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Local Polynomial Regression in Complex Surveys

D.R. Bellhouse and J.E. Stafford '

Abstract

Local polynomial regression methods are put forward to aid in exploratory data analysis for large-scale surveys. The
proposed method relies on binning the data on the x-variable and calculating the appropriate survey estimates for the mean
of the y-values at each bin. When binning on x has been carried out to the precision of the recorded data, the method is the
same as applying the survey weights to the standard criterion for obtaining local polynomial regression estimates. The
alternative of using classical polynomial regression is also considered and a criterion is proposed to decide whether the
nonparametric approach to modeling should be preferred over the classical approach. Illustrative examples are given from

the 1990 Ontario Health Survey.
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1. Introduction

Following Fuller (1975), multiple linear regression tech-
niques have been studied and used extensively in sample
surveys. At least three chapters of Skinner, Holt and Smith
(1989) are devoted to this subject. Here we restrict attention
to the case in which there is one covariate x for the variate of
interest y so that we could consider polynomial regression
as well as simple linear regression. In this context we could
also consider the nonparametric approach of local
polynomial regression, which, for the case of independent
and identically distributed random variables, is described in
Hardle (1990), Wand and Jones (1995), Fan and Gijbels
(1996), Simonoft (1996) and Eubank (1999). Using the
survey weights, Korn and Graubard (1998) introduced the
use of local polynomial regression for graphical display of
complex survey data. However, they did not provide any
statistical properties for their procedures. Smith and Njenga
(1992) used regression kernel smoothing techniques to
obtain robust estimates of the mean and regression para-
meters for an assumed superpopulation model. Here we use
local polynomial regression as an exploratory tool to dis-
cover relationships between y and its covariate x.

We assume that the covariate x is measured on a
continuous scale. Due to the precision at which the data are
recorded for the survey file and the size of the sample, there
will be multiple observations at many of the distinct values.
This feature of large-scale survey data has been exploited by
Hartley and Rao (1968, 1969) in their scale-load approach
to the estimation of finite population parameters. Here we
exploit this same feature of the data to examine the
relationship between y and its covariate x. In recognizing
that the data may be naturally binned to the precision of the
data, we can consider taking a further step by constructing
larger bin sizes. Under this approach we examine the effect

of the sampling design on estimates and second order
moments.

Suppose that in the finite population of size N, x has k
distinct values so that natural binning has taken place, or
that x has been categorized into & bins that are wider than
the precision of the data. Let x; be the value of x repre-
senting the i™ bin, and assume that the values of x, are
equally spaced. The spacing or bin size b =x, —x, ;. The
finite population mean for the y—values at x, is . We
assume that a sample of size n taken from this population
has the same structure as the population in that there are k
bins. From the sample data we calculate the survey estimate
of 3. of y. The finite population proportion of the
observations with value x; is denoted by p,. This pro-
portion is estimated by the survey estimate p,. We assume
that y, and p, are asymptotically unbiased, in the sense of
Séarndal, Swensson and Wretman (1992, pages 166—-167),
for 3, and p, respectively. The survey estimates 3, for
i =1, ..., k have variance-covariance matrix V. On consi-
dering the distinct values x;, as domains, the estimated
variance-covariance matrix V may be obtained easily
through survey packages such as SUDAAN and STATA.

There are several advantages to binning the data on
the covariate x for exploratory data analysis:

— For large surveys, a plot of y, against x, may be
more informative and less cluttered than a plot of the
raw data.

— By appealing to a finite population central limit
theorem on y, and imposing a superpopulation
assumption on y,, a relatively simple model for ¥,
may be assumed so that the analyst may easily focus
on the central issue considered here, determination of
the trend function in x.
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— Once V hat has been obtained, then a wide variety
of powerful exploratory data analyses can be easily
carried out in languages such as S - Plus. Working
with the raw data requires continued appeals to
SUDAAN or STATA for the appropriate variance
estimates.

— By binning the data, an approach to regression
analysis is obtained that provides a parallel to other
nonparametric approaches to survey data analysis.
For example, in categorical data analysis obtained
initially by Rao and Scott (1981), in the logistic
regression approach of Roberts, Rao and Kumar
(1987) or in the generalized linear model approach of
Bellhouse and Rao (2000), the tests and associated
distributions are obtained through survey estimates of
domain means or proportions.

