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Unbiased Estimation by Calibration on Distribution in Simple Sampling
Designs Without Replacement

Yves Tillé !

Abstract

The post-stratified estimator sometimes has empty strata. To address this problem, we construct a post-stratified estimator
with post-strata sizes set in the sample. The post-strata sizes are then random in the population. The next step is to construct
a smoothed estimator by calculating a moving average of the post-stratified estimators. Using this technique it is possible to
construct an exact theory of calibration on distribution. The estimator obtained is not only calibrated on distribution, it is
linear and completely unbiased. We then compare the calibrated estimator with the regression estimator. Lastly, we propose
an approximate variance estimator that we validate using simulations.

Key Words: Unbiased estimation; Calibration on a distribution function; Conditional inclusion probabilities;

Weighting.

1. Introduction

It is possible during a survey by sampling to identify the
values of an auxiliary character for all population units. This
information may be available when the units are selected in
a database containing other variables of interest. The
temptation is then to calibrate the results of a survey on this
auxiliary information. The decision is made either to retain
from this auxiliary variable only certain functions (mo-
ments, sizes) for the purpose of using a calibration method
(see for example Deville and Sérndal 1992 or Estevao,
Hidiroglou and Sérndal 1995), or this variable can be
divided into classes with the view to using a post-stratified
estimator.

If the decision is to opt for the post-stratified estimator,
deciding on the strata divisions can be delicate. Theo-
retically, the strata must be defined prior to the selection of
the sample. Where should the post-strata boundaries be
placed? What size should the post-strata be? This latter
question is the most embarrassing because the main prob-
lem with post-stratification is the possibility of obtaining
empty post-strata. This means that the post-strata have to be
large enough so that the probability of obtaining an empty
post-stratum is negligible. These problems are not limited to
post-stratified estimators. Indeed, it is also possible to have
no regression or calibrated estimators for some samples.

Our objective is to define a new method of using
auxiliary information in the population. This method is
based on the definition of post-strata for which the number
of units is set in the sample and not in the population. In this
way, it is possible to import into the estimator complex
auxiliary information resulting from knowledge of all of the
values taken by the auxiliary variable, while avoiding both
the problem of defining post-strata borders and the problem
of empty post-strata.

This article is organized as follows. In section 2, the
notation is defined and in section 3, we describe the
principle of rank conditioning, which is used to define the
unbiased estimators in section 4. In section 5, the smoothed
estimator is defined, and a specific case is examined in
detail in section 6. Section 7 contains an application of the
estimation of a distribution function. In section 8, this new
estimator is compared with the regression estimator and the
estimator for a simple design without replacement. Compu-
tation of variance is discussed in section 9. As a result of the
impossibility of providing an exact solution, an approxi-
mation is provided in section 10, which is tested by simu-
lations in section 11. Lastly, general conclusions are
presented in section 12.

2. Notation

We assume a population composed of N observation
units, with the labelling being denoted as {1, ..., k, ..., N} .In
this population, we are interested in a character of interest
Y.,keU. The objective is to estimate the total Y =
Yrev V- We select a random sample S of fixed size n by
means of a simple random design without replacement. We
denote /, the random indicator variable, which takes the
value 1 if the unit k£ is in the sample and O if not. The
inclusion probabilities first order are therefore defined by
Pr(keS)=mn, =n/N,keU, and the second order
inclusion probabilities by Pr(k,/eS) =n,=n(n-1)/
(N(N-1)), k=leU.

We will be interested in the class of linear estimators of
Y, which is written as

YA'W = z WkY;c’

keS
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where the weights w, may depend on the sample S and
therefore be random.

One of the possibilities is to take w, =1/m, =n/N,
which gives the Horvitz-Thompson estimator,

+_T5y,

keS Tck N jes

Yir =

which is unbiased.

