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Modelling Compositional Time Series from Repeated Surveys

D.B.N. Silva and T.M.F. Smith !

Abstract

A compositional time series is defined as multivariate time series in which each of the series has values bounded between
zero and one and the sum of the series equals one at each time point. Data with such characteristics are observed in repeated
surveys when a survey variable has a multinomial response but interest lies in the proportion of units classified in each of its
categories. In this case, the survey estimates are proportions of a whole subject to a unity-sum constraint. In this paper we
employ a state space approach for modelling compositional time series from repeated surveys taking into account the
sampling errors. The additive logistic transformation is used in order to guarantee predictions and signal estimates bounded
between zero and one which satisfy the unity-sum constraint. The method is applied to compositional data from the
Brazilian Labour Force Survey. Estimates of the vector of proportions and the unemployment rate are obtained. In addition,
the structural components of the signal vector, such as the seasonals and the trends, are produced.

Key Words: Additive logistic transformation; Compositional time series; Kalman Filter; Labour force survey;

Repeated surveys; State space models.

1. Introduction

All surveys are multivariate and multipurpose, and most
are longitudinal, repeating the same questions over time.
There are two broad classes of repeated surveys, those with
overlapping first stage units and those with no overlap of
first stage units. Both designs admit a longitudinal macro-
analysis of population aggregates but only the former allows
a micro-analysis and the estimation of gross flows or some
other similar unit level dynamic process. In this paper we
explore the time series analysis of a multivariate vector of
population aggregates, a macro-analysis, while taking into
account the influence of the sampling errors of the survey
using disaggregated data.

Denote by 0,=(0,,...,0,,,,)" a vector of population
quantities of interest at time ¢, and assume that observa-
tions are made at equally spaced time intervals 7=1,
2,.,T. Let y, =¥y - Vayyr,) rTepresent a survey-
based estimate of 0, based on data collected at time r.
Repeated surveys produce time series {y,} comprising
estimates of the unknown target series {0,}. Focussing on
the unknown population vector 0,, it is natural to imagine
that knowledge of 0,,...,0, ; conveys useful information
about 0, but without implying that it is perfectly predictable
from 0,,...,0, ;. One way of representing this situation is
by considering 0, to be a random variable which evolves
stochastically in time following a certain time series model,
as first proposed for univariate survey analysis by Blight
and Scott (1973), Scott and Smith (1974) and Scott, Smith
and Jones (1977). The survey estimates y, and 0, can then
be written as:

y, =0, +e (H

where {0,},{y,} and {e,} are random processes and
e, =(e;...ey, ) are the sampling errors such that
E(e,|0,)=0 and V(e,[0,) =%,

The | early work of Scott et al. (1977) was concerned
with univariate {y,} and distinguished different forms for
the data available on {e,}. If the only data available to the
analyst are the population aggregate estimates {y,} then
this is termed a secondary analysis and the examples in
Scott et al. (1977) are based on a secondary analysis of
survey data. If the individual data records are available,
then variances and covariance can be estimated directly
from the data and this is called a primary analysis. In
addition, in the case of a rotating panel survey, elementary
estimates (based on data from a set of units that join and
leave the survey at the same time) can be used to estimate
the covariance structure of the sampling errors. Subsequent
work by Jones (1980) used a primary analysis to measure
the structure of the sampling noise whereas Binder and
Hidiroglou (1988), Binder and Dick (1989), Pfeffermann,
Burck and Ben-Tuvia (1989), Pfeffermann and Burck
(1990), Pfeffermann (1991), Binder, Bleuer and Dick
(1993), Pfeffermann and Bleuer (1993), Pfeffermann, Bell
and Signorelli (1996), Pfeffermann, Feder and Signorelli
(1998) and Harvey and Chung (2000) employed an
elementary analysis.

The time series analysis of survey data also requires that
the signal process be modelled. In the early works it was
assumed that {0,} was a stationary process and that {y,}
was the superposition of two stationary processes therefore
being itself stationary. Typically ARMA processes were
assumed for {0,} and {e}, and hence for {y,}. Binder
and Hidiroglou (1988) wrote the processes in state space
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form which led rapidly to the introduction of nonstationary
processes for the signal {6,}, and structural models
involving trends and seasonals have been used since then.