For the superpopulation, we assume that we have a
model such that E, (7,)=m(x;), where E, is the super-
population expectation. We assume further that as we move
to a continuum of values on x, then m(x) is a smooth
function. The function m(x) is the ultimate function of
interest for estimation. In section 2 we provide local poly-
nomial regression methods to estimate m(x). These
methods are applied to data from the 1990 Ontario Health
Survey in section 3. In section 4, the question is asked:
would the classical polynomial regression techniques have
served equally as well in modeling m(x)? Some future
directions for this work are given in section 5. Generally, we
adopt the notation of Wand and Jones (1995) in discussing
local polynomial regression here.

2. Basic Methodology

For local polynomial regression, the nestimate of m (x)
at any value of x is obtained upon minimizing

k
Z IA’:{)A/: _Bo _B1(x,- —x)—...
i - B, (x; — )"} K((x; —x)/ )/ b (1)

with respect to ABO’ABI’ ...,AB ,~ The values that minimize (1)
are denoted]oy Bos» B> -s By Further, for the given value of
x, m(x)=PB, In (1), the kernel K(¢) is a symmetric
function with [K(f)dt =1, [tK(t)dt =0, 0 < [’ K(¢)dt <
oo and

R(K)=[[K(®)] dt <. )

Also in (1), % is the window width of the kernel. In mini-
mizing (1) to obtain local polynomial regression estimates,
there are two possibilities for binning on x. The first is to
bin to the precision of the recorded data so that y, is
calculated at each distinct outcome of x. In other situations
it may be practical to pursue a binning on x that is rougher
than the accuracy of the data.
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In moving from the sample to the population we
maintain the same window width /4. This is in contrast to
Breidt and Opsomer (2000) and Buskirk (1999) who
assume a smoothing parameter /, for smoothing in the full
finite population. In the context here, this would yield a
function m, (x), the finite population smoothed version of
the ¥y, with smoothing parameter /,, as a finite population
parameter of interest followed by m(x) the hypothetical
smooth function under the asymptotic assumptions. We
have kept ~ constant in view of the way in which binning
that has been done; the bin structure is the same in the
sample as in the population. The choice of the smoothing
parameter s depends on the spacing of the x’s and the
variation in the data (Green and Silverman 1994, pages 43 -
44). The spacing of the covariate is usually dominant in the
determination of 4. Since the spacing has been kept
constant from sample to finite population with the spacing
changing only when the asymptotic assumptions are
applied, we keep %, = h.

Korn and Graubard (1998) provide a slightly different
objective function to (1). They replace the sum over the bins
in (1) by the sum over all sampled units and p; in (1) by the
sample weights. Korn and Graubard’s objective function
reduces to (1) plus a term that involves the weighted sum of
squares of deviations of sample observations from the
binned means where the weights are the sample weights
scaled to sum to one. Consequently, the estimate of m (x) is
the same in both cases.

The estimate 7:(x) and its first two moments can be
expressed in matrix notation. The forms are exactly the
same as those that appear, for example, in Wand and
Jones (1995, chapter 5.3) whose notation we have
adopted. Let the vector of finite population means at the
distinct values of x be ¥= (7, ..., 7,)" andlet ¥ be its
vector of survey estimates. Further, let

1 x-x (x, —x)?
S
1 x, —x (x, —x)7
and
W, =ldiag(pll<((x1 ~0/h), j
T h 2, K((x, —=x)/h), ... p,K((x, —x)/h)

The matrix W_ is W, with p replaced by p. Then

A

i(x)=e (X W, X,)" X W, ¥, €)

where e is the £ x1 vector (1, 0, 0, ..., 0)". The approxi-
mate design-based expectation of 7 (x) is

E,(m(x)=e"(X; W, X)'X]W,y, (4
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where £, denotes expectation with respect to the sampling
design. We can also consider (4) as a smoothed estimate of
m(x) so that m(x) is also an estimate of m(x). In the
derivation of (4) we note that E,(y)=y and E,(W,)=
W_ for large sample size n. Further, in (3) we can write
W._ =W, +A, where A=W_—W,_ We use the first two
terms in the expansion (I+B)" =I-B+B”>-B’ + ... as
an approximation to complete the derivation. Using the
same techniques, the approximate design-based variance is
given by

V,(m(x)) =
e (XIW X ) 'XIW VW X _(XIW X )e. (5)

The results in (4) and (5) were obtained ignoring higher
order terms in 1/n. An estimate of the variance pr (M (x))
is obtained on substituting the survey estimate V for V
and W, for W_ in(5).