We will be focusing instead on the more general class of
conditionally weighted estimators (Tillé¢ 1998, 1999a) where
the units are weighted by inverses of conditional inclusion
probabilities. If Z is some statistic, then the conditionally
weighted estimator

AR —t

ok 1
ies EU,|2) M

is strictly unbiased if and only if E(/, |Z)>0, for all
k € U. In effect,
E(, | 2)Y;

EY|Zz)= Y2620k _y
2 gz:/E(IklZ)

Since the estimator is conditionally unbiased, it is also
unconditionally unbiased. Depending on which statistic Z
is used, estimator (1) generalizes the stratified estimator as
well as (a close approximation) the regression estimator (see
Tillé 1998).

3. Conditioning on Ranks

Let us now assume that the N values X,..., X},..., Xy
of an auxiliary character x are known for N units of the
population. First, we assume that all of the X, take separate
values (this hypothesis will be removed in section 5). The
rank R, ofunit £ is

R, =#{leU|X, <X}

Moreover, we denote r, j =1, .., n, the ordered
population ranks of the n selected units in the sample, thus
1 <1y <..<r,, <r,. The r; are random variables with a
negative hypergeometric distribution (see Tillé 1999b).

The statistic used to define the conditional probabilities
of inclusion is a subset of {#,..., 7, ..., r,}. First, we define

seo Fjseees Iy

— aninteger ¢ suchthat 2 < ¢ <n, defining the period,

— aninteger b suchthat 2 <b, defining the border,

— an integer / such that b </<b+¢q—1, defining the
interval.

The quantities ¢, b, and [ serve to define a subset of
indices:
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E/ = {’?’ r/+q’ r/+2q’ e r/+hq’ T r/+Hq}’

forl=b,..,b+q-—1.
For example, if n=18, g =4, b=3, then

Ey={n,r, "5},

E,={r, 1y, 15,7564

Es ={r5, 1y, 133,

Eg ={rg 1igs 4}
The conditional inclusion probability is computed in relation
to one of the E,.

The value of H is defined in such a way that

I+Hg<n—-b+1 and thus H is the largest integer such
that H<(n — b —1+1)/q. It is clear that H depends

on /.
The next step is to compute the inclusion probabilities:

E(Ik |E/) =
1 if keE,

qg-1

i 1,y <k <ty h=1.,H
Tivhg ~ Niw(h-1)q -1

-1 if k<n,
r—1

n—(+Hq) if k> 7,
N_’/l/+Hq

These inclusion probabilities are thus relatively uneven.
However, they are all positive, including the borders. It is
important to use a border > 2 so that the first and the last
post-stratum are not empty.

4. Class of Unbiased Estimators

Since E(I, | E,)>0, we can construct an estimator that
is unbiased and even conditionally unbiased with respect to
E;. By denoting y, ..., y;,..., ¥, the n values taken by
the units in the sample ordered according to the R,, we
obtain
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A yp—

keS E(Ik |E/)

Yi

l—l

+ i (r/-#hq

~h-1yg 1

qg-1

Zy,

+
n-— (Z+Hq) Jj=l+Hg+1

h=1

q-1
Z Yivi-ngs; T y/+th
=

N - r/+Hq

H
= Noy Yoy + » + Z NtV * Visng) + Ny Ve
st

where
Ny =1 -1
= Nng ~Neeng — L R =1 H,
NH+1\/ N Tiv g
. 1 1-1
Yo _l—l & Vi
N 1 &
Y = Viethvygepp M =1 s H,
q
and
~ 1 -
yH+1\/ = Z yj .

n— (l + Hq) Jj=l+Hg+1

This estimator is in reality a post-stratified estimator
where the sizes of the post-strata are set in the sample. Since
E(U,|E)>0, };/ is strictly unbiased unconditionally and
conditionally to E,, which is clearly not the case for the
traditional post-stratified estimator, because the latter has a
non-zero probability of having an empty post-stratum. By
setting the size of the post-strata in the sample, creating
empty post-strata becomes impossible. The corresponding
size of the post-stratum in the population is a random
variable N,,. i

The estimator ¥, has another interesting property. By
using the definition of the E(/, | E,), we can quite easily
show that

1
1;5‘ E (Ik |E/) -
The estimator is thus calibrated on the size of the

population. This property, which is also held by the Horvitz-
Thompson estimator in simple designs, is therefore not lost.
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Units where the ranks are in £, are called pivot units, and
are assigned a weight equal to 1, which makes the weights
very unequal. A downside to ¥, is the use of widely
dispersed weights. This problem can be resolved by
smoothing the estimators.

