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A Noninformative Bayesian Approach to Small Area Estimation 

Glen Meeden 1 

Abstract 

In small area estimation one uses data from similar domains to estimate the mean in a particular small area. This borrowing 
of strength is justified by assuming a model which relates the small area means. Here we suggest a noninformative or 
objective Bayesian approach to small area estimation. Using this approach one can estimate population parameters other 
than means and find sensible estimates of their precision. 

AMS 1991 subject classifications Primary 62D05; secondary 62C10. 
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1. Introduction  
In the standard approach to small area estimation the 

parameters of interest, the small area means, are assumed to 
be related through some type of linear model. Drawing on 
linear model theory one can derive estimators which 
“borrow strength” by using data from related areas to esti-
mate the mean of interest. Finding a good estimate of the 
precision of the estimator is often difficult however. Good 
recent summaries of the literature can be found in Rao 
(1999) and Ghosh and Rao (1994). 

The Bayesian approach to statistical inference summa-
rizes information concerning a parameter through its 
posterior distribution, which depends on a model and prior 
distribution and is conditional on the observed data. In finite 
population sampling the unknown parameter is just the 
entire population and the likelihood function for the model 
comes from the sampling design. A Bayesian must specify a 
prior distribution over all possible values of the population. 
Once the sample is observed the posterior is just the 
conditional distribution of the unobserved units given the 
the values of the observed units computed under the prior 
distribution for the population. For most designs this 
posterior does not depend on the design probability used to 
select the actual sample. The Bayesian approach to finite 
population sampling was very elegantly described in the 
writings of D. Basu. For further discussion see his collection 
of essays in Ghosh (1988). 

Assume that given  the sample one can simulate values 
for all the unobserved units from the posterior to generate a 
“complete copy”of the population. Then given the simulated 
and observed values one can compute the value of the 
population mean, ∑ =

− N
i iyN 1

1 ,  for this simulated copy of the 
entire population. By generating many independent 
simulated copies of the population and in each case finding 
the mean of the simulated population and then taking the 
average of these simulated means one has an estimate of the 
unknown population mean. This process computes 

approximately the Bayes estimate of the population mean 
under squared error loss for the given prior. More generally 
by simulating many such full copies of the population one 
can compute, approximately, the corresponding Bayes point 
or interval estimates for many population parameters. The 
problem then is to find a sensible Bayesian model which 
utilizes the type of prior information available for the small 
area problem at hand. 

The Polya posterior is a noninformative Bayesian 
approach to finite population sampling  which uses little or 
no prior information about the population. It is appropriate 
when a classical survey sampler would be willing to use 
simple random sampling as their sampling design. In Nelson 
and Meeden (1998) the authors considered several scenarios 
where it was assumed that information about the population 
quantiles of the auxiliary variable was known a priori. They 
demonstrated that an appropriately constrained Polya 
posterior, i.e., one that used the prior knowledge about the 
quantiles of  x, yielded sensible frequentist results. Here we 
will see that this approach can be useful for a variant of 
small area estimation problems. 

We will consider a population that is partitioned into a 
domain D, of interest, and its complement .D′  Also we 
suppose that it is partitioned into K areas, say ....,,1 KAA  
Let y be the characteristic of interest and x be an auxiliary 
variable. Suppose, using a random sample from the entire 
population, for some k we wish to estimate ),(, ykDμ  the 
mean of y for the all units that belong to the small area 

.kAD ∩  Often the number of sampled units that belong to 
kAD ∩  is quite small and using just these observations can 

lead to an imprecise estimator. As an example where this 
could arise imagine D is a region of a state which is broken 
up into counties. Each county in D is then paired with a 
similar county that is outside of D. Hence the thk  county 
and its twin form the thk  area and the collection of “twin” 
counties forms .D′  Then a random sample is taken from 

DD ′∪  and one wishes to to estimate the means of the 
counties, or small areas, making up D. 



