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Model-Based Unemployment Rate Estimation for the Canadian Labour 
Force Survey: A Hierarchical Bayes Approach 

Yong You, J.N.K. Rao and Jack Gambino 1 

Abstract 

The Canadian Labour Force Survey (LFS) produces monthly direct estimates of the unemployment rate at national and 
provincial levels. The LFS also releases unemployment estimates for sub-provincial areas such as Census Metropolitan 
Areas (CMAs) and Census Agglomerations (CAs). However, for some sub-provincial areas, the direct estimates are not 
very reliable since the sample size in some areas is quite small. In this paper, a cross-sectional and time-series model is used 
to borrow strength across areas and time periods to produce model-based unemployment rate estimates for CMAs and CAs. 
This model is a generalization of a widely used cross-sectional model in small area estimation and includes a random walk 
or AR(1) model for the random time component. Monthly Employment Insurance (EI) beneficiary data at the CMA or CA 
level are used as auxiliary covariates in the model. A hierarchical Bayes (HB) approach is employed and the Gibbs sampler 
is used to generate samples from the joint posterior distribution. Rao-Blackwellized estimators are obtained for the posterior 
means and posterior variances of the CMA/CA-level unemployment rates. The HB method smooths the survey estimates 
and leads to substantial reduction in standard errors. Bayesian model fitting is also investigated based on posterior predictive 
distributions. 

                                                           
1. Yong You, Jack Gambino, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K1A 0T6; J.N.K. Rao, School of 

Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6. 
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1. Introduction  
The unemployment rate is generally viewed as a key 

indicator of economic performance. In Canada, although 
provincial and national estimates get the most media atten-
tion, subprovincial estimates of the unemployment rate are 
also very important. They are used by the Employment 
Insurance (EI) program to determine the rules used to 
administer the program. In addition, the unemployment 
rates for Census Metropolitan Areas (CMAs, i.e., cities with 
population more than 100,000) and Census Agglomerations 
(CAs, i.e., other urban centres) receive close scrutiny at 
local levels. However, many CAs do not have a large 
enough sample to produce adequate direct estimates. Our 
objective in this paper is to obtain model-based estimators 
that lead to improvement over the direct estimator which is 
based solely on the sample falling in a given CMA or CA in 
a given month. For convenience, since CMAs are also CAs, 
we will refer to both CMAs and CAs as CAs.  

In Canada, unemployment rates are produced by the 
Labour Force Survey (LFS). The LFS is a monthly survey 
of 53,000 households selected using a stratified, multistage 
design. Each month, one-sixth of the sample is replaced. 
Thus five-sixths of the sample is common between two 
consecutive months. This sample overlap induces correla-
tions which can be exploited to produce better estimates by 
any method which borrows strength across time. For a 
detailed description of the LFS design, see Gambino, Singh, 
Dufour, Kennedy and Lindeyer (1998).  

Traditional small area estimators borrow strength either 
from similar small areas or from the same area across time, 

but not both. In recent years, several approaches to 
borrowing strength simultaneously across both space and 
time have been developed. Estimators based on the 
approach developed by Rao and Yu (1994), such as those in 
Ghosh, Nangia and Kim (1996), Datta, Lahiri, Maiti and Lu 
(1999) and in this paper, successfully exploit the two 
dimensions simultaneously to produce improved estimates 
with desirable properties for small areas. Datta et al. (1999) 
applied their model to long time series ( 48=T  months) 
data across small areas from the U.S. Current Population 
Survey. In this paper, we apply a similar model to the 
Canadian LFS. Unlike Datta et al. (1999), we have used 
short time series data across small areas. Therefore, our 
model does not contain seasonal parameters. This reduces 
substantially the number of parameters that need to be 
estimated; details on modelling and analysis are given in 
section 2 and section 4. Despite this simplification, we 
obtain both an adequate model fit and large reductions in the 
coefficients of variation (CVs) of the small area estimators 
of the unemployment rate. The CV reduction is due in part 
to our approach to computing covariance matrices, which 
uses smoothed CVs and lag correlations to obtain smoothed 
estimates of the sampling covariance matrices of the direct 
LFS estimators.  