5. Smoothing Estimators

To resolve the problem of the dispersion of the weights,
we compute a moving average for the estimators as follows:

b+q-1

Y,

®|~

I=b

Y. retains all of the properties of the ¥,. This means that it
is unbiased, calibrated on N and linear and can therefore be
written as

n
Y.=3 Wi Vo
j=l

where
w;=
1 b+q-1 r/f] .
g & s
7 % T
b+q-1 : - -1
1 Tjtl=b =V (jl—b—
— / m (j+=b=q) +1), b<j<b+q-1,
a| & j+l-b-m (j+i-b-q) -1
b+q-1
1 Vivip—Vinjpg — 1
- Z MJA, b+g-1<j<n-b+2-gq,
1\ = -1
b+q-1
1 Ty + (ivl=b)y— Vitl—b—g =1
— z by jrlbog + 1], n—-b+2-g<j<n-b+l,
9\ 15 m + (j+l-b)-j+l-b—q-1
bg—1
R e R
q = n+l-m+1-1-1
b+g-1
l N — B .
1 n—-b+1<j,
7 15 -
~ 0 ifx<b
m-(x) =
x if not,
(2)
. n+l ifx>n—-b+1
m(x) = .
X if not,
rp,=0,and ., =N +1.

n+l

Statistics Canada, Catalogue No. 12-001-XIE
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Under the apparent complexity arising from the specific
treatment of the borders, the weighting system is relatively
simple. In the case where we are not too close to the
borders, it takes the value

a
+1

b+g-1 _ _
1 { 5 Ty —Vinicb—g
J
z (rj-Hx _rj-Hx—q)'

w., =—
I=b g-1
q(g -1 a0

Tq

If all of the values of the auxiliary variable are not
distinct, we can assign the unit ranks with common values
randomly. For example, if X, =2,X,=5X,=5X, =
5,X,=17, X, =8, weselect with a probability ', between,
ranks R =1, R, =2,R, =3,R, =4,R; =5, or R =1, R,=
3,R, =2,R, =4, R, =5. We the compute the smoothed
estimator for each permutation, and we calculate their mean.
The advantage of this method is that it preserves an
unbiased estimator. In effect, for each possible permutation,
the estimator is unbiased. In practice, it is not necessary to
compute estimators for all of the permutations. We can
calculate the estimator for one permutation and then simply
equalize the weights of the units having the same values for
the variable x.

6. Case where ¢g=2,b=2

When ¢g=2,
calculations

. 1 n-2
Y, = 5 { z Vi (rpg —7r)
=3

and b=2, we obtain after a few

N r3+22r2—3 "+ ;3;— 1y2

4 Tan _;n—Z +1 v+ 37 _2rn—21 23 yn}
n V(=1
Jj=1

:% +y1r32—3 y22r1+21—r3 ’
_— ) +rn—22+1 2r, +y Tyt =Ty =3

where 7, =0 and 7, =N+1. This brings us to an
estimator proposed by Ren (2000, page 140) and obtained
using a calibration argument. The way in which the borders

are managed is the only slight difference.

Example 1: With a population of size N =20. Let us
assume that the values of the variable of interest are found in
Table 1. We also assume that the sample of size n=7 is
composed of the units with ranks {3, 7, 8, 11, 12, 15, 17}. If

Statistics Canada, Catalogue No. 12-001-XIE

we take g=2,/=2,b=2 we obtain E,={r,rn,1r}=
{7,11,15}. We can then calculate E(/, E, = {7, 11, 15}).
The conditional inclusion probabilities are as follows:

E(I,|E, = {7, 11,15}) = 1/6,
E(I,|E, = {7,11,15}) =1,
E(I,|E, = {7, 11, 15}) = 1/3,
E(I,|E, = {7,11,15}) = 1,
E(,|E, = {7,11,15}) = 1/3,
E(|E, = {7,11,15}) =1,
E(l,|E, = {7,11,15}) = 1/5.