The aim is to improve estimation of the unobservable
signal and its components, but when the sampling errors are
autocorrelated these autocorrelations can induce spurious
trends which get confounded with the true signal trend, as
pointed out by Tiller (1992) and Pfeffermann, Bell and
Signorelli (1996). When the variation in the sampling errors
is not taken into account, their autocorrelation structure may
be absorbed into either the seasonal or the trend compo-
nents, thus affecting the inference from the model.

A special case of interest in repeated surveys is when the
univariate target parameter {0,} is proportion such as the
unemployment rate. Unrestricted time series modelling of
{6,} may lead to estimates outside the range 0<6, <1.
Wallis (1987) used a logistic transformation to ensure that
the estimates were bounded, however he failed to take into
account the survey error. Pfeffermann (1991), Tiller (1992),
Pfeffermann and Bleuer (1993), Pfeffermann, Bell and
Signorelli (1996) fitted state space models to unemployment
rate series taking into account survey errors but without
using the logistic transformation to guarantee bounded
estimates.

Most surveys are multivariate and there has been little
work in the multivariate time series analysis of survey data.
Brunsdon (1987) and Brunsdon and Smith (1998) analyse
multivariate data from opinion polls taking into account the
fact that the proportions are bounded and comprise a com-
position, but not allowing for the structure of the survey
errors. This work provides useful insight into the modelling
of time series of proportions. Compositional data have also
been modelled using a state space approach, by Quintana
and West (1988), Shephard and Harvey (1989) and Singh
and Roberts (1992), but these authors also did not address
the issue of modelling the autocovariance structure of the
sampling errors when the observed compositions are
obtained from repeated surveys.

The motivation for this work is that many variables
investigated by statistical agencies have a multinomial
response and interest lies in the estimation of the proportion
of units classified in each of the categories. If this is the
case, the vector of proportions sums to one and forms what
is known as a composition. A compositional time series is
therefore a multivariate time series comprising observations
of compositions at each time point. We propose a class of
multivariate state space models for compositional time
series from repeated surveys, which takes into account the
sampling errors and guarantees estimates satisfying the
underlying constraints imposed by compositions. The
procedure employs a signal-plus-noise structural model
which yields seasonally adjusted series and estimates of the
trend which satisfy the underlying sum constraint. The
method is applied to compositional data from the Brazilian
Labour Force Survey comprising estimates of the vector of
proportions of labour market status. Estimates of Seasonally
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adjusted compositions, trends and unemployment rate series
are produced.

2. A Framework for Modelling Compositional
Data from Overlapping Surveys

We assume that {0,} is multivariate and the components
0,, form a composition, ie, 0<8,,<1Vm,t and
>aile, =1 In this case y, is a vector of sample
estimates, based on the cross-sectional data of time ¢ and
belongs to the Simplex:

y:0<y <lm=1,.,M+1;

M
S" = M+ R

> Y =Lt=1..T

m=1

as in Brunsdon and Smith (1998). In addition, it is assumed
that y, is obtained from a survey with complex design and
overlapping units between occasions. Since each of its
components is subject to sampling errors, y,, can be
decomposed as:

Yoy =0, +€s m=1,.., M +1, 2
where 0,, is the unknown population proportion assumed
to follow a time series model, and e,, is the sampling error.
Considering the M +1 series simultaneously, (2) can be
written in vector form as in equation 1. In addition, it is
assumed that

M+1 M+1

zemt = z Yt =1 Vi, (3)

m=1 m=1

which implies that /%' e =0, V1.

A compositional time series is a sequence of vectors
¥, =s s Yarsr,) cach belonging to S*. Aitchison
(1986) examined the difficulties of applying standard
methods to modelling and analyzing compositions and
suggested the use of transformations to map compositions
from the Simplex $ onto R". One such transformation
is the additive logratio transformation (a,,), defined in
Aitchison (1986, page 113), which was first adopted in a
time series context by Brunsdon (1987, page 75). The
transformation is given by v, = a,,(»,) = (v, ..., v, )", With

—], m=1.,M, Vi, @)

where log denotes the natural logarithm. Note that
Varers =1= 201 v, sometimes called the fill-up value, is
used as the reference variable or category. The inverse
transformation, known as the additive logistic transforma-
tion, is givenby y, = ay; (v,) = (Vs -.» Yyru1.,) Such that



Survey Methodology, December 2001

_OROw) g M, v,
1+ Zexp(vﬂ)
=y )
— m=M+1, Vt.
1+ Z;exp(vjt)
=

The state space modelling procedure for compositional
time series is invariant to the choice of the reference
variable (Silva 1996), and so any element y,, # y,,,,, of
¥, can be taken as the reference variable when applying the
additive logistic transformation to the vector of survey
estimates. When the logratios v, are normally distributed
the M +1—part composition has an additive logistic
normal distribution as defined in Aitchison and Shen
(1980). For compositional time series, Brunsdon (1987)
recommended the use of Vector ARMA models (Tiao and
Box 1981) for the transformed series.