In section 2, we present the model, which borrows 
strength across small areas and time periods. In section 3, 
the model is placed in a hierarchical Bayes (HB) frame-
work. The use of Gibbs sampling to generate samples from 
the joint posterior distribution is described and the corres-
ponding HB estimators are obtained. The HB method is 
applied to the LFS data in section 4 to produce 
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unemployment rates for CAs. Specifically, subsections 4.2 
and 4.3 present model selection and model fit analysis. 
Subsection 4.4 presents model-based estimates for the small 
area (CA) unemployment rates and the CV comparisons. 
Finally some concluding remarks are given in section 5.  

 
2. Cross-Sectional and Time Series Models  

Let ity  denote the direct LFS estimate of ,itθ  the true 
unemployment rate of the thi  CA (small area) at time t, for 

,...,,1 mi =  ,...,,1 Tt =  where m is the total number of 
CAs and T is the (current) time of interest. We assume that 

,...,,1,...,,1   , Ttmiey ititit ==+θ=  (1) 

where ite ’s are sampling errors. Let ,)...,,( 1 ′= iTii yyy  
,)...,,( 1 ′θθ=θ iTii  and .)...,,( 1 ′= iTii eee  Then ie  is a 

vector of sampling errors for the thi  CA. In the LFS design, 
the CAs are treated as strata. Thus the sampling vectors ie  
are uncorrelated between areas (CAs). Because of the LFS 
sample rotation pattern, there is substantial sample overlap 
over short time periods within each area. As a result, the 
correlation between ite  and )( steis ≠  has to be taken into 
account. It is customary to assume that ie  follows a multi-
variate normal distribution with mean vector 0 and co-
variance matrix ,iΣ  i.e., .),0(~ ii Ne Σ  Using (1), we have 

....,,1   ),,(~ miNy iii =Σθ  (2) 

Thus iy  is design-unbiased for .iθ  The variance-co-
variance matrix iΣ  in model (2) is assumed to be known. 
The assumption of normality and known iΣ  in model (2) is 
the customary practice in model-based small area estimation 
(see, for example, Fay and Herriot 1979; Ghosh and Rao 
1994; Datta et al. 1999; Rao 1999). In this paper, we follow 
the customary approach and treat iΣ  as known. Speci-
fication of iΣ  may not be easy in practice. We use a 
smoothed estimator of iΣ  in the model, and then treat it as 
the true iΣ . More details on constructing a smoothed esti-
mator of iΣ  in the context of the LFS are given in section 4. 
Pfeffermann, Feder and Signorelli (1998) proposed a simple 
method of estimating the autocorrelations of sampling errors 
for rotating-panel designs, such as the Canadian LFS. It 
would be useful to study the feasibility of this approach in 
our context. 

To borrow strength across small areas and time periods, 
we model the true unemployment rate itθ  by a linear re-
gression model with random effects through auxiliary vari-
ables itx . We assume that   

,...,,1,...,,1   , Ttmiuvx itiitit ==++β′=θ  (3) 

where )...,,( 1 ′= itpitit xxx is the vector of area level aux-
iliary data for the thi  CA at time t; β  is a vector of regres-
sion parameters of length p; iv  is a random area effect with 

);,0( iid~ 2
vi Nv σ itu  is a random time component. For a 

given area i, Datta et al. (1999) assumed that itu  follows a 
random walk process over time period ,...,,1 Tt =  that is,  

,...,,2,...,,1   ,1, Ttmiuu ittiit ==ε+= −  (4) 

where ),0( ~ 2
εσε Nit . Then 2),min(),cov( εσ= stuu isit . 

Also ,}{ iv  }{ itε  and }{ ie  are assumed to be mutually 
independent. The regression parameter β  and the variance 
components 2

vσ  and 2
εσ  are unknown in the model. Rao 

and Yu (1994) used a stationary autoregressive model, 
AR(1), for ,itu  that is, ,1, ittiit uu ε+ρ= −  and 1|| <ρ . Datta 
et al. (1999) included month and year effects as seasonal 
effects for itθ  in (3) using a long time series ( 48=T  
months) in their analysis. In our modelling, we intend to 
study the effects of borrowing strength across areas and over 
time using short time series data instead of long time series 
data. In particular, based on the Canadian LFS design’s six-
month rotation cycle, we used only 6 months of data for 
smoothing; see section 4 for details. Thus the linking model 
(3) is simpler than Datta et  al. (1999)’s model. This simpli-
fication is likely to reduce the instability in the smoothed 
covariance matrix .iΣ  

Arranging the data }{ ity  as a vector )...,,( 1 ′′′= myyy  
with ,)...,,( 1 ′= iTii yyy  we can write models (2), (3) and  
(4) in matrix form as  

,...,,1   ,1 mieuvXy iiiTii =+++β=  (5) 

where ),...,,( 1 iTii xxX =′ ),...,,( 1 iTii uuu =′  and T1  is a 
1×T  vector of 1’s. Model (5) is a special case of a general 

linear mixed effects model. It also extends the well-known 
Fay-Herriot model (Fay and Herriot 1979) by borrowing 
strength across both areas and time.  