Table 1
Example of a Population of Size N =20

k123 456 7 8 91011121314151617 1819 20
Xy 9 71723591 14 3 36 64 38 81 52 78 62 86 16 20 59 84 55
R, 214156203 1 7 148 17 9 161219 4 5 111810

The estimator

Y:):z Vi

E(I, | E,={7, 11,15})

is therefore unbiased and conditionally unbiased. Further, it
is linear and

z 1

=N
keS E(Ik |E2 :{7’ 11, 15})

However, if we take ¢=2,[/=3,b=2, we obtain
E, ={r, r} = {8, 12}. Using the same example, we then
compute E(/, | E; = {8, 12}), and we obtain

E(I,|E, = {8,12}) = 2/7,
E(I,|Ey = {8,12}) =2/7,
E(I,|E, = {8,12}) = 1,

E(I, |E, = {8,12}) = 1/3,
E(,|E, = {8,12}) = 1,
E(I|Ey = {8,12}) = 2/8=1/4,
E(,,|Ey = {8,12}) =2/8=1/4.

The estimator

?1:2 Yk

E(l, | Ey = {8,12})
is also unbiased and linear.
Lastly, we compute the mean of the two estimators:
p_Lt?
‘ 2
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The weights are obtained simply by calculating the mean of
the weights of estimators ¥ and Y|, and have the values

wy = (6+7/2)/2=19/4,
w, = (1+7/2)/2=9/4,
we=(3+1)/2=2,

w, = (1+43)/2=2,

w, = (3+1)/2=2,

ws = (1+4)/2=5/2,
w, = (5+4)/2=9/2.

Estimator Y, is linear and strictly unbiased.

7. Application to the Estimation
of the Distribution

There are several ways to appropriately use auxiliary
information to estimate a distribution function. A
description of these techniques can be found in Ren (2000)
and in Wu and Sitter (2001). The method that we suggest
also makes it possible to estimate the distribution. The
distribution in the population is defined by

R =% S Iy, <,

keU

and can be estimated by

2wl {y, <}

() =t e,

2

keS
where /{y < y,} is the indicator function, and the w, are
the weights allocated to the units & which have the value
1/m, =N/n for the Horvitz-Thompson estimator, and
which are given in (2) for the calibrated estimator.

Note that the two functions are discrete, but that there are
far fewer jumps in S thanin U. To offset the differences in
the distributions between the sample and the population, we
have smoothed the distribution functions by using, as
Deville (1995) did, a linear interpolation of the centres of
the risers, which involves defining F,(y) by linking the
points

%{Fl ) - F (0 — o)

for keU, where ¢ is a strictly positive, arbitrarily small
real number. We then define F,(y) by linking the points

%{ﬁl(yk)—ﬁl(yk — o),

for the sample.
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Example 2: A population of size N =1,000 was generated
using independent log-normal variables that are equally
distributed. A sample of size n =16 was then selected and
we set h=5. Figure 1 gives F,(x) inthe population.

I ”
I -f”—-_____
0.8 -
0.6 /
04f /
02} /
b l|'
F £
i
¥ | . . |
2 4 6 8

Figure 1. Population distribution function.

Figure 2 shows F,(x) and the distribution estimated by the
Horvitz-Thompson estimator. Lastly, Figure 3 shows F, (x)
and the distribution estimated by the calibrated estimator

[ PR
i e
0.8 / ~
: /
0.6] .
L v
i I,f' s’l
oaf -/
./{/’
0.2} /J*
> 4 6 3

Figure 2. Population distribution function and Horvitz-
Thomson distribution estimator.

_—:‘-‘:-’-_-_._--_
[ f_d__:_;::--—
048:
0.6}
: i
L j.l'll
0.4} //
L/
Lo/
0.2f Jf
F A
L
> 4 6 8

Figure 3. Population distribution function and calibrated
distribution estimator.
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8. Comparison with the Regression Estimator Table 2
Model A: Estimator Variance
In order to compare the qualities of the proposed (Reference: Horvitz-Thompson = 1)
estimatpr, a serieg of simulatiops was ‘condu‘cted to compare Parameter Distribution Regression estim.
the estimator calibrated on distribution with the Horvitz- calibration