We propose a procedure that not only provides pre-
dictions and filtered estimates that are bounded between
zero and one and satisfy the unity-sum constraint, but also
improves the estimation of the unobservable signal and its
components, taking into account the sampling error.

Following Bell and Hillmer (1990), the model in (2) can
be rewritten as:

ymt = emt 1 + ﬁ = emt umt’ (6)
emt
with
emt i
Uy = I+ == =1+ U ), (7
emt
where #,, =e,, /0,, represents the relative sampling error
of the estimated proportion.

Applying the additive logratio transformation defined in
Aitchison (1986, page 113) to the vector y, with
components given in (2), produces a transformed vector
v, =ay(y,)=,,...v),) contained in R”. If y, , is
used as the reference variable, the transformed vector has as
its m™ component:

v — log ymt — log emtumt
mt
Ymie eM+1,tuM+1,t

=log O +log Rl , m=1,..,M. ®
eM+1,t Upnrin,e

From (8), a vector model for the transformed series can
be written as:
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v, =0 +e/, (€]

with v, =(v,,...,v,,), 0, =(6,..,0,,) and e =

(e;t’ ot e;lt)" Where vmt = log(ymt /yM+1,t)’ e;t =
log(®,,/0,,,,,) and e, =log(u,, /uy, ), for m=

1,..., M. Note that model (9) has the same form as model
(D).

To describe the survey data, model (9) must incorporate
time series models for both {87} and {e;}. Hence a multi-
variate model for the transformed data will depend on the
form of the time series models for {0;} and {e '}.

The state space formulation for compositional data is
examined in section 3, the model estimation is considered in
section 4 and is illustrated using Brazilian Labour Force
Survey data in section 5.

3. Modelling the Transformed Series

Our approach is based on assuming that the transformed
series v, =a,,(y,) has the signal plus noise structure in
equation 9. We propose structural time series models for
{0}, as in Harvey (1989), and vector ARMA models (Tiao
and Box 1981) for {e'}.

The transformed signal process {07} is assumed to
follow the multivariate basic structural model, with each of
the components {0 } following a basic structural time
series model (BSM) with possibly different parameters
across the series. The cross-sectional relationship between
the series is accounted for by the correlation structure of the
system disturbances. The model for {6 },m=1,2,.., M,
is then given by:

emt =L, +S, +1

mt >

L*

mt

R’ x ) (10)

mt — m,t—1 + nmt >

_7* * )
- Lm,t—l + Rm,t—l + nmt b

11

* * (s)
Smt - _z Sm,t—l + nmt b

J=1

where L. is the trend/level component of the signal
0, R is the corresponding change in the level, S* is the

%

seasonal component and /,, is an irregular component. For
) ) ()

each component, the disturbances n,/,m, ,n, , and the
irregular 7, are assumed to be mutually uncorrelated

normal deviates with mean zero and variances G,Zn’,
G, .G, cs,znl , respectively. That is, the M x1 vector
disturbances 0, n,n® and I’, are mutually un-
correlated in all time periods. In addition, the irregulars 7,
1;(;-;,)’ with m# j,h=...,-2,-1,0,1,2,..., are assumed
to be correlated when % =0, but uncorrelated for 4 = 0 and

I’ has covariance matrix Y,. The same happens with the
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system disturbances nf,f’t),n(ja(’z_h),a =1[,r,s, which are also

correlated when 4 =0, but uncorrelated for 4= 0, with
covariance matrices Y,,Y,,> .. At each time ¢, the corre-
lation structure between the components of the composition
is summarized by Y, and a block diagonal matrix with the
blocks being >,,>,,> .. Note that the relation between the
series arises via the non-zero off-diagonal elements of the
disturbance covariance matrices. The multivariate model
(10) for {07} has the following state space formulation:

o HgO®g® 4
0, =H"0,” +1,;