For comparison, we also considered the Fay-Herriot 
model for the time points Tt ...,,1=  in our data analysis. 
The model at time point t  is given as 

,...,,1   , miey ititit =+θ=  (6) 

and  

,...,,1   , mivx ittitit =+β′=θ  (7) 

where the sampling errors ),0( ind~ 2
itit Ne σ  and the area 

random effects ),0( iid~ 2
vtit Nv σ  for each time point t  and 

independent of ., ttv ti ≠′′  The sampling variances 2
itσ  are 

assumed to be known (smoothed estimates) and 2
vtσ  is 

unknown. The Fay-Herriot model combines cross-sectional 
information at each t for estimating ,itθ  but does not 
borrow strength over the past time periods.  

We are interested in obtaining a model-based estimator 
of ,itθ  in particular, for the current time Tt = . Datta, 
Lahiri and Maiti (2002) and You (1999) obtained two-stage 
estimators for iTθ  and MSE approximations for the 
estimators through the empirical best linear unbiased 
prediction (EBLUP) approach. In this paper, we study both 
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AR(1) and random walk models on itu ’s, under a complete 
HB approach using the Gibbs sampling method.  

 
3. Hierarchical Bayes Analysis  

In this section, we apply the hierarchical Bayes approach 
to the cross-sectional and time series model given by  (2), 
(3) and (4) and the Fay-Herriot model given by (6) and (7). 
Estimates of the posterior mean and posterior variance of 
the small area means, ,iTθ  are obtained using the Gibbs 
sampling method.   
3.1 The Hierarchical Bayes Model  

We now present the cross-sectional and time series 
model in a hierarchical Bayes framework as follows:  

– Conditional on the parameters )...,,( 1 ′θθ=θ iTii , 
),( ind~]|[ iiii Ny Σθθ ;  

– Conditional on the parameters ,β itu  and ,2
vσ  

),( ind~],,|[ 22
vititvitit uxNu σρ+β′σβθ ;  

– Conditional on the parameters 1, −tiu  and ,2
εσ  

);,( ind~],|[ 2
1,

2
1, ε−ε− σρσ titiit uNuu   

Marginally ,β 2
vσ  and 2

εσ  are mutually independent with 
priors given as ,1∝β ),(~ 11

2 baIGvσ , and ~2
εσ  

),,( 22 baIG  where IG denotes an inverted gamma distrib-
ution and 2211 ,,, baba  are known positive constants and 
usually set to be very small to reflect our vague knowledge 
about 2

vσ  and 2
εσ . For the random walk model, we take 

1=ρ  and for the AR(1) model, 1|| <ρ  and ρ  is assumed to 
be known.  

We are interested in estimating ,iθ  and in particular, the 
current unemployment rate .iTθ  In the HB analysis, iTθ  is 
estimated by its posterior mean )|( yE iTθ  and the un-
certainty associated with the estimator is measured by the 
posterior variance ).|( yV iTθ  We use Gibbs sampling 
(Gelfand and Smith 1990; Gelman and Rubin 1992) to 
obtain the posterior mean and the posterior variance of .iTθ  

Similarly, the Fay-Herriot model (6) – (7) can be 
expressed as:  