Thompson estimator and the regression estimator. Three

. . Mean 0.674422 0.632608
populations of size 1,000 were generated by means of the o
fOHOWiI’lg models 1% decile 0.905273 0.893876
. . 2" decile 0.815403 0.802082
— Model A Linear dependence: The population is
: 3" decile 0.842681 0.815071
generated using the model X, ~ N(0,1) and Y, = : :
X, +1.33333 x g, where ¢, ~ N(0,1). The coeffi- 4™ decile 0.806749 0.768283
cient of correlation obtained in the population is 5t decile 0.783731 0.740765
p=0.616154. 6" decil 0.8180
. .. . 51 0.782549
— Model B Non-linear dependence 1: The population is N ec? ¢
generated using the model X, ~ N(0,1) and Y, = 7" decile 0.794411 0.773794
(02 + X,)” +1.33333x¢, where g, ~N(0,1). 8™ decile 0.857114 0.844874
The‘ co;fﬁcient of correlation obtained in the pop- ot decile 0.884424 0.884032
ulationis p =0.28975.
— Model C Non-linear dependence 2: The population is Table 3
generated using the model X, ~ N(0,1) and Y, = Model B: Estimator Variance
(0.4 + X,)” +1.33333x¢, where g, ~N(0,1). (Reference: Horvitz-Thompson = 1)
The‘ co;fﬁcient of correlation obtained in the pop- Parameter Distribution Regression estim.
ulation is p = 0.476158. calibration
In each population, 100,000 samples of size 100 were Mean 0.429689 0.953025
selectled. Three weighting systems were computed for each 1 decile 0.913598 0.958656
Sampie. 2" decile 0.919394 1.009270
1. the wei/ghts associated with the simple design 3% decile 0.829860 0.987950
w, =N/n, 0oy
2. the weights of the distribution calibrated estimator 4m dec?le 0.792094 0.989114
given in (2) using the window ¢ =10 and border 57 decile 0.703908 0.992023
b=6, 6™ decile 0.622705 1.009830
3. the weights of the regression estimator given by 71 decile 0.550028 0.981249
N . (X, - %) 8™ decile 0.443828 1.010340
W =— (X =Xg) ———— 5> 9™ decile 0.549615 1029120
> (X = X)
kes Table 4
where X is the total of the X, in the population, R I}/Iodel QhEstlmatTc)ﬁ Variance .
Xyr is the Horvitz-Thompson estimator of X, (Reference: Horvitz-Thompson = 1)
and X = X;;/N. Parameter Distribution Regression estim.
calibration
Using these weights, the estimator of the mean and of the
nine deciles were calculated for each sample. We then Mean 0.30768 0.808114
estimate the variance of these estimators by means of the 1" decile 0.95560 0.983582
simulations. 2™ decile 0.85920 0.970913
The results are given in Tables 2, 3 and 4. The variances 34 decile 0.73854 0.930401
were brought to 1 for the simple design. For the linear
: : o 4™ decile 0.65728 0.950651
model, the regression estimator is slightly preferable. : :
However, in the non-linear case, the distribution calibrated 5™ decile 0.60500 0.956807
estimator signiﬁcant‘ly increa}ses the precision on the mean 6" decile 0.52139 0.930514
and on the quantiles. This means that our proposed 7 decile 0.45709 0.907537
estimator is robust when there is a non-linear relationship o ' '
between the auxiliary variable and the variable of interest. 8" decile 0.40752 0.903593
9™ decile 0.39820 0.860050

Statistics Canada, Catalogue No. 12-001-XIE
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9. Variance and Estimation of Variance

To compute the variance of Y., we begin by computing
the variance of ¥,. Since ¥, is unbiased conditionally to
E,, we have

V(Y,) = EV(Y,|E).