(11)
0 =T%¢®) + GOn®,
where H® =[1010000000000]1® 1, ,,
o =[L,...Ly, Ry .. Ry, Sy Sy oSy i S0 ]
0 = i g s
L
G =|... .. ®I,,
010><3
1 1 5 0501 |
0 1
R L TP |
T = ®I,.
1 0 - 0 0
0, 0 1 - 0 0
i 0 0 = 1 0

The transformed survey error process {e, } is assumed to
follow an M -dimensional vector autoregressive moving
average process (VARMA), defined by ®(B)e; = O(B)a,,
with mean vector E(e, ) =0 and

©(B)=1-0,8—...-0 B,
®(B)=1-®,B—..-® B’

where @, ..., ®,.0,..,0, are coefficient matrices and

a, is an M —dimensional white noise random vector with
zero mean and covariance structure:

> =0,

E(aa )=
([th) {0 hio'
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The cross-covariance matrix function for the VARMA
process {e, }, (see Wei 1993, page 333), is given by:

T .(h)=COV(e,_ . e )=E(e , € ),

where {T .(h)},; =7 ., (h)=COV(e, , ;. €,), and the
cross-correlation function for the vector process is defined
as:

P.(h=D,""T (D",
where
D, =diag(y ,(0), ....7 -y (0)).

The state space representation of VARMA models can
be found in Reinsel (1993, section 7.2). The separate models
for the transformed signal and sampling errors can be cast
into a unique state space model, see Silva (1996, Chapter 8)
for details.

4. Estimation from the Transformed Data

As in previous sections, we distinguish between the
estimation of the structure of the surveys errors, the noise,
and the estimation of the covariance of the basic structural
model. Once these are obtained, we employ the Kalman
filter to get estimates of the trend and seasonals which
determine the signal. Before carrying out the signal
extraction, the VARMA model for the survey errors must be
identified.

The model specification for the error process {e,}
depends on the sampling design, particularly on the level of
sample overlap between occasions, and also on data availa-
bility. Many authors have considered the problem of
modelling the sampling error process in a univariate
framework, see, for example, Scott and Smith (1974),
Pfeffermann (1989, 1991), Bell and Hillmer (1990), Binder
and Dick (1989), Tiller (1989, 1992), Pfeffermann and
Bleuer (1993), Binder, Bleuer and Dick (1993),
Pfeffermann, Bell and Signorelli (1996) and Pfeffermann,
Feder and Signorelli (1998). However, in all of these cases
the authors are working with the original data instead of the
transformed data. After transformation, it is difficult to carry
out a full primary analysis based on individual observations,
see Silva (1996, Chapter 7).

Many repeated surveys are based on a rotating panel
design in which K panels of sampling units are
investigated at each survey round (time point) and panels
are replaced in a systematic manner, according to the
rotating pattern of the survey design. In these surveys,
elementary design unbiased estimtes y;k ) k=1,...,K, for
the population parameter 0,, can be obtained from each
rotation group. A rotation group is a set of sampling units
that joins and leaves the sample at the same time.
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In a two-stage survey, in which the primary sampling
units (enumeration areas) remain in the sample for all
survey occasions, the replacement of panels of households
(second-stage units) is ordinarily carried out within geo-
graphical regions defined by mutually exclusive groups of
enumeration areas. Note that a survey with K panels
produces K streams of estimates, where a stream is a time
series of all sample estimates based on samples from the
same enumeration area, that is, is a time series of elementary
estimates.

Pfeffermann, Bell and Signorelli (1996) and
Pfeffermann, Feder and Signorelli (1998) show how to esti-
mate the autocorrelation of the sampling error process for
univariate data, before transformation, using the so-called
pseudo-errors, defined as:

&' =y -y, (12)

where y, =1/KXf, y(k). If there is no rotation bias, it
follows that:

S(k) _ (k)
et _et

-e, (13)
thus contrasts in p*
errors e

For the compositional case we apply, for each elemen-
tary estimate, the transformation v =qa (y*)=
v, .., v#))  which has as its m"™ component,
(m=1,..,M):

y® 0 u®

W =log| —— | =log| —"— |+log| —A— |. (14)
) 0 )
Ymse M+t Uppin,e

From (14), a vector model for the k™ series of
transformed elementary estimates can be written as:

are contrasts in the panel sampling

v =07+ e, (15)