Meeden: A Noninformative Bayesian Approach to Small Area Estimation                                                                          5
 

 
Statistics Canada, Catalogue No. 12-001

In order to improve on this naive estimator one needs to 
make some additional assumptions. Here we will assume 
that for each unit in the sample we learn both its y and x 
values. For units belonging to kA  we make two assump-
tions which formalize the idea that the small areas, DAk ∩  
and ,DAk ′∩  are similar. First we assume that the small 
area means of the auxiliary variable, )(, xkDμ  and 

),(, xkD′μ  although unknown are not too different. Secondly 
we assume that for units belonging to kA  the distribution of 

iy  depends only on its ix  value and not on its membership 
in D or .D′  Finally we assume that ),(xDμ  the mean of x 
for all the units that belong to D, is known. Note that we do 
not assume that )(, xkDμ  and )(, xkD′μ  are known which is 
often the case in small area estimation. 

Here we will demonstrate that when our assumptions are 
true  a modification of the Polya posterior yields good point 
and interval estimators of )(, ykDμ  and of the the median of 
y in the small area .kAD ∩  In section two we will briefly 
review facts about the Polya posterior and in section three  
discuss simulating from a constrained version of it. In 
section four we present some simulation results that indicate 
how it could work in practice. Section five contains some 
concluding remarks. 

 
2. The Polya Posterior  

Consider a finite population consisting of N units labeled 
1, 2, ..., N. The labels are assumed to be known and to 
contain no information. For each unit i let ,iy  a real 
number, be the unknown value of some characteristic of 
interest. The unknown state of nature, =y ),...,,( 1 Nyy  is 
assumed to belong to some subset of ldimensiona−N  
Euclidean space, .Nℜ  A sample s is a subset of 

.}...,,2,1{ N  We will let )(sn  denote the number of 
elements in s. A sample point consists of the set of observed 
labels s along with the corresponding values for the 
characteristic of interest. If }...,,{ )(1 sniis =  then such a 
sample point can be denoted by .),( sys  

Given the data the Polya posterior is a predictive joint 
distribution for the unobserved units in the population 
conditioned on the values in the sample. Given a data point 

),( sys  we now show how to generate a set of possible 
values for the unobserved units from this distribution. We 
consider an urn that contains )(sn  balls, where ball one is 
given the value ,

1i
sy  ball two the value 

2i
sy  and so on. We 

begin by choosing a ball at random from the urn and 
assigning its value to the unobserved unit in the population 
with the smallest label. This ball and an additional ball with 
the same value are then returned to the urn. Another ball is 
chosen at random from the urn and we assign its value to the 
unobserved unit in the population with the second smallest 
label. This second ball and another with the same value are 
then returned to the urn. This process is continued until all 

)(snN −  unobserved units are assigned a value. Once this 
is done  we have generated one realization of the complete 

population from the Polya posterior distribution. This 
simulated, completed copy contains the )(sn  observed 
values along with the )(snN −  simulated values for the 
unobserved members of the population. Hence by simple 
Polya sampling we have a predictive distribution for the 
unobserved given the observed. 

One can verify that under this predicted distribution the 
expected value of the population mean is just the sample 
mean and it's posterior variance is approximately the fre-
quentist variance of the sample mean under simple random 
sampling when .25)( ≥sn  Hence inference for the popula-
tion mean under the Polya posterior agrees with standard 
methods. Although the design probabilities play no formal 
role in the inference based on the Polya posterior for it to be 
appropriate in the judgment of the survey sampler the values 
for the characteristic of interest for the observed and 
unobserved units need to be roughly exchangeable. This is 
usually the case when simple random sampling is used to 
select the sample.  

It has been shown for a variety of decision problems that 
procedures based on the Polya posterior are admissible 
because they are stepwise Bayes. (See Ghosh and Meeden 
1997). In these stepwise Bayes arguments a finite sequence 
of disjoint subsets of the parameter space is selected, where 
the order is important. A different prior distribution is 
defined on each of the subsets. First the Bayes procedure is 
found for each sample point that receives positive probabil-
ity under the first prior. Next the Bayes procedure is found 
for  each sample point which receives positive probability 
under the second prior and which was not considered under 
the first prior. Then the third prior is considered and so on.  
For a particular sample point the value of the stepwise 
Bayes estimate is the value for the Bayes procedure for that 
sample point for the Bayes procedure identified in the step 
at which the sample point was considered. It is the stepwise 
Bayes nature of the Polya posterior that explains its some-
what paradoxical properties. Given a sample it behaves just 
like a proper Bayesian posterior but the collection of pos-
sible posteriors that arise from all possible samples comes 
from a family of priors not from a single prior. From the 
Bayesian point of view it is appropriate when one’s prior 
beliefs about the population is that the units are roughly 
exchange but nothing more about them is known. The 
stepwise Bayesian nature of the Polya posterior also helps to 
explain why it yields 0.95 Bayesian credible intervals that in 
most cases behave approximately like 95% confidence 
intervals. For more details and discussion on the theoretical 
properties of the Polya posterior see Ghosh and Meeden 
(1997). The Polya posterior is related to the Bayesian 
bootstrap of Rubin (1981). See also Lo (1988). 