As with each of the post-strata, conditionally to E, the
design is a fixed-size simple sampling without replacement,
we have

H+1
VY, 1E) = Z N;\/ V()A/h\/)
h=0
H+l Nh —n.. S?
11~ My Ppp
-3 NI )
h=0 at P

where

Ry =/-1,

ny =4 — L h=1, .. H,
Mgy =N — (!l + Hg),
}7 _ -1 Y ’
o Nou ; “
}7 3 1 T hg—1 Y h 1 H
AT — N =1, .., S
‘ Nh\/ k=11 iy 1 “
_ 1 N
Y, = Y.,
HAll No k:N—zr,”_,q-H (k)
s =1 S -1,
o Ny, -1 5 ® o
1 1+h, -1 _
S = S Xy -G k=1, ., H,
Ny =1 ieingn
and
) 1 4 o
SH+1\/ = Z (Y;k) - YH+1\0) >

NH+1\/ -1 k=N-r, y,+1
where the Y, represent the values of Y, sorted by
increasing order of the X, .

Note that it is very difficult to calculate the unconditional
variance of };/, that is, the expectation of V(); |E). In
effect, N, and Sh‘ , are random. However, we can estimate
V(Y| E,) simply and obtain an unbiased estimator of the

83

conditional variance (and thus of the variance) by simply
estimating (3), by

VY, |E Hz Niw = M 2 @)
h\/ i
k=0 Ny 1y
where
2 1 -1 . ,
Son = _ z (yj _J’ou) >
ny, =153
i _ y/+(h—1)q+j yh\/ 5 =1, ..., s
my, —1 53
and
2 _ 1 " R ,
A z (yj - yH+1\/) .

hll — 1 J=l+Hg+1

The estimator V(Y | E;) is not only unbiased for V(Y |E))
but also for V(Y,).

10. Approximations for Computing the Variance

Unfortunately, computing the variance of Y, becomes
more complex because of covariances. In effect, we have

. 1 b+g-1 b+g-1
V) = — Cov
q 1= i=b

"<1>
_"<1>

When /=i, the problem is to estimate V();l. ), which is
done easily. When / # i, it is necessary to compute

Cov(Y,,Y,) = ECov(},.Y; | E))
+ Cov(E(Y, | E)), E(Y, | E))).
Since E(Y, | E,) =Y, we obtain
Cov(Y,, Y)) = ECov(Y,.Y, | E))
= EE(Y,, Y, | E) - V*.

Unfortunately, it does not appear possible to extricate the
computation of E(Y,, ¥, | E,) and therefore we must find an
approximation.

One way is to find a value that is greater than the

variance. Since

Cov(Y,, ) < V() V(Y),

Statistics Canada, Catalogue No. 12-001-XIE
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we have a greater value given by

b+q-1 b+g-1 ~
NIGAYEeA

1
Y)s—
q = i=b

which comes back to estimating the standard deviation of
the means by the mean of the standard deviations.

Lastly, a second possibility involves using a residuals
technique. Generally, when an estimator is corrected using a
calibration technique, the variance is estimated by means of
a residuals technique (see Deville and Sidrndal 1992 and
Deville 1999 on this topic). When computing the variance
of ¥, it is possible to use a residuals technique to obtain the
exact variance. Consider the variable

(NZ(N —)j{ Ny Wy =) J v

Nn(n-1) Nh\/nh\/(Nh\/ -1)
v ()= .
if k:r/+(h—1)q+1""’ Fihga
0 if k:”/+(h-1)q or k:thq

which can appear as a residual associated with the estimator
};/. The variable v, (/) inserted in the traditional expression
of the fixed-size simple sampling design without
replacement is exactly equal to the conditional variance Y,
given in (3). In effect,

2
N-n 1 kzd:/vk

N? — - kU | — V(Y |E).
AN N-1~ Vi N Y, | E)

This variable, however, depends on the }7,,‘ , Which are
unknown. We can estimate v, (/) by

(NZ(N—n)j‘“{Nf,(NM —nh,)J”(y__ﬁ )
Nn(n—1) Ny, (= 1) s

if j=l+Mh-1)gq+1, ..,

[+ hg -1

0 if j=l+(h-1)q or j=1+hgq

Statistics Canada, Catalogue No. 12-001-XIE

If we insert v, (/) in the estimator of the variance for the
simple design without replacement, we obtain an unbiased
estimator of the conditional variance, and therefore of the
variance.