*(k) =(e *(k)’ e;/;tk)) and e*(k) (k)/u(k)

Wlth e mt log(umt M+1,t

for (m=1,..., M). Hence, from (15), M —dimensional tlme
series of transformed pseudo-errors can be constructed from
deviations of the transformed rotation group estimates about
their overall mean. The transformed pseudo-errors for the

k™ rotation group are defined as:

5*(k) _ (5+(k) 5*(k)yr — (k)
e =", ..., e, ) =v" -y

k k
= =,V =) (16)

where v, =1/KYK ,v* . Note, in addition, that & =
*(k) *
e —e .
From (14) and (15), it becomes clear that the framework
introduced by Pfeffermann, Bell and Signorelli (1996) can
also be applied to the transformed model.
The cross-correlation matrices of the transformed

sampling errors can be obtained by averaging the
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cross-covariances matrices of the transformed pseudo-errors
as follows (for details see Silva 1996, Chapter 7):

% -2 F p e -1/2
Pg*(h):{ZD;f”} {ZFQ’?(;;)MZD;P} . (17

k=1 k=1 k=1

where
l"“”(h) covE®, &®y=Eg@® ah",
with
TP (h)},, =COVE," . &) =y, (h)
and

D, = diag(y\") (0), ...y (0)).

Once the correlation matrices P, (h),h=1,2,... have
been estimated, a VARMA model to represent the
transformed survey error process can be selected and
estimates of the respective parameter matrices can be
computed, provided the series of transformed pseudo-errors
are available. Then, as described in section 3, a state space
model for representing the transformed signal and sampling
errors can be defined and the Kalman filter equations can be
used to get filtered and smoothed estimates for the
unobservable components. The application of the Kalman
Filter requires the estimation of the unknown hyper-
parameters (the covariance matrices Y., Y., >, 2/, 2a)
and the estimation of the initial state vector and the
respective covariance matrices.

Having addressed the issue of how to model the survey
estimates in a compositional framework and how to identify
the time series model for the transformed sampling errors,
the following section presents the results of an empirical
study using compositional data from the Brazilian Labour
Force Survey.

5. Modelling Compositional Time Series in the
Brazilian Labour Force Survey

The Brazilian Labour Force Survey (BLFS) collects
monthly information about employment, hours of work,
education and wages together with some demographic
information. It classified the survey respondents, aged 15
and over, according to their employment status in the week
prior to the interview into three main groups: employed,
unemployed and not in the labour force, following the
International Labour Organization (ILO) definitions. The
survey targets the population living at the six major
metropolitan areas in the country. The BLS is a two-stage
sample survey in which the primary sampling units (psu) are
the census enumeration areas (EA) and the second-stage
units (ssu) are the households. The primary sampling units
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are selected with probabilities proportional to their sizes and
then a fixed number of households is selected from each
sampled EA by systematic sampling. All household
members within the selected households are enumerated.
The primary sampling units remain the same for a period of
roughly 10 years (as in a master sample). New primary
sampling units are selected when information from a new
population census becomes available.

In addition, the BLFS is a rotating panel survey. For any
given month the sample is composed of four rotation groups
of mutually exclusive sets of primary sampling units. The
rotation pattern applies to panels of second-stage units
(households). Within each rotation group a panel of house-
holds stay in the sample for four successive months, is
rotated out for the following 8 months and then is sampled
again for another spell of four successive months. Each
month one panel is rotated out of the sample. The
substituting panel can be a new panel or one that has already
been observed for the first four months period. Note that the
4-8-4 rotation pattern induces a complex correlation
structure for the sampling errors over time and that there is a
75% overlap between two successive months.

The empirical work was carried out using data from the
Sao Paulo metropolitan area covering the period from
January 1989 to September 1993 (57 observations). The
quantities of interest are the proportions of employed,
unemployed and not in the labour force, and also the
unemployment rate. Using the monthly individual
observations, the series of sample estimates and their
respective estimated standard errors were computed using
data of each specific survey round and standard estimators.
For each month, two sets of estimates were obtained. The

direct sample estimates, derived from the complete data
collected at a given month and four elementary estimates,
each based on data from a single rotation group. The panel
estimates are used to estimate the sampling error auto-
correlations and to help to identify the time series model for
the sampling errors.
In this study the observed composition has M +1=3

components and the time series is defined as the sequence of
vectors y, = (ylt’ Yars y3t)" where:

¥, 1s the estimated proportion of unemployed persons in
month ¢;

¥,, 1is the estimated proportion of employed persons in
month ¢;

vs, 18 the estimated proportion of persons not in the
labour force in month ¢.