 
3. Simulation from the Polya Posterior  

The interval estimate of the population mean and point 
and interval estimates for other population quantities under 
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the Polya posterior usually cannot be found explicitly. One 
must use simulation to find these values approximately. 
This is done by simulating many independent completed 
copies of the entire population and calculating the value of 
the parameter of interest for each copy. One may do this in a 
straightforward manner but often a well known approxi-
mation also works well. For simplicity assume the sample 
values sy  are all distinct and that the sampling fraction 

Nsn /)(  is small. For )(...,,1 snj =  let jλ  be the 
proportion of units in a complete simulated copy of the 
entire population which take on the value .

jiy  Then under 
the Polya posterior )...,,( )(1 snλλ=λ  has approximately a 
Dirichlet distribution with a parameter vector of all ones, 
i.e., it is uniform on the 1)( −sn  dimensional simplex 
where ∑ = =λ)(

1 .1sn
j j  

We now assume that there is an  auxiliary 
characteristic associated with each element in the 
population. For unit i let ix  be the value of this auxiliary 
characteristic. The vector of these values for the auxiliary 
characteristic is denoted by x. The values of x are 
unknown but we assume their population mean is known. 
This is a common situation and either the regression 
estimator or the ratio estimator is often used in such 
cases. Let sx  denote the x values of the observed units in 
the sample. Now the Polya posterior can be adapted to 
use this additional information in the following way. 
When creating a simulated copy of the entire population 
using the values }:),{( sixy ii ∈  one only uses completed 
copies whose simulated population mean of x is equal to 
the known mean of x. 

Simulating from a constrained Polya posterior is more 
difficult than simulating from the unconstrained Polya. Let 

*
xμ  denote the known population mean of x. Suppose s is a 

sample such that sx  contains values smaller and larger than 
.*

xμ  When this is the case an approximate solution to the 
problem of generating simulated copies from the Polya 
posterior distribution which satisfies the mean constraint is 
available. For )(...,,1 snj =  let jλ  be the proportion of 
units in the simulated copy of the population which have the 
value .),(

jj ii xy  (Note the sx  need not be distinct.) If we 
ignore the constraint for a moment then, as we observed  
earlier, simulation from the Polya posterior is approximately 
equivalent to assuming a uniform distribution for =λ  

)...,,( )(1 snλλ  on the 1)( −sn  dimensional simplex where 
∑ = =λ)(

1 .1sn
j j  In order to satisfy the mean constraint we must 

select λ ’s at random from the set which is the intersection 
of the hyperplane ∑ = μ=λ)(

1
*sn

j xij j
x  with the simplex for .λ  

In general one cannot generate independent random samples 
from this distribution. One may, however, use the 
Metropolis-Hasting algorithm to generate dependent 
simulated copies of the population from a convergent 
Markov chain. For more details on this algorithm see 
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller 
(1953) and Hastings (1970). 

Using the approximate solution based on the Dirichlet 
distribution allows one to finesse a bothersome technical 
problem which has no practical significance. That is given 

the sample it is often impossible to get simulated copies of 
the population which satisfy the mean constraint exactly. 
For example suppose N = 5 and our sample of size three 
yielded x values of 0, 0 and 10. Now if we know =μ x 4.5 
then under the Polya posterior it is impossible to generate 
simulated copies of the population since the only possible 
values for an x value of an unobserved unit is 0 or 10. This 
implies that given this sample under the Polya posterior the 
only possible values of xμ  are 2, 4 and 6. In general even if 
we have generated a λ  which satisfies the constraint the iλ  
N’s need not be integers and hence their need not be an 
actual copy of the population corresponding to .λ  But in 
real problems this should not matter very much. For one 
thing the mean constraint will usually only be known 
approximately. Furthermore for larger sample sizes the 
approximate nature of the simulated copies is just not 
important.  