– Conditional on the parameters ,itθ ~]|[ itity θ  
);,( ind 2

ititN σθ   
– Conditional on the parameters ,tβ  and ,2

vσ  
);,( ind~],|[ 22

vttitvttit xN σβ′σβθ   
Marginally tβ  and 2

vtσ  are mutually independent with 
priors given as ,1∝βt ).,(~2

ttv baIG
t

σ  
 
3.2 Gibbs Sampling Method  

The Gibbs sampling method is an iterative Markov chain 
Monte Carlo sampling method to simulate samples from a 
joint distribution of random variables by sampling from low 

dimensional densities and to make inferences about the joint 
and marginal distributions (Gelfand and Smith 1990). The 
most prominent application is for inference within a 
Bayesian framework. In Bayesian inference one is inter-
ested in the posterior distribution of the parameters. Assume 
that θ|iy  has conditional density )|( θiyf for ni ...,,1=  
and that the prior information about )...,,( 1 ′θθ=θ k  is 
summarized by a prior density ).(θπ  Let )|( yθπ denote the 
posterior density of θ  given the data .)...,,( 1 ′= nyyy  It 
may be difficult to sample from )|( yθπ directly in practice 
due to the high dimensional integration with respect to .θ  
However, one can use the Gibbs sampler to construct a 
Markov chain })...,,({ )()(

1
)( ′θθ=θ g

k
gg  with )|( yθπ  as the 

limiting distribution. For illustration, let ),( 21 ′θθ=θ . 
Starting with an initial set of values ,),( )0(

2
)0(

1
)0( ′θθ=θ  we 

generate ),( )(
2

)(
1

)( ′θθ=θ ggg  by sampling )(
1

gθ  from 
),|( )1(

21 yg−θθπ  and )(
2
gθ  from ),|( )(

12 ygθθπ . Under 
certain regularity conditions, ),( )(

2
)(

1
)( ′θθ=θ ggg  converges 

in distribution to )|( yθπ  as .∞→g  Marginal inferences 
about )|( yiθπ  can be based on the marginal samples 

...},2,1;{ )( =θ + kkg
i  for large g.  
For the hierarchical Bayes models in section 3.1, to 

implement the Gibbs sampler we need to generate samples 
from the full conditional distributions of the parameters ,β  

2
vσ  and ,2

εσ itu  and .iθ  These conditional distributions are 
given in Appendix A.1. All the full conditional distributions 
in the Appendix are standard normal or inverted gamma 
distributions that can be easily sampled.  
 
3.3 Posterior Estimation  

To implement Gibbs sampling, we follow the recom-
mendation of Gelman and Rubin (1992) and independently 
run )2( >LL  parallel chains, each of length 2d. The first d 
iterations of each chain are deleted. After d iterations, all the 
subsequent iterates are retained for calculating the posterior 
means and posterior variances, as well as for monitoring the 
convergence of the Gibbs sampler. The convergence 
monitoring is discussed in section 4.  

We use the Rao-Blackwellization approach to obtain 
estimators for the posterior mean and the posterior variance 
of interest. The Rao-Blackwellization can substantially 
reduce the simulation errors compared to naive estimates 
based on the simulated samples (Gelfand and Smith 1991; 
You and Rao 2000). For the cross-sectional and time series 
model, the Rao-Blackwellized estimates of )|( yE iθ  and 

)|( yV iθ  are obtained as  

)(
))((

)(

)|(ˆ

)()()(21

1)(2

1

2

1

Ld
uXy

I

yE

lk
i

lk
i

lk
vii

iT
lk

v

L

l

d

dk
i

⎥
⎥

⎦

⎤

⎢
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⎣

⎡

+βσ+Σ×

Σ+σ

=θ

−−

−−

= +=
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and 
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where }...,,1,2...,,1;,,{ )()(2)( Llddku lk
i

lk
v

lk =+=σβ  
are the samples generated from the Gibbs sampler and TI  is 
the identity matrix of order T. Thus by using Gibbs 
sampling, we can estimate the current time small area mean 

iTθ  and the small area means itθ  for the past time periods 
1...,,1 −= Tt  simultaneously for each area. The posterior 

covariance matrix estimate )|(ˆ yV iθ  also provides an 
estimate of the posterior covariance of itθ  and isθ  for 

....,,1 Tst =≠  
Under the Fay-Herriot model, letting =Ty  

)...,,( 1 ′mTT yy  denote the current time cross-sectional data 
and using the conditional distributions given in Appendix 
A.2, we can similarly obtain the Rao-Blackwellized esti-
mators of )|( TiT yE θ  and :)|( TiT yV θ  