The model for the BLFS must incorporate the special
features of the data. Firstly, it is a compositional time series
belonging to the Simplex S* at each time ¢. Secondly, the
time series are subject to sampling errors. Following the
approach in section 2, we first map the composition onto
R’ using the additive logratio transformation with y,, as
the reference category. As y, is a vector of sample esti-
mates, it can be modelled as in equation 1 and the vector
model for the transformed series is given by equation 9.
Then, the transformed composition is modelled using a
multivariate state space model that accounts for the auto-
correlations between the sampling errors. Finally, the model
based estimates are transformed back to the original space.
Figure 1 displays the series of transformed compositions.

0.6 -2
® o '\ u
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M i La E
p 0.5+ ‘ o T 2.5 m
L L 3 P
o] E
Y o
M Y
E0.4 3 M
N Ll E
T v N

0.3 . -3.5
JANBY JANSO JANO1 JAN92 JANG3 JAN94
DATE

LOG (Employed/Inactive)
----®-— LOG (Unemployed/Inactive)
Vertical lines = September 89 - September 93

Figure 1. Brazilian Labour Force Series — SAO PAULO Transformed Compositions.
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The model for the transformed sample estimates v, is
composed of a bivariate model for the transformed signal
07, describing how the transformed population quantities
evolve in time, and a bivariate model representing the time
series relationship between transformed sampling errors e, .
The Transformed signal process {0} is assumed to follow
the bivariate basic structural model (equation 11) as
described in section 3. As mentioned before, a VARMA
model to represent the sampling error series was used. The
correlation structure of the transformed sampling errors was
estimated using the transformed pseudo-errors as in
equation 16. In addition, estimates of the partial lag
correlation matrices for {e,} were computed using a
recursive algorithm provided in Wei (1993, pages 359-362).
A program in SAS-IML which gives the corresponding
schematic representations (Tiao and Box 1981) and a
statistical test to help establish the order of the vector
process was developed. The form of the correlation matrices
and the results for the statistical test, available in Silva
(1996), indicate that a VAR(1), a VAR(2) or a
VARMA(1,1) model could be used to represent the
transformed sampling error process. In the event, the
VARMAC(1,1) was chosen because it yields smaller standard
errors for estimates of the unemployment rate. The
parameter estimates for this model were obtained from the
relationship between the cross-covariance function and the
parameter matrices given in Wei (1993, pages 346-347).
The VARMAC(1,1) fitted for {e/} is given by:

e ] [ 07347 024147 ¢, ]
e, | [-0.9224 -0.2072] ¢,

03162 0.2590 al,,_1_+ a,
-0.7666 —0.2749 || a, ., | |ay |

with

= (18)
0.0003476  0.0051660

2 {0.0001723 0.0003476}
Having put the combined model for the transformed survey
estimates into the state space form, the Kalman Filter
equations can be used to get filtered and smoothed estimates
for the unobservable components. Note that the estimation
of the model for the transformed sampling errors (equation
18) was implemented outside the Kalman Filter. The
application of the Kalman Filter requires the estimation of
the unknown hyperparameters (the covariances), the initial
state vector and respective covariance matrix. Assuming
that the disturbances n'*,a, and I, are normally
distributed, the log-likelihood function of the (transformed)
observations can be expressed via the prediction error
decomposition (for details see Harvey 1989). Estimates for
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the model covariances were obtained by maximum
likelihood, applying a quasi-Newton optimization tech-
nique. A computer program to implement the maximization
procedure was developed using the optimization routine
NLPQN from SAS-IML.

The initialization of the Kalman filter was carried out
using a combination of a diffuse and proper priors.
Following this approach, the non-stationary components
(0'”)" of the state vector were initialized with very large
error variances and the respective components of the initial
state vector were taken as zero. The stationary components
(e, e5,) were initialized by the corresponding uncon-
ditional mean and variance.