3. Examples from the Ontario Health Survey

We illustrate local polynomial regression techniques with
data from the Ontario Health Survey (Ontario Ministry of
Health 1992). This survey was carried out in 1990 using a
stratified two-stage cluster sample. The purpose was to
measure the health status of the people of Ontario and to
collect data relating to the risk factors of major causes of
morbidity and mortality in Ontario. The survey was
designed to be compatible with the Canada Health Survey
carried out in 1978-79. A total sample size of 61,239
people was obtained from 43 public health units across
Ontario. The public health unit was the basic stratum with
an additional division of the health unit into rural and urban
strata so that there were a total of 86 strata. The first stage
units within a stratum were enumeration areas taken from
the 1986 Census of Canada. An average of 46 enumeration
areas was chosen within each stratum. Within an
enumeration area, dwellings were selected, approximately
15 from an urban enumeration area and 20 from a rural
enumeration area. Information was collected on members of
the household within the dwelling,

Several health characteristics were measured. We focus
on one continuous variable from the survey, Body Mass
Index (BMI). The BMI is a measure of weight status and is
calculated from the weight in kilograms divided by the
square of the height in meters. The index is not applicable to
adolescents, adults over 65 years of age and pregnant or
breastfeeding women. The measure varies between 7.0 and
45.0. A value of the BMI less than 20.0 is often associated
with health problems such as eating disorders. An index
value above 27.0 is associated with health problems such as
hypertension and coronary heart disease. Associated with
the BMI is another measure, the Desired Body Mass Index
(DBMI). The DBMI is the same measure as BMI with
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actual weight replaced by desired weight. A total of 44,457
responses were obtained for the BMI and 41,939 for the
DBML

When there are only a few distinct outcomes of x,
binning on x is done in a natural way. For example, in
investigating the relationship between the body mass index
(BMI) and age, the age of the respondent was reported only
at integral values. The solid dots in Figure 1 are the survey
domain estimates of the average BMI (¥,) for women at
each of the ages 18 through 65 (x,). The solid and dotted
lines show the plot of 71(x) against x using bandwidths
h=7 and h =14 respectively. It may be seen from Figure
1 that BMI increases approximately linearly with age until
around age 50. The increase slows in the early 50s, peaks at
age 55 or so, and then begins to decrease. On plotting the
trend lines only for BMI and the desired body mass index
(DBMI) for females as shown in Figure 2, it may be seen
that, on average, women desire to reduce their BMI at every
age by approximately two units.
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Figuire 1. Age trend in BMI for females.
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Figure 2. Age trends for females.
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In other situations it is practical to construct bins on x
wider than the precision of the data. To investigate the
relationship between what women desire for their weight
(DBMI=y,) and what women actually weigh (BMI =x,)
the x—values were grouped. Since the data were very
sparse for values of BMI below 15 and above 42, these data
were removed from consideration. The remaining groups
were 15.0 to 15.2, 15.3 to 15.4 and so on, with the value of
x, chosen as the middle value in each group. The binning
was done in this way for the purposes of illustration to
obtain a wide range of equally spaced nonempty bins. For
each group the survey estimate y, was calculated. The solid
dots in Figure 3 show the survey estimates of women’s
DBMI for each grouped value of their respective BMI. The
scatter at either end of the line reflects the sampling
variability due to low sample sizes. The plot shows a slight
desire to gain weight when the BMI is at 15. This desire is
reversed by the time the BMI reaches 20 and the gap
between the desire (DBMI) and reality (BMI) widens as
BMI increases.

30

25

20

bandwidth =7
. wasee bandwidth = 14

Desired body mass index for females

15 20 25 30 3 0
BMI groups
Figure 3. BMI trend in DBMI for females.

