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A Repeated Half-Sample Bootstrap and Balanced Repeated Replications
for Randomly Imputed Data

Hiroshi Saigo, Jun Shao and Randy R. Sitter '

Abstract

In this paper, we discuss the application of the bootstrap with a re-imputation step to capture the imputation variance (Shao
and Sitter 1996) in stratified multistage sampling. We propose a modified bootstrap that does not require rescaling so that
Shao and Sitter’s procedure can be applied to the case where random imputation is applied and the first-stage stratum
sample sizes are very small. This provides a unified method that works irrespective of the imputation method (random or
nonrandom), the stratum size (small or large), the type of estimator (smooth or nonsmooth), or the type of problem (variance
estimation or sampling distribution estimation). In addition, we discuss the proper Monte Carlo approximation to the
bootstrap variance, when using re-imputation together with resampling methods. In this setting, more care is needed than is
typical. Similar results are obtained for the method of balanced repeated replications, which is often used in surveys and can
be viewed as an analytic approximation to the bootstrap. Finally, some simulation results are presented to study finite
sample properties and various variance estimators for imputed data..
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1. Introduction

Item nonresponse is a common occurrence in surveys
and is usually handled by imputing missing item values.
The various imputation methods used in practice can be
classified into two types: deterministic imputation, such
as mean, ratio and regression imputation, typically using
the respondents and some auxiliary data observed on all
sampled elements; and random imputation. In both cases
the imputation is often applied within imputation classes
formed on the basis of auxiliary variables. This article
focuses on random imputation.

Typically, random imputation is done in such a way that
applying the usual estimation formulas to the imputed data
set produces asymptotically unbiased and consistent survey
estimators (e.g., means, totals, quantiles). More details about
random imputation are provided in section 2. It is common
practice to also treat the imputed values as true values when
estimating variances of survey estimators. This leads to
serious underestimation of variances if the proportion of
missing data is appreciable, and to poor confidence intervals.

There have been some proposals in the literature to
circumvent this difficulty. For random imputation, Rubin
(1978) and Rubin and Schenker (1986) proposed the
multiple imputation method to account for the inflation in
the variance, which can be justified from a Bayesian
perspective (Rubin 1987). Adjusted jackknife methods for
variance estimation have been proposed for both random
and deterministic imputations (Rao and Shao 1992; Rao
1993; Rao and Sitter 1995; Sitter 1997), under stratified
multistage sampling. However, it is well known that the
jackknife cannot be applied to non-smooth estimators, e.g.,

a sample quantile or an estimated low income proportion
(Mantel and Singh 1991).

There are two methods available for handling randomly
imputed data for both smooth and non-smooth estimators:
the adjusted balanced repeated replication (BRR) methods
proposed by Shao, Chen and Chen (1998); and the bootstrap
method proposed by Shao and Sitter (1996) (see also Efron
1994) with a re-imputation step to capture the imputation
variance. The bootstrap method is more computer intensive
but is easy to motivate and understand, and provides a
unified method that works irrespective of the imputation
method (random or nonrandom), the type of © (smooth or
nonsmooth), or the type of problem (variance estimation or
sampling distribution estimation).

In this article we continue the work by Shao and Sitter
(1996). First, we show in section 3 how Shao and Sitter’s
bootstrap procedure can be modified to handle very small
stratum sizes (e.g., two psu’s per stratum). Second, we
discuss in section 4 the proper Monte Carlo approximation
to the bootstrap estimators, a problem for which more care
is needed when random re-imputation is applied than is
typical. This has no detrimental effect on bootstrap
confidence intervals based on the percentile method, but if
done incorrectly, will cause the bootstrap—¢ to perform
poorly. Third, we consider a BRR variance estimation
method with a re-imputation step, which can be viewed as
an analytic and symmetric approximation to the bootstrap
method. Finally, we present some simulation results to study
properties of various bootstrap and BRR variance
estimators.
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2. Stratified Multistage Sampling
and Random Imputation