When fitting the model, the estimated covariance
matrices obtained for the slope and seasonal components
were very small and could be set to zero. This implies that
the seasonals are assumed to be deterministic and that the
slope is assumed to be fixed, giving rise to a local level
model with a drift and non-stochastic seasonals for the
signal. Indeed, as pointed out by Koopman, Harvey,
Doornik and Shephard (1995, page 39), when the number of
years considered in the analysis is small, it seems reasonable
to fix the seasonals since there is not enough data to allow
the estimation of a changing pattern. The fact that a fixed
seasonal pattern is validated by the estimation process is a
satisfactory feature of the modelling procedure. In addition,
the estimated covariance matrix of the irregular component
was also found to be very small (and hence undetectable) in
comparison to the sampling error and so, as expected, in the
presence of relatively large sampling errors, there was no
need to include irregular components in the model for the
transformed signal. The parameter estimates and respective
asymptotic errors (displayed in parenthesis) are presented in
Table 1.

Table 1
Estimates for the Hyperparameters and Standard Errors
Model $,x107 (2) 3, =3.=3,
2.78 0.12
BSM + (0.91) 0 -
VARMA(], 1) 1.95 87.0 00

(3.55) (27.10)
@

(1) Local level model with drift and fixed seasonals for the signal.

(2) Upper-triangular contains correlation.

To evaluate the model performance, empirical distri-
butions of the standardized residuals were compared with a
standard normal distribution to verify the assumption that
the innovations (v, —v,_,) are normal deviates. Exami-
nation of corresponding normal plots revealed no departure
from normality. In addition, we also computed the auto-
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correlations of the innovations, which were close to zero,
further validating the model.

Predictions for y,, and estimates for 6,, are computed
by applying the additive logistic transformation (equation 5)
to predictions v, and smoothed estimates é;"T for the
transformed series and signal, respectively. This transfor-
mation maps these estimates onto S§°, guaranteeing that
they satisfy the boundedness constraints.

Unfoﬂunately, although L‘T and S’ ;v can be obtained
from OI‘T, it is not straightforward to obtain estimates for
the structural unobservable components of the original
signal O, such as L‘T and SM, However, if a

1
multiplicative model with no irregular component is

assumed for {0,,}, such that:
0y, = L,,81,,0;, = Ly,8,,,05, = Ly, S5, (19)
where L, and S,,, for m=1, 2,3 represent the trend and

seasonal components of the unobservable signals, then
applying an additive logratio transformation to @, results in:

log(9,,/0s,)=log {Mj

3t 3t

log{L j+log{5’j,m=1,2. (20)
L3t S3t

This can be rewritten as:

0 =L +5 Q1)

mt>
with L =log(L,,/L,,) and S, =log(S,,/S,,). Thus, the
use of a basic structural model for {87} corresponds to the
case in which the underlying model for {8,} decomposes
the original signal into its trend and seasonal components in
a multiplicative way. For deriving estimates, either filtered
or smoothed, for Z,, note that:

exp(L;,)=L, /L, exp(Ly)=L, /L, (22)

12

Torecover L, L,,, L,,, in(22), it is necessary to assume
an explicit relationship between these unobservable
components based on model (19). By doing this, a third
equation can be added to the system in (22) and an estimate
of the original series components can be obtained. Note that
the system has three unknowns for just two equations. In
this case, it is quite natural to assume that the level compo-
nents sum to one across the series, being also bounded
between zero and one. Hence, trend estimates for the

original series can be obtained solving:

exp(l;{;) = th /L3t’
exp(L;,) =L, /L
L,+L,+L, =1,

(23a)

3t

which results in
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L*
Ly=—ala) o2,
1+ exp(L,)
k=t (23b)
1
Ly=—s——.
1+ exp(L},)

k=1

As there is no irregular component in model (19) the
seasonally adjusted figures are given by the trend estimates
in (23). Therefore, the smoothed estimates for the trend of
the original series of proportions are obtained by applying
the additive logistic transformation to L;\r Consequently,
estimates for the seasonal components of the original
proportions can be computed as:

f\

m=1,2,3.

m T T em t\T/ m, t|T>

For labour force surveys, an important issues is the
estimation of the unemployment rate series (as opposed to
unemployment proportions) and also the production of the
corresponding seasonally adjusted figures. Recall that 6,,
and 0, represent the unknown population proportions of
unemployed and employed people, respectively. Using
these proportions, the unknown unemployment rate at time
is ¢ defined as

0, 1 0,

R = = =| —
1 0, +0,, {14-6%) {61;

elt

+ 1) .24

Based on model (11), trend estimates for the
unemployment rate can be obtained by simply replacing
0, by L,m=12, in equation 24. In conclusion, the
methodology developed in this section provides signal (and
trend) estimates that are bounded between zero and one and
satisfy the unit-sum constraint. It also provides estimates for
the seasonal and trend components of series comprising
ratios of the original proportions which is a useful feature.