)/(])1[(

)|(ˆ
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1
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Ldxryr

yE

lk
TiT

lk
iTiT

lk
iT

L

l

d

dk
TiT

β′+−

=θ ∑ ∑
= +=  

and  

,)(])1[(

)/(])1[(

)/(])1([)|(ˆ

2
2

)()(

1

2

1

)(

2)()(

1

2

1

)(

1

2

1

)(2

Ldxryr

Ldxryr

LdryV

lk
TiT

lk
iTiT

L

l

d

dk

lk
iT

lk
TiT

lk
iTiT

L

l

d

dk

lk
iT

L

l

d

dk

lk
iTiTTiT

⎭
⎬
⎫

⎩
⎨
⎧ β′+−−

β′+−+

−σ=θ

∑ ∑

∑ ∑

∑ ∑

= +=

= +=

= +=

 

where )./( )(222)( lk
viTiT

lk
iTr σ+σσ=  Note that )|( TiT yE θ  and 

)|( TiT yV θ  use only the cross-sectional data at .Tt =  As a 
result, )|( TiT yE θ  will be less efficient than the HB 
estimator )|( TiT yE θ  based on all the data; see section 4.  

4. Application to the LFS  
4.1 Data Description and Implementation  

We used the 1999 LFS unemployment estimates, ity , in 
our HB analysis. There are 64 CAs across Canada. 
Employment Insurance (EI) beneficiary rates were used as 
auxiliary data, ,itx  in the model. But the EI beneficiary data 
were available for only 62 CAs. So we included only those 

62=m  CAs in the model. Within each CA, we considered 
six consecutive monthly estimates ity  from January 1999 to 
June 1999, so that 6=T  and the parameter of interest iTθ  
is the true unemployment rate for area i in June, 1999. The 
reason that we only used six months of data is that the LFS 
sample rotation is based on a six-month cycle. Each month, 
one sixth of the LFS sample is replaced. Thus after six 
months, the correlation between estimates is very weak. The 
one-month lag correlation coefficient is about 0.48, and the 
lag correlation coefficients decrease as the lag increases. 
Figure 1 shows the estimated (smoothed) lag correlation 
coefficients for the LFS unemployment rate estimates. It is 
clear that after 6 months the lag correlation coefficients are 
all below 0.1.  
 

 

 

 

 

 

 

 
 

Figure 1. LFS unemployment rate lag correlation coefficients. 
 

To obtain a smoothed estimate of the sampling 
covariance matrix iΣ  used in the model, we first computed 
the average coefficient of variation (CV) for each CA over 
time (12 months in this study), denoted as iCV , and the 
average lag correlation coefficients over time and all CAs. 
By using these smoothed CVs and lag correlation coef-
ficients, we obtained a smoothed estimate iΣ̂  with diagonal 
elements 22)CV(ˆ itiitt y=σ  and off-diagonal elements 
equal to =σ itsˆ 2/1

|| )ˆˆ( issittst σσρ −  and treated iΣ̂  as the true 
,iΣ  where || st−ρ  is the average lag correlation coefficient of 

lag .|| st −  Our study found that using the smoothed 
estimate of iΣ  in the model can significantly improve the 
estimates in terms of CV reduction.  

To implement the Gibbs sampling, we considered 
10=L  parallel runs, each of length .000,22 =d  The first 

000,1=d  “burn-in” iterations were deleted. To monitor the 
convergence of the Gibbs sampler, for the parameters of 
interest ),...,,1( miiT =θ  we followed the method of 
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Gelman and Rubin (1992) involving the following steps: 
For each ,iTθ  let )(lk

iTθ  denote the thk  simulated value in 
the thl  chain, ....,,1,2...,,1 Llddk =+=  In the first 
step, compute the overall mean  

∑ ∑= += θ=θ L

l

d

dk
lk

iTiT Ld
1

2

1
)( )/(  

and the within sequence mean  

Lld
d

dk

lk
iT

l
iT ...,,1,/

2

1
)()( =θ=θ ∑ += . 