Though the methods discussed in this article can be more
generally applied, we restrict attention to the commonly
used stratified multistage sampling design. Suppose that the
population contains /A strata and in stratum /4, n, clusters
are selected with probabilities p,, i =1, ..., n,. Samples
are taken independently across strata. In the case of
complete response on item y, let

Yh = th:/(nh phi)
i=1
by a linear unbiased estimator of the stratum total Y,
where ¥, is a linear unbiased estimator of the cluster total
Y,; for a selected cluster based on sampling at the second
and subsequent stages. A linear unbiased estimator of the
total, ¥ =YY,, is given by ¥ = X¥,, which may be
written as
Y = z Whik Y hite> (1)
(hik)es
where s is the complete sample of elements, and w,,, and
Ve Tespectively denote the sampling weight and the item
value attached to the (%ik)™ sampled element.

Often a survey estimator, 0, can be expressed as a
function of a vector of estimated totals as in (1). If one is
interested in the population distribution function, it can be
estimated by F () = 2 Wit L Vg < 1)/U, where I() is
the usual indicator functionand U = Y w,,. Some non-
smooth estimators that are of interest are the p® sample
quantile, £-'(p), where £ is the quantile function of ¥,
and the sample low income proportion F[1/2 F~'(1/2)].

Suppose that the value y,, is observed for (hik)e
s, s, termed a respondent, while for others, (hik) € s,,, it
is missing, termed a nonrespondent, with s =5, U's, .
When there are missing data, it is common practice to use
{Vui: (hik)es,} to obtain imputed values J,, for
(hik) € s, and then treat these imputed values as if they
were true observations and estimate ¥ with

f} = zwhik Yhik T zwhik Vhik- 2

In practice, the accuracy of the imputation is improved
by first forming several imputation classes using control
variables observed on the entire sample, and then imputing
within imputation class. For simplicity we consider a single
imputation class.

Random imputation entails imputing the missing data by
a random sample from the respondents, or, in the presence
of auxiliary data, by using a random sample or residuals. If
the imputation is suitably done, the estimator ?1 in (2) is
asymptotically unbiased and consistent, although it is not as
efficient as Y in (1). Throughout this article, we assume
that, either

within each imputation cell, the response probability for
a given variable is a constant, the response statuses for
different units are independent, and imputation is carried

Statistics Canada, Catalogue No. 12-001

out within each imputation cell and independently across
the imputation cells,
or

within each imputation cell, the response probability of a
given variable does not depend on the variable itself (but
may depend on the covariates used for imputation),
imputation is carried out independently across the impu-
tation cells, and within an imputation cell, imputation is
performed according to a model that relates the variable
being imputed to the covariates used for imputation.

We also assume the same asymptotic setting as that in
Shao et al. (1998). Thus, consistency (or asymptotic unbi-
asedness) refers to convergence of estimators (or expec-
tations of estimators) under the assumption in Shao et al.
(1998), as the first-stage sample size n = Y. n, increases to
infinity.

There are many methods random imputation. We
consider only two in this article: the weighted hotdeck
considered in Rao and Shao (1992), which we refer to
simply as random imputation, and the adjusted weighted
hotdeck proposed in Chen, Rao and Sitter (2000), which we
refer to as adjusted random imputation. Our results can be
easily extended to random imputation with residuals in the
presence of auxiliary data (e.g., random regression impu-
tation). Generalizations to other types of random imputation
may be possible, but will not be considered here.

Random imputation randomly selects donors, y,, from
{yur: (hik)es.} with replacement with probabilities
w,, /T, where T = 2, Wi In this case E, (Y) =
(S/TYU =Y., a ratio estimator which is asymptotically
unbiased and consistent for Y, where $ = s Wik Vi-
Here E, denotes expectation under the random imputation.
The variance of ¥, is larger than the variance of Y, because
of the random imputation. However, the distribution of item
values in the imputed data set is preserved.

