CV reduction for
smaler CAs is more significant than for larger CAs. As
population size increases, the CV reduction tends to
Oecrease.

Comparison of CV Reduction (June 1999)

Percent Reduction 100%

CMA/CAs By Population Size

|—e—HB1 —+—HB2 ——HB3|

Figure4. Comparison of CV reduction.

In summary, we conclude the following: (1) The model-
based HB estimates improve the direct LFS estimates. In
particular, the cross-sectiond and random walk time series
mode (HB1) improves the LFS estimates considerably in
terms of CV reduction. (2) The cross-sectional and random
wak time series modd is more effective than the
Fay-Herriot moddl. (3) Use of smoothed estimate of the
sampling variance-covariance matrix X, isvery effective.

5. Concluding Remarks

In this paper we have presented a hierarchicd Bayes
cross-sectional and time series model to obtain model-based
estimates of unemployment rates for CAs across Canada
usng LFS data. The model borrows strength across areas
and over time periods simultaneoudly. Our anaysis has
shown that this model with a random walk process on the
random time series components fits the data quite well. The
hierarchical Bayes estimates, based on this model, improve
the direct survey estimates significantly in terms of CV,
especidly for CAs with small population. However, these
CVsare based on the assumption that the sampling variance
covariance matrices X; inthe model are known. Asaresult,
the uncertainty associated with the estimation of X, is
ignored.

We aso consdered the well-known Fay-Herriot model
that combines cross-sectiona information only, using the
data at a specific time point, for example, at the current time
of interest T. We found that the CV's under the Fay-Herriot
mode! lie between the CVs for the direct and the model-
based approach presented here. The cross-sectiond and time
series model is uniformly superior to the Fay-Herriot model
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in terms of CV reduction. Thisis expected since our model
extends the Fay-Herriot model by borrowing strength over
time aswell as across space.

In our application to the LFS, we used simple
smoothed estimates of the sampling variance-covariance
matrices X; and then treated them as the true X,. We
plan to study the sensitivity of the HB estimates of small
area parameters 6,; and the associated CV's to different
methods of smoothing the Z,. In particular, it may be
more redlistic to use smoothed estimates of the form
Gy =(CV;)?6;; and G =Py (6x0is)"'? instead of
the simple smoothed estimates we have used. However, it
is more difficult to implement the HB method in this case
since 6,, and G,, depend on the unknown parameters
0.

In this paper, we used a linear mixed linking model (3)
for the parameters 6,,, which matches with the sampling
model (1). Recently, You and Rao (2002) developed
unmatched sampling and linking models for cross-
sectional data, where the linking model is a non-linear
mixed model, unlike the sampling model (1). Y ou, Chen
and Gambino (2002) extended this method to cross-
sectional and time series data, using a log-linear linking
mode! for 6;,.
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Appendix
Al Let  X=(X[ . X0),0=(6, ..., 0,), u=
(ug, ..., up), with 0] =(8,, ..., 8;7), U/ = (U, ..., U7). IN

the following, we list the full conditiona distributions for
the cross-sectiona and time series model. For the proposed
model (random walk time component), p=1; for the
dternative AR(1) time component mode!, |p |<1.

— Bly,of,0¢,u, 0~ N((X" X)™*(8-u), 67(X" X)™);

- 05 I%&G?:Uﬁ ~1G(a +mT/2,b + 35,
(eit - Xi,t B—uit)2/2);

- oZ|y,B,6%,u,0~1G(a +m(T -1)/2,b, + N>,
(U — pui,l—l)zlz);

— Fori=1 ..., m,

2 2
uilly’ B’ Gv’ Ge’ ui2’ 0

2\1 o 2\1
~N([i2+p_2j [e flmpu;}(iﬁp_zJ }
0V GS GV GS GV 08
— Fori=1 ... mand2<t<T-1
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2 2
l"lil | y’Biov’Ga ’ui,l—l’l"li,Hl’e

( 1 1+ szl[eil —XB , Y +pui,1+1j

2 2 2 2
c (o o,

v €
1 1+p2)"
?-F c?

€

~N

— Fori=1 .., m

2 2
uil | y!Bicvioe’ui,Tflie

1.1 (s —XiB, PYiTa
62 o2 o2 o’ /

\2 €

-1
1,1
6. o’
— Fori=1 .., m

0,]y,B, 02,62, u~N((c2l; +H*!
X(EY + 02 (XB+W)), (0711 +Z7) 7).

A2 Lt Y=Y oo Vi) X{= (K vonr Xe), 67 =
Oy s 0,,), t=1 ..., T, we list the full conditiona dis-
tributions for the Fay-Herriot model at time point t as
follows:

= Bel i, 00,0 = N((XT X)) X[ 0, 00 (X[ X))

2 2
thlyt!Bt'GS'u'e

~1G(a, +m/2,b,+ 38, - X, B,)*/2)

i=1
—Fori=1 ... m

- eit | Yis Bt’ Git - N((l_ rit) Yir + it Xi,l Bt’ Gizt (1_ rit))l
where 1, =65 /(62 +65).
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