Then compute ,/ dBiT  the variance between the L sequence 
means as .)1/()(/ 1

2)(∑ = −θ−θ= L
l

l
iTiTiT LdB  In the second 

step, calculate ,iTW  the average of the L within sequence 
variances, ,2

iTls  each based on )1( −d  degrees of freedom; 
that is, ./1

2 LsW L
l iTliT ∑ ==  In the third step, calculate =2

iTs  
dBdWd iTiT //)1( +−  and )./(2 LdBsV iTiTiT +=  In the 

last step, find the potential scale reduction factors =iTR̂  
)....,,1( / miWV iTiT =  If these potential scale reduction 

factors are near 1 for all of the scalar estimands iTθ  of 
interest, then this suggests that the desired convergence is 
achieved by the Gibbs sampler. In our study, the Gibbs 
sampler converged very well in terms of the values of .ˆ

iTR   
4.2 Model Selection  

In this section, we compare the proposed model with the 
Rao and Yu (1994) AR(1) time component model. A 
number of methods for model comparison in a Bayesian 
framework have been developed, and several are 
implemented in the well-known BUGS program (see 
Spiegelhalter, Thomas, Best and Gilks 1996). In practice, 
when there is more than one model of interest, Bayesian 
model selection or model choice can be made on the basis 
of a Bayes factor, which is difficulty to calculate directly. 
Alternative strategies for model selection involve the 
predictive likelihood and predictive log-likelihood. In 
particular, Dempster (1974) suggested examining the 
posterior distribution of the log-likelihood of the observed 
data. The quantities of the posterior distribution of the log-
likelihood may be obtained from the predictive posterior 
distribution of the deviance, ).|(log2 θ− yf  The posterior 
deviance is straightforward to estimate using the Gibbs 
sampling output since it is the expectation of 

)|(log2 θ− yf  over the posterior ).|( yθπ  For non-
hierarchical models, the minimum feasible value of 

)|(log2 θ− yf  is the traditional deviance statistic. For 
hierarchical models, the minimum of the deviance is likely 
to be very poorly estimated by the sample minimum, and 
the mean is a more reasonable measure (Karim and Zeger 
1992; Gilks, Wang, Yvonnet and Coursagt 1993). For the 
AR(1) time component model, we considered two choices 
of :ρ 75.0=ρ  and .5.0=ρ  We calculated the log-
likelihood at each iteration of the Gibbs sampler. Then we 
obtained the mean of the predictive posterior deviance: 
1,311.5 for the proposed model, 1,372.8 for the AR(1) with 

5.0=ρ  and 1,358.3 for the AR(1) with .75.0=ρ  Thus, the 
deviance measure suggests that the random walk model on 

itu ’s provides a slightly better fit to the data than the AR(1) 
model.  

For model comparison, we also computed the divergence 
measure of Laud and Ibrahim (1995) based on the posterior 
predictive distribution. Let *θ  represent a draw from the 
posterior distribution of θ  given y, and let *y  represent a 
draw from ).|( *θyf  Then, marginally *y  is a sample from 
the posterior predictive distribution ),|( obsyyf  where obsy  
represents the observed data. The expected divergence 
measure of Laud and Ibrahim (1995) is given by 

),|||||(),( obs
2

obs
*1

obs
* yyykEyyd −= −  where k  is the 

dimension of .obsy  Between two models, we prefer a model 
that yields a smaller value of this measure. As in Datta, Day 
and Maiti (1998) and Datta et al. (1999), we approximated 
the divergence measure ),( obs

* yyd  by using the simulated 
samples from the posterior predictive distribution. Using the 
Gibbs sampling output, we obtained a divergence measure 
of 13.36 for the proposed model, 14.62 for the AR(1) with 

5.0=ρ  and 14.52 for the AR(1) with .75.0=ρ  Thus the 
divergence measure also suggests a slightly better fit of the 
random walk model compared to the AR(1) model.  

It should be mentioned that the posterior deviance and 
the divergence measure are intended for comparing two or 
more alternative models. After selecting a model, we need 
to check if the selected model fits the data, which we turn to 
next.   
4.3 Test of Model Fit 
 

To check the overall fit of the proposed model, we used 
the method of posterior predictive p values (Meng 1994; 
Gelman, Carlin, Stern and Rubin 1995). In this approach, 
simulated values of a suitable discrepancy measure are 
generated from the posterior predictive distribution and then 
compared to the corresponding measure for the observed 
data. More precisely, let ),( θyT  be a discrepancy measure 
depending on the data y and the parameter .θ  The posterior 
predictive p value is defined as  

)|),(),((prob obsobs
* yyTyTp θ>θ= , 

where *y  is a sample from the posterior predictive 
distribution ).|( obsyyf  Note that the probability is with 
respect to the posterior distribution of θ  given the observed 
data. This is a natural extension of the usual p value in a 
Bayesian context. If a model fits the observed data, then the 
two values of the discrepancy measure are similar. In other 
words, if the given model adequately fits the observed data, 
then ),,( obs θyT  should be near the central part of the 
histogram of the ),( * θyT  values if *y  is generated 
repeatedly from the posterior predictive distribution. 
Consequently, the posterior predictive p value is expected to 
be near 0.5 if the model adequately fits the data. Extreme p 
values (near 0 or 1) suggest poor fit. The p value is self-
contained in the sense that it is computed without regard to 
an alternative model.  