4. Parametric Versus Nonparametric Regression

Local polynomial regression allows us to obtain non-
parametrically a functional relation between y and x. How-
ever, a parametric model may also be reasonable. For
example, on examining Figure 1 showing the Body Mass
Index against age, we might consider the parametric model
that y has a quadratic relationship to x. We may also want to
test in Figure 2 if the two lines are parallel, or equivalently
that the difference between the Body Mass Index and the
Desired Body Mass Index for females is constant over all
ages. This would involve modeling the trend lines as second
degree polynomials and testing for equality in the trend lines
of the parameters associated with the quadratic term as well
as the parameters associated with the linear term. In all
cases, the question arises as to whether or not the data can
be adequately modeled by a polynomial relationship
between y and x. One method that we propose as an
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answer to this question is to calculate the confidence bands
based on local polynomial regression. These bands can be
thought of as providing a region of acceptable model
representations. If an appropriate parametric regression line
falls within the bands, then it provides a reasonable model
description of the data. The 100(1 —a)% local polynomial
regression bands are obtained by ploting

v, (i (x)) (6)

over a range of values of x, where z,, is the
100(1—o./2) percentile of the standard normal distribution,
where 7i1(x) is determined from (3) and where Vp (M (x)) is
(5) with V replaced by its sample estimate V.

The parametric regression line to be tested may be
obtained in one of two ways depending upon what sample
information is available. If the complete sample file with
sampling weights is available, then the standard regression
approach in, for example, SUDAAN may be used. If only
the bmned data are available, in partlcular the survey
estimates y with estimated variance-covariance matrix V,
then another approach is needed.

For this second approach assume that m(x;) :x,.T B,
where x! =(1, x;, x7, ... q) and where B" =(B,, B, ..,
B,) is the vector of regress10n coefﬁ01ents For the finite
populat1on we assume that 7, = x| f+¢, where the errors
are deviations of the actual ﬁmte from the model. For
simplicity, we assume that these errors have mean 0 and
variance-covariance matrix ¢°I. Since the data are given by
the survey estimates ¥, with variance-covariance matrix
V, the operative model is

3 =xp+3, ©)

where the 8, have mean 0 and variance-covariance matrix
Y. = 6’1+ V. The usual weighted least squares estimate of

B is

mx)xtz,,

-1

p=(x'T7x) XYY, ®
where the i™ row of X is xT i=1, ..., k. Interms of data
analysis it is necessary to replace Z in (8) by its estimate
3. Now the survey estlmate of V is V so that it remains
to find an estimate of o”. This may be obtained through
rss = (¥ — XB) (¥ — Xp), the residual sum of squares, by
one of two ways.

The first method is to approximate the expected residual
sum of squares under model (7) and solve directly for c°.
Upon using the expansion (I+B)' =I1-B+B* -B’ +
we find

E@ss)z(n—g-1) o +tr(V)-tr X' VXX'X)™"). (9)

The estimate of o” is obtained on setting rss equal to the
right hand side of (8) with V replaced by V and then
solving for 6> This leads to an iterative approach to model
fitting. An initial estimate of p is obtained from (8) with V
replaced by the survey estimate V. Then cs is estimated
through (9) and a new estimate of B using >=6U+V is
obtained. The process is repeated until convergence is
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obtained in the estimate of o”. If the estimate of o is
negative, it is set to 0. The second method for estimating ”
is obtaining by first treating the errors in (7) as multivariate
normal variables. Then a profile likelihood for ¢* can be
obtained on replacing p and V by their estimates. The
most influential term in this profile likelihood is

r' (6’ I+V)'r, (10)

where r=y-XX'(c’I+V)'X)"'X" (¢’ 1+V)'y s
the vector of residuals. An approximation to the profile like-
lihood estimate & is that value of 6 which minimizes
(10).

To provide examples of the question of the adequacy of
parametric regression, we examined two different variables
in the Ontario Health Survey and their relationship to the
body mass index (BMI). These were age and fat consump-
tion as a percentage of total energy consumption. For age
the binning was natural and at the precision of the recorded
data. Age was restricted to the range of 18 to 65 years since
the index is not applicable outside this range and age was
recorded in years. The scatterplot of BMI against age with
the accompanying local polynomial regression line is shown
in Figure 1. The survey data on fat consumption in
percentages were recorded to three decimal places. Due to
the sparseness of the data at the extremes we looked at fat
consumption in the range of 14 to 56% of total energy
consumption. Further, we binned the data on the covariate
(fat consumption) using bins 14.0 up to 14.2, 14.2 upto 14.4
and so on; the midpoints of the bins (14.1, 14.3 and so on)
were used as the x,. At each bin the survey estimate 3, for
BMI was calculated. It is the binned data that appear as a
scatterplot of BMI against fat consumption in Figure 5. The
solid line in Figure 5 is the local polynomial regression line
with g =1 for BMI on fat content. As in Figure 3, the larger
variability at the extremes reflects greater sampling
variability due to smaller sample sizes at the extremes. From
Figure 5 it appears that BMI increases slightly as fat
consumption increases. Since the complete data file for the
survey was available, regression lines for all variables were
obtained through SUDAAN.