Adjusted random imputation simply uses fj,; = 7, +
(S/T - §/T) as the imputed values instead of 7,,, where
S =3, W Vo T =X, Wy and 3, are the imputed
values from random imputation. Chen et al. (2000) show
that this method completely eliminates the variability due to
the random imputation for estimating the population total.
Thatis ¥, = X, Wiy Y + X Wi Mg = ¥, The method
also retains the distribution of item values in the imputed
data set. However, the resulting imputed values need not be
actual realizations.

An imputed estimator of the distribution function under
random imputation is given by

zwhik I(yyy <0
F@y=|" U. 3
1 +zwhik1()7hik <) ®

>

An imputed estimator of the distribution function under
adjusted random imputation, denoted F,(¢), is simply
obtained by replacing j,, in(3) by fj,;. For estimating the
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distribution function, adjusted random imputation does not
eliminate the imputation variance as it does for estimating
the total. However, Chen et al. (2000) show that it does
significantly reduce the imputation variance when compared
to random imputation. Both F,(f) and F,(t) are
asymptotically unbiased and consistent.

For studying variance estimation with resampling meth-
ods, we assume that n/N is negligible, where n = Y n,,
N =3YN, and N, is the number of first-stage clusters in
the population.

3. A Repeated Half-Sample Bootstrap

When there are imputed missing data, naive bootstrap
variance estimators obtained by treating the imputed data
set, ¥,, as ¥ = {y,, : (hik) € s}, the data set of no missing
values, do not capture the inflation in variance due to
imputation and/or missing data and lead to serious under-
estimation. As a result, they are inconsistent. This is so,
because simply treating ¥, as Y ignores the imputation
process. This was noted by Shao and Sitter (1996) and they
proposed re-imputing the bootstrap data set in the same way
as the original data set was imputed. The bootstrap
procedure in Shao and Sitter (1996) can be described as
follows.

1. Draw a simple random sample {y;:i=1, ..,
n, —1} with replacement from the sample
{y,:i=1..,n}, h=1, .., H, independently
across the strata, where y, = {y,;: (h, i, j)&
Sr} V {yhij: (h’ i’ ]) € Sm}'

2. Let a;; be the response indicator associated with
Yigo Sm = A1, &, J) @y = 0} and 57 = {(h, i,
J)iay; =13, Apply the same imputation
procedure used in constructing the imputed data sey
Y, to the “nonrespondents” in s, using the
“respondents” in s7. Denote the bootstrap analogue
of ¥, by ¥,.

3. Obtain the bootstrap analogue 6; of 0, based on
the imputed bootstrap data set ¥;. For example, if
=Y in(l)and §, = ¥, in(2), then

0, =Y = ZW;ik Ve + ZW;ik Phits )

where y;, is the imputed value using the bootstrap data and
Wy 18 m,/(n, —1) times the survey weight associated
with y,.. (to reflect the fact that the bootstrap sample size is
n, — 1, not n,). The bootstrap estimator of Var (,) is

v,(0,) = Var (0, (5)

where Var® is the conditional variance with respect to ¥,
given ¥,.

Shao and Sitter (1996) show that the bootstrap estimator
defined in (5) is consistent for both smooth and nonsmooth
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estimators 0. When a random imputation method is
considered, an implicit condition in their development is
that n,/(n, —1) goes to 1. This can be seen from the
special case of 6 = Y. From (2),

Var(¥)) = Var[E,(Y))] + E[Var,(¥,)]

z Whik Y hik z Whik

S, s

z Whik
S,.

= Var

+ E{éZZW;,.kJ, (6)

where
6 = zwhik Ve — 7r)2/ zwhik’
V= zwhik yhik/ zwhik'
Similarly, by (4),
Z Wiik Vhik Z Wik
Var*(Y)) = Var*| > —
z Whik
+E* [6*2 ZW;fk], (7
where

&2 =2 W (V) / D Wi

*
S,

—%k — * * *
Ve = zwhik yhik/ zwhik'
KM sy

From the theory of the bootstrap, the first terms on the right
hand side of (6) and (7) converge to the same quantity, as do
6% and 6*2. Thus, Shao and Sitter’s bootstrap is consistent
if ¥, w;; and X, wp, converge to the same quantity,
which is true if n,/(n, —1) converges to 1 for all 4,
because

E {Z w;%kj - E {za - i) w;fk}

= z (I—a,,) wi,n,/(n, —1).