Recently Nelson and Meeden (1998) and Meeden and 
Nelson (2001) have considered a variety of problems where 
a constrained Polya posterior is applicable. When the 
population mean of x is known Meeden and Nelson (2001) 
presented simulations that demonstrated that the point and 
interval estimators of the constrained Polya posterior were 
nearly identical those of the regression estimator. Hence just 
as the regression estimator does, when estimating the 
population mean of y the constrained Polya posterior utilizes 
the information contained in knowing the population mean 
of x. 

 
4. A Small Area Problem  

Consider again the small area estimation problem 
described in the introduction. A population is partitioned 
in two different ways. The first partitions the population 
into a domain of interest, D, and its complement .D′  The 
second partitions it into K areas kAA ...,,1  where for 
each k we assume that the small areas DAk ∩  and 

DAk ′∩  are nonempty. Figure 1 gives a graphical 
representation of the population. A random sample is 
taken from the whole population and we wish to estimate 

),(, ykDμ  the mean of y for all the units belong to the 
small area .DAk ∩  For such problems one often assumes 
that for the auxiliary variable x all the means )(, xkDμ  
and )(, xkD′μ  are known. Here we make the weaker 
assumptions that )(, xkDμ  and )(, xkD′μ  are unknown 
but not too different and that ,)(xDμ  the mean of x for 
all the units belonging to D, is known. We also assume 
that for units belonging to DAk ∩  and DAk ′∩  the 
distribution of iy  depends only on ix  and does not 
depend on whether it belongs to D or .D′  In terms of 
Figure 1 we are assuming that the mean of x for all the 
units in the population which belong to the first column 
is known and that within each row the distribution of the 
units across the the two columns is roughly the same. As 
we will soon see this is enough to produce estimators of 

)(, ykDμ  which improve on the naive estimator. 
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Figure 1. A population partitioned into a domain 
and its complement along with a second 
partition of K small areas. 

 
Before explaining how this is done we need a bit more 

notation. Let kDN ,  be the number of units in the population 
that belong to .kAD ∩  We assume that the kDN , ’s are 
known. For unit i let ),1( kti =  if kADi ∩∈  and 

),0( kti =  if .kADi ∩′∈  Then given a sample s we must 
use }:),,{( sitxy iii ∈  to estimate ).(, ykDμ  The 
constrained Polya posterior is now constructed in two 
stages. In the first stage, using the members of the sample 
that fall into D and their ),( ii tx  values, we create a 
completed copy of D which satisfies the known mean 
constraint .)(xDμ  In the second stage we first find for the 
simulated copy of D the mean of the x values for all the 
units belonging to .kAD ∩  (Remember that this set 
contains both observed and simulated values.) Let )(~

, xkDμ  
denote this mean. Next using the observed sample values 
from kAD ∩  and kAD ∩′  we create a completed copy of 

kAD ∩  which satisfies the mean constraint ).(~
, xkDμ  By 

repeating this two staged process many times one can 
construct simulated copies of kAD ∩  which use the 
similarity of units within the small areas DAk ∩  and 

DAk ′∩  and the information from knowing .)(xDμ  
To see how this approach could work in practice we 

present simulation results for some constructed populations. 
In all the cases K = 2 so there are just two areas and in 
Figure 1 there are just four cells or four small areas. The 
populations will be constructed so that there are 250 units in 
each of the four cells. For each cell we first generate 250 
values for the auxiliary variable x by taking a random 
sample from a gamma distribution with some shape para-
meter and scale parameter one. Next within each area 
conditioned on the x values the y values are independent 
observations from normal distributions where the mean of 

ii xy |  depends on ix  and where the the variance of ii xy |  
may be constant or in some cases depends on .ix  

In the first population, pop1, the shape parameter of the 
gamma distribution was four in both DA ∩1  and DA ′∩1  
and was six in DA ∩2  and .2 DA ′∩  For units in ii xyA |1  
was normal with mean ix225 +  and variance 100. For units 
in ii xyA |2  is normal with mean ix325 +  and variance 25. 