Computing the p value is relatively easy using the 
simulated values of *θ  from the Gibbs sampler. For each 
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simulated value ,*θ  we can simulate *y  from the model 
and compute ),( ** θyT  and ).,( *

obs θyT  Then the p value 
is approximated by the proportion of times ),( ** θyT  
exceeds ).,( *

obs θyT  For the cross-sectional and time series 
model, the discrepancy measure used for overall fit is given 
by ∑ =

− θ−Σ′θ−=θ m
i iiiii yyyd 1

1 )()(),( . Datta et al. (1999) 
used the same discrepancy measure. We computed the p 
value by combining the simulated *θ  and *y  from all 10 
parallel runs. We obtained a  p value equal to 0.615. Thus 
we have no indication of lack of overall model fit for the 
random walk time series and cross-sectional model.  

For the Fay-Herriot model that uses only the current 
cross-sectional data, an approximate discrepancy measure is 
given by  

,/)(),( 2
2

1FH iT
m

i iTiTTT yyd σθ−=θ ∑ =  

where .)...,,( 1 ′θθ=θ mTTT  In this case, the estimated p 
value is about 0.587, indicating a good fit of the Fay-Herriot 
model for the current cross-sectional data only. However, 
the associated HB estimates are substantially less efficient 
compared to the HB estimates based on the proposed cross-
sectional and time series model that borrows strength across 
regions and over time simultaneously; see Figures 3 and 4.  

A limitation of the posterior predictive p value is that 
it makes “double use” of the observed data, ,obsy  first to 
generate samples from )|( obsyyf  and then to compute 
the p value. This double use of the data can induce 
unnatural behaviour, as demonstrated by Bayarri and 
Berger (2000). To avoid double use of the data, Bayarri 
and Berger (2000) proposed two alternative p – measures, 
named the partial posterior predictive p value and the 
conditional predictive p value. These measures, however, 
seem to be more difficult to implement than the posterior 
predictive p value, especially for a complex model like 
the time series and cross-sectional small area model.  

 
4.4 Estimation  

We now obtain the posterior estimates of the unemploy-
ment rates under the random walk time series and cross- 
sectional model given by (3) and (4). We used the Rao- 
Blackwellized estimators, given in section 3.3, to obtain 
estimates for the posterior mean and the posterior variance 
of .iTθ  We denote these estimates by HB1. To study the 
impact of using a smoothed estimate of the sampling covari-
ance matrix ,iΣ  we also used the direct survey estimate of 

iΣ  in the model. We denote the estimates obtained in this 
case by HB2. To study the effect of borrowing strength over 
time, we also obtained the HB estimates of iTθ  under the 
Fay-Herriot model based only on the current cross-sectional 
data, denoted by HB3. Figure 2 displays the LFS direct 
estimates and the three HB estimates of the June 1999 
unemployment rates for the 62 CAs across Canada. The 62 
CAs appear in the order of population size with the smallest 
CA (Dawson Creek, BC, population is 10,107) on the left 
and the largest CA (Toronto, Ont., population is 3,746,123) 

on the right. For the point estimates, the Fay-Herriot model 
(HB3) tends to shrink the estimates towards the average of 
the unemployment rates, which leads to estimates that are 
too smooth in general. HB2 has more variation and tends to 
have more extreme values than HB1, since HB2 uses the 
direct estimates of iΣ  subject to sampling errors. HB1 leads 
to moderate smoothing of the direct LFS estimates. For the 
CAs with large population sizes and therefore large sample 
sizes, the direct estimates and the HB estimates are very 
close to each other; for smaller CAs, the direct and HB esti-
mates differ substantially for some regions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Comparison of direct and HB estimates. 
 