The second term on the right hand side of (6) is the variance
component corresponding to random imputation, which is
typically a small portion of the overall variance. Thus, the
overestimation due to 7, /(n, — 1) is serious only when the
n,’s are very small. The case n, =2 is, however, an
important special case.

We now propose a bootstrap method which has no
difficulty in the case of very small »,’s while remaining
valid more generally. Note that the use of bootstrap sample
size n, =1 is to ensure that the first term on the right hand
side of (7) has the same limit as the first term on the right
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hand side of (6) (Rao and Wu 1988). When #, is used as
the bootstrap sample size in stratum /%, Rao and Wu (1988)
showed that in the case of no missing data, the bootstrap
variance estimator underestimates. They proposed a
rescaling to circumvent the problem, but rescaling does not
produce correct bootstrap estimators in the presence of
imputed data.

What is ideally required for our problem is a bootstrap
method with the bootstrap sample size equal to the original
sample size n, which produces an asymptotically unbiased
variance estimator (in the case of no missing data) without
rescaling. We now show that this can be accomplished as
follows. Suppose that there is no missing data and that all of
the n, = 2m,’s are even. Take a simple random sample of
size m, without replacement independently from {y,,:
i=1, .. n,} and repeat each obtained unit twice to get
{y,;:i=1,.., n,}. We call this method the repeated half-
sample bootstrap. The resulting v, will then be approxi-
mately unbiased and consistent. In the linear case where
Y = % ity Wit Vi = Zn Zita Y/ 1y = 24 ¥, and y, =
> n, i v, the consistency of v, follows from

> yh,j

hll

Var* (Y)—ZVar( )—ZVar{

=y Var*{zm” i yh,j
h

n, my, =1
1 m,,
— * *
v LS
h my -

1-1/2 1
-3 2 Ly, -
h mh nh _1 i=1

= ZSf/nh,
h

the usual approximately unbiased and consistent estimator
of variance, where s; = (n, —1) i  — ¥,)* The
consistency of v, for a nonlinear 8, follows from the
linear case and Taylor’s expansion, when 6, is a function
of weighted averages, or the arguments used in Shao and
Rao (1994), Shao and Sitter (1996), and Shao et al. (1998)
when 0, is non-smooth such as a median.

If n, = 2m, +1 is odd, it is not possible to take an exact
half-sample. In this case, the following two results lead us to
an adaptation of the above idea:

i) If we choose a simple random resample of size
m, = (n, —1)/ 2 without replacement and repeat
each unit twice, we end up with n, — 1 units. If we
obtain an additional unit by selecting one at
random from the 7, —1 units already resampled,
Var' (1) = 5,(n, + 353/ n?;

ii) If we choose a simple random resample of size
m, + 1 without replacement and repeat each unit
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twice, we end up with n, +1 units. If we discard
one of these at random, Var*(Y*)=13X,(n, +
1) s?/n;.

Thus, if we used method (i) with probability 1/4 and
method (ii) with probability 3/4 at each bootstrap
replication, we obtain the desired result. This repeated half-
sample bootstrap method yields approximately unbiased
variance estimates without rescaling and has a bootstrap
sample size equal to the original sample size. Thus, if we
use this bootstrap for Step 1 of the method of Shao and sitter
(1996) as described above, the resulting bootstrap estimators
are asymptotically unbiased and consistent for any =#,,
under the regularity conditions stated in Shao and Sitter
(1996) and Shao et al. (1998).