In Figure 4 the solid lines are the 95% confidence bands
based on (6) and the dashed line is the parametric second
degree polynomial regression line. Since the dashed line
falls near the border for women in their thirties and outside
the bands for women in their early sixties, a second degree
polynomial barely adequately describes the relation between
BMI and age. Another model might be preferable. Figure 6
shows the same 95% confidence bands but for the
consumption of fat as a percentage of total energy consump-
tion. In this case the dotted line is the simple linear
regression line of BMI on fat consumption. For fat
consumption the line falls completely within the confidence
bands so that simple linear regression appears to be an
adequate description of the model relationship.
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If the data have been binned to the precision of the data
as in the case of age above, and if the exploratory analysis
is complete, we can stop. The estimates and variance
estimates obtained are equal to the estimates and variance
estimates obtained from the raw data. This may be seen on
examining (3). The term on the right hand side of (3) can
be expressed as a sum over the sample of the sample
weights times a new measurement obtained from the raw
y — measurement times an appropriate value taken from
e (XIW X )" XIW. times the total of the sample
weights, where W. is W_ with the p,’s removed. These
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adjusted y — measurements may be fed into SUDAAN or
STATA to obtain the required approximate variance esti-
mate. It may be that the binning has been rougher than the
precision of the data or that some bins have been dropped in
the tails of the distribution of x due to sparseness of the
data in those bins. Both of these situations occurred in
analyzing the relationship of BMI to fat consumption. Once
the exploratory analysis has been completed we can return
with a final model and smoothing parameter, if a nonpara-
metric approach is used in the final analysis, and apply to
model to the raw data obtaining variance estimates through
SUDAAN or STATA as necessary. Depending on the
amount of roughness in the binning and the number of bins
dropped due to sparseness in the data, the variance estimates
obtained from the raw will be approximately the same as
those from the binned data.

5. Future Directions

Like Bellhouse and Stafford (1999), this paper adapts a
modern method of smoothing for the analysis of complex
survey data. It represents an example of a host of regression
techniques that could be used. To describe these we embed
the current context in a general framework hinting at future
work. In doing so we mimic the developments of Hastie and
Tibshirani (1990).

Here a smoother is said to be linear if fitted values are
obtained by applying a matrix S to a response vector y. As
in the case of simple linear regression for independent and
identically distributed data, welet H=(X"X "' X)"'X" X"
and further denote (X W. X )"'X!W_ as S ,~ Both are
examples of S§. In addition, the response vector of binned
means is a type of smooth ¥ =S,y, where y is the vector
of all sample responses and where S, involves the sample
weights. Also the usual regression context involves applying
a matrix similar to H to the full response vector y = H,y.
So moving from usual regression to regressing means to
local polynomial smoothing reduces to applying different
smoothing matrices to y:

H y->HS,y—>S,S,y.

In general S, can be replaced by any smoother S and the
methods extended to multiple covariates.

There are many advantages to binning the response from
both a theoretical and practical standpoint. Standard
smoothing tools, like those found in Splus, can be applied
without modification of the smoother due to sampling
issues. In addition, in the case of the additive model, finite
population central limit theorems can be invoked and issues
like degrees of freedom, choice of smoothing parameter,
optimizing a criterion, can be handled in the usual manner.
In the case of multiple covariates x,, ..., x, the curse of
dimensionality will result in sparse bins not allowing the use
of the central limit theorem. This may be countered in the
usual way by binning partial residuals one dimension at a
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time. Here smoothers S ij,, j=1,.., g wouldbeusedina
backfitting algorithm.

It is our intention to study additive and generalized
additive models in the above manner and to introduce these
techniques to the analysis of complex survey data.
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