Figure 3 displays the coefficients of variation (CV) of the 
estimates. The CV of the HB estimate is taken as the ratio of 
the square root of the posterior variance and the posterior 
mean. It is clear from Figure 3 that the direct estimate has 
the largest CV and HB1 has the smallest CV. HB1 has 
smaller CV than HB2 for all CAs, and HB2 has smaller CV 
than HB3 for all CAs except two relatively small CAs. The 
efficiency gain of the HB estimates is obvious, particularly 
for the CAs with smaller population sizes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Comparison of CVs. 
 

Figure 4 shows the percent CV reduction over the direct 
survey estimates for HB1, HB2 and HB3. The percent CV 
reduction is defined as the difference of the LFS CV and the 
HB CV relative to the LFS CV and is expressed as a 
percentage. It is clear that HB1 achieves the largest CV 
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reduction and that HB3 has the smallest reduction. The 
average percent reduction in CVs over the direct LFS 
estimates for the Fay-Herriot model (HB3) is 21%, for HB2 
is 40%, and for HB1 is 62%. Also the CV reduction for 
smaller CAs is more significant than for larger CAs. As  
population size increases, the CV reduction tends to 
decrease.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comparison of CV reduction. 
 

In summary, we conclude the following: (1) The model- 
based HB estimates improve the direct LFS estimates. In 
particular, the cross-sectional and random walk time series 
model (HB1) improves the LFS estimates considerably in 
terms of CV reduction. (2) The cross-sectional and random 
walk time series model is more effective than the 
Fay-Herriot model. (3) Use of smoothed estimate of the 
sampling variance-covariance matrix iΣ  is very effective. 

 
5. Concluding Remarks  

In this paper we have presented a hierarchical Bayes 
cross-sectional and time series model to obtain model-based 
estimates of unemployment rates for CAs across Canada 
using LFS data. The model borrows strength across areas 
and over time periods simultaneously. Our analysis has 
shown that this model with a random walk process on the 
random time series components fits the data quite well. The 
hierarchical Bayes estimates, based on this model, improve 
the direct survey estimates significantly in terms of CV, 
especially for CAs with small population. However, these 
CVs are based on the assumption that the sampling variance 
covariance matrices iΣ  in the model are known. As a result, 
the uncertainty associated with the estimation of iΣ  is 
ignored.   

We also considered the well-known Fay-Herriot model 
that combines cross-sectional information only, using the 
data at a specific time point, for example, at the current time 
of interest T. We found that the CVs under the Fay-Herriot 
model lie between the CVs for the direct and the model- 
based approach presented here. The cross-sectional and time 
series model is uniformly superior to the Fay-Herriot model 

in terms of CV reduction. This is expected since our model 
extends the Fay-Herriot model by borrowing strength over 
time as well as across space. 

In our application to the LFS, we used simple 
smoothed estimates of the sampling variance-covariance 
matrices iΣ  and then treated them as the true .iΣ  We 
plan to study the sensitivity of the HB estimates of small 
area parameters iTθ  and the associated CVs to different 
methods of smoothing the .iΣ  In particular, it may be 
more realistic to use smoothed estimates of the form 

22)CV(~
itiitt θ=σ  and 2/1

|| )~~(~
issittstits σσρ=σ −  instead of 

the simple smoothed estimates we have used. However, it 
is more difficult to implement the HB method in this case 
since ittσ~  and itsσ~  depend on the unknown parameters 

.itθ  
In this paper, we used a linear mixed linking model (3) 

for the parameters ,itθ  which matches with the sampling 
model (1). Recently, You and Rao (2002) developed 
unmatched sampling and linking models for cross- 
sectional data, where the linking model is a non-linear 
mixed model, unlike the sampling model (1). You, Chen 
and Gambino (2002) extended this method to cross-
sectional and time series data, using a log-linear linking 
model for .itθ  
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Appendix  
A.1. Let ),...,,( 1 mXXX ′′= ),...,,( 1 mθ′θ′=θ =u  

,)...,,( 1 ′′′ muu  with ),...,,( 1 iTii θθ=θ′ )....,,( 1 iTii uuu =′  In 
the following, we list the full conditional distributions for 
the cross-sectional and time series model. For the proposed 
model (random walk time component), ;1=ρ  for the 
alternative AR(1) time component model, .1|| <ρ   
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A.2. Let ,)...,,( 1 ′= mttt yyy ),...,,( 1 mttt xxX =′ =θ′t  

,)...,,( 1 ′θθ mtt ,...,,1 Tt =  we list the full conditional dis-
tributions for the Fay-Herriot model at time point t  as 
follows:  
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