4. The Proper Monte Carlo for the Bootstrap

If vy in (5) has no explicit form, one may use the Monte
Carlo approximation

A 1 —
Vp(0,) » — z ( Ty — 97) ®)
B 5
where 0] = B'3F, 07, 07, = 0(¥7,), and ¥,
b =1, ..., B, are independent re-imputed bootstrap data

sets. It is common practice in many applications of the
bootstrap to replace the average of the bootstrap estimators
0; in (8) by the original estimator 6, (see Rao and Wu
1985, page 232). The latter is simpler to use and is thus the
most common. With no imputed data, this is usually correct.
However, using the analogue with the re-imputed bootstrap
is not correct. The reason is that 0, is the result of a single
realization of the random imputation, while 07 ~
E” (6*) ~ E (6 ) since we are averaging over repeated re-
imputations, and 6 and E, (G ) are not close for random
imputation. When 6 = Y for example, E, (Y ) =
given in section 2 and the difference Y, — Yr is not a
relatively negligible term when random imputation is used.
Thus,

~ 02 + (0] -0,

and the first term goes to Var*(6%) as B — oo but the
second term does not go to zero which implies that v,,
badly overestimates the variance. This is not only true for
the proposed repeated half-sample bootstrap but also for
those considered in Shao and Sitter (1996).

One should also note that using the é§(,,), b=1,.. Bto
obtain bootstrap confidence intervals via the percentile
method avoids this concern since the histogram of these
values will be correctly centered about £ *(é?). However,
one must take more care with boostrap—¢ confidence
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intervals. It is important that one define #; = (0,(,))
,())/Gb (not #; = (6® —0,)/5;) and use {OA &, o),
6, -t 05}, Where c;2 = v, ¥, 15 = CDFt‘l(oc),
t; CDF;I(l —~a) and CDE(x) = #{t; < x;b =1, ..,
B}/B.

5. A Repeated BRR

We first describe the most common application of the
BRR, n, = 2 clusters per stratum (McCarthy 1969) in the
setting of no missing data. A set of B balanced half-samples
or replicates is formed by deleting one first-stage cluster
from the sample in each stratum, where this set is defined by
a B x H matrix (5,,)s,, with §,, = +1 or —1 according
to whether the first or the second first-stage cluster of
stratum £ is in the p" half-sample and ¥2,3,,5,, = 0
for all & = A'; that is, the columns of the matrix are
orthogonal. A minimal set of B balanced half-samples can
be constructed froma B x B Hadamard matrix by choosing
any H columns excluding the column of all +1’s, where
H+1<B<H+4. Let 6 be the survey estimator
computed from the ™ half sample The estimator G(b) can
be obtained using the same formula as for & with w,,
changed to w; ), which equals 2w, or 0 according to
whether or not the (i)™ cluster is selected in the 5™ half-
sample or not. The BRR variance estimator for § is then
given by

1< . -
Uprr ~ B ; (C e(.))za ©

where 5(,) =3, é(,,) /B, and is often replaced by 0. The
variance estimator vgp has been shown to be consistent
for smooth functions of estimated totals by Krewski and
Rao (1981) and for nonsmooth estimators by Shao, and Wu
(1992) and Shao and Rao (1994).

A naive BRR for problems with randomly imputed data
would be obtained as in (9) with 6(,,) and 6 (, replaced by
0,(,,) and 0() =B'%,0,,, where 0,, is the estimator
calculated from ¥, using the BRR weights. But this
produces inconsistent variance estimators because it fails to
take into account the effect of missing data and the random
imputation.

To correctly apply the BRR in the presence of random
imputation by using re-imputation, we must deal with the
issue of n, being small. Recall that for the bootstrap such
small n,’s caused difficulty because the stratum resample
size, n, — 1, was smaller than the original stratum sample
size, n,. This is true for the BRR, as well. We propose an
easy way to circumvent this difficulty. Rather than obtaining
the 5™ BRR replicate of the estimator, 6( »)» from the same
formula as for © but with weights Wiy €qual 2w, or 0
according as to whether the (hi)™ cluster is selected in the
b™ half-sample or not, instead use the original weights but
include the (hi)™ cluster twice or not at all according as to
whether the (hi)" cluster is selected in the »™ half-sample
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or not. If we view the BRR in this way: i) the resulting
Lgrr 1N (9) remains the same; and ii) the resample size is
the same as the original sample size. This repeated BRR can
be viewed as a type of balanced bootstrap, however one
should note that the balanced bootstrap described in Nigam
and Rao (1996) for the case of no missing data does not
work in this case because, though it uses a resample size
n, = 2 in each stratum, it does so in such a way as to still
require rescaling and thus will not work in the presence of
random imputation.