Figure 2 presents the design-based estimates and the
model-dependent estimates for the proportion of unem-
ployed persons, for the time period January 1989 to
September 1993. The model-dependent estimates are the
smoothed estimates which use all the data for the whole
sample period. As can be seen from the graph, the signal
estimates behave similarly to the design-based estimates
although some of the sharp turning points in the series have
been smoothed out.

Model-dependent trend estimates were obtained by
fitting the basic structural model defined for the signal
process when sampling error variation was modelled as a
VARMAC(1,1). These estimates were compared with the
estimates produced by the familiar X-11 procedure. Figure
3 displays the trend produced for the unemployment rate
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series by both methods together with the estimates obtained
by fitting a standard basic structural model which does not
account for sampling error variation.

The trend produced by our model is smoother,
suggesting that the model-dependent procedure succeeds in
removing the fluctuations induced by the sampling errors.

213

In addition, model-dependent estimates for the seasonal
effects of the original compositions were also obtained from
the multivariate modelling procedure which accounts for
two very important features of the data, namely the
compositional constraints and the presence of sampling
errors.

0.05
E 0.04 -
S
T
I
m 0.03 -
A
T
E
s 0.02
0.01 . :
JANSO JANS1 JANS2 JANS3 JA NS4
DATE
Model dependent estimates
----®--- Design based estimates
Vertical lines = September 90 - September 93
Figure 2. Brazilian Labour Force Series — SAO PAULO design based and model dependent estimates proportion
of unemployed persons.
0.08
0.06 7 L -
L/ h
% .9
(=)
-]
[
0.04 -
-
0.02
JAN 90 JAN 91 JAN 92 JAN 93 JAN 94
DATE

—— Basic structural model for survey estimates
---=-==- Trend from X-11
s BSM for signal + VARMA (1, 1) for sampling errors

Figure 3. Brazilian Labour Force Series — SAO PAULO trend estimates for the unemployed rates series.
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6. Conlcusions

This paper proposes a state space approach for modelling
compositional time series from repeated surveys. The
important feature of the proposed methodology is that it
provides bounded predictions and signal estimates of the
parameters in a composition, satisfying the unity-sum
constraint, while taking into account the sampling errors.
This is accomplished by mapping the compositions from the
Simplex onto Real space using the additive logratio
transformation, modelling the transformed data employing
multivariate state space models, and then applying the
additive logistic transformation to obtain estimates in the
original scale.

The empirical work using data from the Brazilian Labour
Force Survey demonstrates the usefulness of this modelling
procedure in a genuine survey situation, showing that it is
possible to model the multivariate system and obtain
estimates for all the relevant components. The results of the
empirical work also show that smoother trends and fixed
seasonals are obtained from a model which explicitly
accounts for the sampling errors, when compared with
estimates produced by X-11. In addition, because the
model-dependent estimators combine past and current
survey data, the standard deviations of these estimates are in
general lower that the standard deviations of these estimates
are in general lower that the standard deviations of the
design-based estimators, as shown in Silva (1996,
Chapter 8).

One drawback of the proposed procedure is that although
confidence regions for the original compositional vector can
be constructed based on the model-dependent estimates by
using the additive logistic normal distribution, confidence
intervals for the individual proportions are not readily
available. Such intervals could be obtained from marginal
distributions of the additive logistic normal distribution, but
these can only be evaluated by integrating out some of the
elements of the compositional vector and, as pointed out by
Brundson (1987, page 135), this produces intractable
expressions.

Under a state space formulation a wide variety of models
is available to represent the multivariate signal and noise
processes, which is a great benefit of this modelling
procedure. The application of the method to different data
sets is recommended. Further empirical research should also
consider situations where the composition lies on a Simplex
with dimensions higher than two and/or with compositions
evolving close to the boundaries of the interval [0.1]. In
addition, a better insight into the performance of the
modelling procedure may be gained by applying the method
to simulated data, for which the “true” underlying models
are known. The models considered here can also be
extended to incorporate rotation group bias effects and
explanatory variables.
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