Note that pop1 was generated under a model which is 
consistent with the assumptions underlying the constrained 
Polya posterior described above. In fact our method should 
work very well for pop1. This is because for each k the 
average values of the auxiliary variable in DAk ∩  and 

DAk ′∩  will be approximately equal. This is not necessary 
for our approach to work but if it does not work in this 
example then it is hard to imagine that it could work in 
practice. In two of the remaining populations for each k we 
will take the shape parameters generating the values of  x in 

DAk ∩  and DAk ′∩  to be different. This is a more 
realistic assumption. We will also let the mean of ii xy |  be 
a nonlinear function of ix  and let the variance of ii xy |  
depend on .ix  In all cases the form of the distribution of 

ii xy |  will be the same across DAk ∩  and DAk ′∩  for 
each k. This is the most crucial assumption. If this is not 
satisfied approximately then our method cannot work. 

In the second population, pop2, the shape parameters of 
the gamma distributions were eight in ,1 DA ∩  ten in 

,1 DA ′∩  six in DA ∩2  and four in .2 DA ′∩  For units in 

ii xyA |1  was normal with mean ix225 +  and variance 
.9 ix  For units in ii xyA |2  was normal with mean ix325 +  

and variance .4 ix  
In the third population, pop3, the shape parameters of the 

gamma distributions were eight in DA ∩1  and ,1 DA ′∩  
and six in DA ∩2  and .2 DA ′∩  For units in ii xyA |1  was 
normal with mean 2)8(5.025 −+ ix  and variance .9 ix  For 
units in ii xyA |2  was normal with mean |6|25 −+ ix  and 
variance .4 ix  

In the fourth population, pop4, the shape parameters of 
the gamma distributions were four in ,1 DA ∩  six in 

,1 DA ′∩  six in DA ∩2  and eight in .2 DA ′∩  For units in 

ii xyA |1  was normal with mean 2)4(5.025 −+ ix  and 
variance .9 ix  For units in ii xyA |2  was normal with mean 

|6|25 −+ ix  and variance .4 ix  
In the fifth population, pop5, the shape parameters for the 

gamma distributions were the same as those in pop2. For 
units in ii xyA |1  was normal with mean 2)9(5.025 −+ ix  
and variance .9 ix  For units in ii xyA |2  was normal with 
mean 5.1|5|25 −+ ix  and variance .4 ix  

For each of these five populations we took 500 random 
samples of  size 80. For each sample we calculated the usual 
point estimates and 95% confidence intervals for )(1, yDμ  
and )(2, yDμ  using just the observations that fell into the 
small areas. We also found approximately the point estimate 
and 0.95 credible interval for the constrained Polya 
posterior. The results are given in Table 1. In each case the 
constrained Polya posterior estimates were computed using 
500 simulated copies of the small area. Then our point 
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estimate is just the average of these 500 computed values 
and our 0.95 credible interval ranges from the 0.025 quantile 
to the 0.975 quantile of this set. 

We see that the constrained Polya posterior yields 
significantly better point estimators in every case but one, 

)(2, yDμ  of pop5. Its intervals are also considerable shorter 
than the usual. There is some evidence that their frequency 
of coverage is a bit less than the usual approximate 95% 
normal theory intervals. In particular this is true for the 
small area DA ∩2  in the fifth population. 

The results in Table 1 are for the small area means. In 
Table 2 we give similar results for the small area medians. 
We compared our estimates to the sample median of the set 
of the sampled observations that fell into the small area and 
the usual confidence interval for the median due to 
Woodruff (1952). Compared to the usual estimators the 
performance of the constrained Polya posterior estimators 
for the small area medians is even better than it was for the 
small area means. In every case its point estimators are 
better than the sample median. Its interval estimators are 
always shorter than Woodruff's and for most cases their 
frequency of coverage seems to be quite close to the 
nominal 0.95.  