The proposed repeated BRR has no difficulty in the
presence of random imputation. The procedure becomes

1. Form the set of half-samples, 1 unit per stratum,
using a Hadamard matrix as described above.

2. Obtain the »™ BRR replicate by repeating each unit
in the obtained half-sample twice. Denote this
{ypii=1, .., n, =2}

3. Let a;, be the response indicator associated with
Yhgs Sw = L 4, J)s @y = 03, and 57 = {(h, 1,

Nt @y = 1} Apply the same imputation proce-
dure used in constructing ¥, to the unmits in s,
using the “respondents” in s”. Denote the 5™ BRR
replicate of ¥; by ¥/,

4. Obtain the BRR analogue é;(b) of 0, based on the
imputed BRR data set ¥,

5. Repeat 1-4 for each row of the B x H matrix to
get é;(b) for b =1, .., B and apply the standard
BRR formula (9) to obtain BRR variance estimators
for 0, with 0, = B'%,0;, (For the same
reason that is discussed in section 4, we should not
replace 5,(,) by 0,).

We can extend this idea to cases with n, > 2 by using
the same strategy with half-samples obtained from balanced
orthogonal multi-arrays (BOMA’s) (Sitter 1993). For exam-
ple, Table 1 gives a set of B = 24 balanced resamples for
H =7 strata with n, =4 psu’s in each stratum. It is
derived using the BOMA given in Table 1 of Sitter (1993)
and repeating each resampled unit twice as in Step 2 above.
Using a BOMA in Steps 1 and 2 of the procedure above also
results in an approximately unbiased variance estimator,
BOMA'’s are fairly easily constructed for even n, using
balanced incomplete block designs and Hadamard matrices,
but are difficult to construct for odd #n,. They can also
handle unequal n, s for different strata, though construction
becomes a more serious problem (see Sitter 1993).

6. A Simulation

To study the properties of the proposed resampling
variance estimators, we consider a finite population of
H =32 strata with N, clusters in stratum /% and ten
ultimate units in each cluster. The characteristic of interest
Ve are generated as follows:

Statistics Canada, Catalogue No. 12-001
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Table 1
A Set of Balanced Resamples Constructed from a BOMA
h