V.
N 1 n J
2 IN—mn Jj=1 _ 5

N V. -
nN n—ljZ:; /

n

Deville (1999) shows that the variance of a sum of
estimators can be determined by adding the residuals
associated with these estimators, the residuals having been
computed by linearization. To estimate the variance of }i,
we could therefore simply take the mean of the residuals
v, (1), which is written

b+q-1

f\

1 .
=— v, (D).
q i=»
In this way, it would be possible to estimate the variance by
z n 2
v
NN-m 1 sy s

[
nN n—1 iz n

)=
These two variance estimators need to be tested by
simulations.

11. Simulations for Variance Estimators

The simulations shown in Table (5) are based on
populations of size N =100, that are generated by means of
normal independent random variables. For each case
studied, we give the value of ¢ and the coefficient of
correlation between the variable of interest Y, and the rank
R, of the auxiliary variable X,. The border 5 is defined
by taking the integer of ¢/2 + 1. Since our purpose is to
validate the variance estimator, we use 3,000 samples of
size¢ n=20 for each simulation and we compare the
variance estimated by the simulations of the calibrated
estimator ¥, (¥.) with the expectations under the
simulations of the two variance estimators denoted
E.(V,(Y.),a=1,2. The last two columns of the tables
show the relative bias defined by

RBS,' V (}'}) EwVa(Y) V (Y)’ o

=1, 2.
V(1)

The simulations show that the two proposed estimators
overestimate the variance. The overestimation appears to
diminish as ¢ increases. The estimator V,(Y.) definitely
has the smallest bias. We will therefore prefer to use
V().
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Table 5
Simulation Results
Correlation:  0.802
q Vsi(f}c) ES[ I}1 (f}c) ES[ I}2 (f}c) RBsi I/Avl (Yc) RBsi I}Z ()}c)
4 0.045 0.065 0.054 0.444 0.200
5 0.045 0.066 0.057 0.467 0.267
6 0.056 0.076 0.070 0.357 0.250
7 0.058 0.079 0.059 0.362 0.017
8 0.063 0.088 0.087 0.397 0.381
Correlation:  0.481
q Vsi(f}c) ES[ I}1 (f}c) ES[ I}2 (f}c) RBsi I/Avl (Yc) RBsi I}Z ()}c)
4 0.048 0.066 0.059 0.375 0.229
5 0.045 0.060 0.054 0.333 0.200
6 0.044 0.056 0.051 0.273 0.159
7 0.044 0.054 0.051 0.227 0.159
8 0.045 0.052 0.048 0.156 0.067
Correlation:  0.111
q Vsi(f}c) ES[ I}1 (f}c) ES[ I}2 (f}c) RBsi I/Avl (Yc) RBsi I}Z ()}c)
4 0.281 0.471 0.363 0.676 0.292
5 0.297 0.420 0.356 0.414 0.199
6 0.279 0.363 0.316 0.301 0.133
7 0.267 0.342 0.324 0.281 0.213
8 0.282 0.327 0.281 0.160 -0.004

12. Conclusions

Our proposed estimator is one of the rare estimators that
is both unbiased and linear, that uses auxiliary information
and that is calibrated on the size of the population. It can be
parameterized using the width of window g¢. This new
estimator is robust compared with the regression estimator.
It can take into account auxiliary information with a non-
linear relationship with the variable of interest. Most
simulations appear to show that the width of the window
does not significantly impact the preciseness of the mean
estimator. However, it also appears that a small window
width is not penalizing, even if there is no dependence
between the auxiliary variable and the variable of interest.
The smaller ¢ is, the tighter the calibration, and the
variance estimator will then be significantly penalized
because the degree of freedom is lost in each post-stratum.
The choice of ¢ must therefore reflect this problem.

There are many other methods that allow for the use of
the information given by a distribution function (see Ren
2000) to improve an estimator. The results that we have
presented are limited to simple sampling designs, but we
think they are important just as post-stratification is
important as a specific case of calibration techniques. Post-
stratification is one of the few examples where it is possible
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to show with accuracy that calibration corresponds to a
conditional approach. Further, our approach can be seen as a
calibration on a distribution function providing an unbiased
estimator. A good general distribution calibration technique
should therefore include in simple sampling designs the
method we have presented.
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