Table 1 
The average value and the average absolute error for the  

usual naive small area estimator and the constrained Polya 
posterior estimator (cstpp) for the small area means. Also  
given are the length and relative frequency of coverage  
for their nominal 0.95 intervals for 500 random samples  

of size 80 from five different populations  
Pop Small 

Area 
Method Ave 

value 
Ave 
aberr 

Ave 
lenght 

Freq. of 
coverage 

pop1 DA ∩1  usual 33.11 1.84 9.10 0.936 

  cstpp 33.20 1.30 6.37 0.934 
 DA ∩2  usual 43.03 1.47 7.78 0.946 

  cstpp 43.13 1.03 5.15 0.940 
       
pop2 DA ∩1  usual 40.39 1.79 8.69 0.932 

  cstpp 40.29 1.20 5.62 0.944 
 DA ∩2  usual 42.13 1.48 7.50 0.944 

  cstpp 41.97 1.16 5.16 0.912 
       
pop3 DA ∩1  usual 28.57 1.97 9.85 0.936 

  cstpp 28.90 1.47 6.66 0.898 
 DA ∩2  usual 26.71 1.01 5.08 0.940 

  cstpp 26.83 0.70 3.24 0.930 
       
pop4 DA ∩1  usual 27.73 1.27 6.57 0.960 

  cstpp 27.64 0.81 4.09 0.940 
 DA ∩2  usual 27.03 0.97 5.33 0.952 

  cstpp 27.03 0.65 3.32 0.934 
       
pop5 DA ∩1  usual 29.25 1.74 9.31 0.942 

  cstpp 29.30 1.26 6.16 0.930 
 DA ∩2  usual 27.73 1.08 5.85 0.954 

  cstpp 28.82 1.28 4.40 0.850   

Table 2  
The average value and the average absolute error for the  

usual naive small area estimator and the constrained Polya 
posterior estimator for the small area medians. Also given  

are the length and relative frequency of coverage for  
their nominal 0.95 intervals for 500 random samples 

 of size 80 from five different populations  
Pop Small 

Area 
Method Ave 

value 
Ave 
aberr 

Ave 
lenght 

Freq. of 
coverage 

pop1 DA ∩1  usual 33.88 2.01 11.48 0.944 

  cstpp 33.25 1.44 7.81 0.930 
 DA ∩2  usual 42.84 1.72 9.94 0.950 

  cstpp 42.42 1.35 6.92 0.944 
       
pop2 DA ∩1  usual 38.94 1.82 9.81 0.940 

  cstpp 38.53 1.41 7.47 0.936 
 DA ∩2  usual 40.99 1.77 8.75 0.970 

  cstpp 40.33 1.38 6.36 0.914 
       
pop3 DA ∩1  usual 27.64 1.73 9.52 0.952 

  cstpp 27.73 1.24 6.46 0.958 
 DA ∩2  usual 27.03 1.15 6.26 0.954 

  cstpp 26.59 0.70 3.76 0.938 
       
pop4 DA ∩1  usual 27.14 1.27 7.00 0.962 

  cstpp 27.05 0.95 5.37 0.966 
 DA ∩2  usual 26.84 1.07 5.99 0.960 

  cstpp 26.81 0.78 4.32 0.954 
       
pop5 DA ∩1  usual 29.10 2.06 11.01 0.956 

  cstpp 28.89 1.51 8.28 0.944 
 DA ∩2  usual 27.03 1.14 5.98 0.952 

  cstpp 27.87 0.97 4.46 0.900 

 
5. Concluding Remarks  

Here we have presented a new method of “borrowing 
strength” when estimating parameters of a small area of a 
population. It makes weaker assumptions than those made 
by the usual approaches to such problems. It is an objective 
or noninformative Bayesian approach which uses no more 
prior information than is typically assumed by a frequentist. 
Simulations indicate that it should be applicable in a variety 
of situations and should work well especially for some of 
the problems which roughly satisfy the usual linear model 
type assumptions, often assumed in small area estimation. It 
has the advantage of not being restricted to estimating small 
area means but can estimate other parameters as well. Here 
we assumed that a certain mean of an auxiliary variable was 
known. This approach can be extended to when other 
parameters of an auxiliary variable are known, like the 
median. Also it should be possible to extend this method to 
situations where prior information is available for more than 
one auxiliary variable. In summary we believe that this is 
flexible approach which can yield point and interval 
estimators with good frequentist properties for a variety of 
problems. 
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