b 1 2 3 4 5 6 7
1 (1,1,3,3) (1,1,3,3) (1,1,3,3) (1,1,3,3) (1,1,3,3) (1,1,3,3) (1,1,3,3)
2 (1,1,4,4) (1,1,4,4) (1,1,4,4) (1,1,4,4) (1,1,4,4) (1,1,4,4) (1,1,4,4)
3 (1,1,2,2) (1,1,2,2) (1,1,2,2) (1,1,2,2) (1,1,2,2) (1,1,2,2) (1,1,2,2)
4 (2,2,4,4) (1,1,3,3) (2,2,4,4) (1,1,3,3) (2,2,4,4) (1,1,3,3) (2,2,4,4)
5 (2,2,3,3) (1,1,4,4) (2,2,3,3) (1,1,4,4) (2,2,3,3) (1,1,4,4) (2,2,3,3)
6 (3,3.4,4) (1,1,2,2) (3,3.4,4) (1,1,2,2) (3,3.4,4) (1,1,2,2) (3,3.4,4)
7 (2,2,4,4) (2,2,4,4) (1,1,3,3) (1,1,3,3) (2,2,4,4) (2,2,4,4) (1,1,3,3)
8 (2,2,3,3) (2,2,3,3) (1,1,4,4) (1,1,4,4) (2,2,3,3) (2,2,3,3) (1,1,4,4)
9 (3,3.4,4) (3,3.4,4) (1,1,2,2) (1,1,2,2) (3,3.4,4) (3,3.4,4) (1,1,2,2)
10 (1,1,3,3) (2,2,4,4) (2,2,4,4) (1,1,3,3) (1,1,3,3) (2,2,4,4) (2,2,4,4)
11 (1,1,4,4) (2,2,3,3) (2,2,3,3) (1,1,4,4) (1,1,4,4) (2,2,3,3) (2,2,3,3)
12 (1,1,2,2) (3,3.4,4) (3,3.4,4) (1,1,2,2) (1,1,2,2) (3,3.4,4) (3,3.4,4)
13 (1,1,3,3) (1,1,3,3) (1,1,3,3) (2,2,4,4) (2,2,4,4) (2,2,4,4) (2,2,4,4)
14 (1,1,4,4) (1,1,4,4) (1,1,4,4) (2,2,3,3) (2,2,3,3) (2,2,3,3) (2,2,3,3)
15 (1,1,2,2) (1,1,2,2) (1,1,2,2) (3,3.4,4) (3,3.4,4) (3,3.4,4) (3,3.4,4)
16 (2,2,4,4) (1,1,3,3) (2,2,4,4) (2,2,4,4) (1,1,3,3) (2,2,4,4) (1,1,3,3)
17 (2,2,3,3) (1,1,4,4) (2,2,3,3) (2,2,3,3) (1,1,4,4) (2,2,3,3) (1,1,4,4)
18 (3,3.4,4) (1,1,2,2) (3,3.4,4) (3,3.4,4) (1,1,2,2) (3,3.4,4) (1,1,2,2)
19 (2,2,4,4) (2,2,4,4) (1,1,3,3) (2,2,4,4) (1,1,3,3) (1,1,3,3) (2,2,4,4)
20 (2,2,3,3) (2,2,3,3) (1,1,4,4) (2,2,3,3) (1,1,4,4) (1,1,4,4) (2,2,3,3)
21 (3,3.4,4) (3,3.4,4) (1,1,2,2) (3,3.4,4) (1,1,2,2) (1,1,2,2) (3,3.4,4)
22 (1,1,3,3) (2,2,4,4) (2,2,4,4) (2,2,4,4) (2,2,4,4) (1,1,3,3) (1,1,3,3)
23 (1,1,4,4) (2,2,3,3) (2,2,3,3) (2,2,3,3) (2,2,3,3) (1,1,4,4) (1,1,4,4)
24 (1,1,2,2) (3,3.4,4) (3,3.4,4) (3,3.4,4) (3,3.4,4) (1,1,2,2) (1,1,2,2)

Viw = Iy + 8 LS 1/2

e RI = { > [o,6) - MSE(GI)]Z} / MSE ),
where y,, ~ N(u,, o7) independent of ¢,, ~ N(0, [1 — S =

plo:/p) and the parameter values are those given in Table
2. For a particular value of the intracluster correlation, p, a
single finite population was thus generated and then fixed
and repeatedly sampled from. Each simulation consisted of
selecting n, = 2 clusters with replacement from stratum 7
for h =1, ..., H and enumerating the entire cluster. Each
ultimate unit in the obtained cluster was independently
declared a respondent or nonrespondent with probability p
and (1 - p) respectively, i.e., uniform response. The
nonrespondents were then imputed both using random
imputation and adjusted random imputation and the
population total and distribution function, for various values
of F(¢), were estimated. Two values of p, 0.1 and 0.3, and
two values of p, 0.6 and 0.8, were considered. Note that the
first-stage sampling fraction is quite small (0.064), so that
with-replacement and without replacement sampling are
essentially equivalent.

To compare the performance of the different variance
estimators we calculated the percent relative bias and
relative instability for each, defined as

100 &

%RB = < v,(0,)/MSE(®,)

s=1

and
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respectively, where the number of simulation runs was
S = 5,000 and the true MSE(§,) was obtained through
an independent set of 50,000 simulation runs. The bootstrap
variance estimators were each based on B = 2,000
bootstrap resamples. We obtain results for estimating the
variance of 0 , equal to the imputed total and the imputed
distribution function using: (i) the repeated half-sample
bootstrap with proper Monte Carlo approximation, v, as
in equation (8) and with improper Monte Carlo approxi-
mation replacing 5}*(,) with 0 ;» denoted vg,; and (ii) the
proper repeated BRR, vgpp, as in equation (9) and the
improper repeated BRR replacing 51(,) with 6,, denoted
UpRR2-

Table 3 summarizes the results for percent relative bias
using random imputation and adjusted random imputation.
Note that adjusted random imputation is not presented for
estimating the population total, ¥, as adjusted random
imputation removes the imputation variance from the
estimator and thus simpler methods of variance estimation
are available (Chen et al. 2000). It is clear from the high
%RB for v,, and v, that one must not replace
5,(,) and 5}*(,) by é, in the bootstrap or the BRR,
respectively. It is also clear that both the repeated half-
sample bootstrap and the repeated BRR variance estimators,
v, and vgp have negligible bias when properly applied.
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Table 2 Given the results of Table 3, we consider relative
Parameters of the Finite Population instability, RI, only for v, and vggz. We also restrict our
KN, n, 5, K N, w, o presc?ntqtion top = 0.} and p = 0.6 as the RI results were
I 3 200 200 7 31 150 150 qualitatively the same in the other three cases. These results
> 16 175 175 18 31 140 140 are given in Table 4. As one can see, though the differences
3 20 150 15.0 19 31 130 13.0 are small, v, is slightly more stable than vg,,. This was
4 25 190 19.0 20 34 120 120 generally the case for all values of p and p. We also
5 25 165 165 21 34 110 11.0 included the adjusted jackknife of Rao and Shao (1992) and
6 25 19 190 22 34 100 100 the adjusted BRR of Shao et al. (1998) in simulations for
7 25 180 18.0 23 34 150 15.0 . .
g 28 170 170 % 37 125 125 6=Y anq L, again was uniformly more stable. For
9 28 160 16.0 25 37 100 10.0 example, with p = 0.3 and p = 0.6 as in Table 4, RI for
10 28 180 18.0 26 37 150  15.0 the adjusted jackknife and the adjusted BRR were both 0.27.
11 31 170 17.0 27 37 125 12.5 This may be because the reimputation approach has an
1231 160 16.0 2839 100 10.0 advantage in estimating the component of the variance due
1331 150 150 29 39 75 7.5 to the imputation against the adjustment approach, provided
1‘5‘ gi 138 138 g(l) ?é ;153 ;153 the resample size is large enough to eliminate Monte Carlo
16 31 160 1 6:0 2 4 75 7: p error as is the case in our simulations. But, when the number
of reimputations is moderate (like in the BRR with
reimputation or the bootstrap with B =1,000), this
advantage is not entirely realized.
Table 3
%RB for vz, Vg, Lprr and Lgrgrs
Random imputation Adjusted random imputation
Estimand UBRR UBRR2 Vp Vg UBRR UBRR2 Lp Vg
p=0.1 and p=10.6
Y 0.00 21.54 0.79 21.60
F()=0.0625 —-1.09 15.92 -0.52 15.88 0.46 19.64 1.24 19.51
F(#)=0.2500 -0.13 19.44 0.62 19.55 0.85 14.86 1.80 15.08
F(©H)=0.5000 -0.36 21.68 0.52 21.55 0.55 10.73 1.24 10.76
F()=0.7500 —-0.84 19.89 0.13 20.09 -0.36 10.98 0.54 11.31
F(¢)=0.9375 0.05 21.92 0.57 21.66 0.81 19.12 1.39 18.91
p=0.1 and p=038
Y -0.63 15.06 0.36 15.37
F()=0.0625 -1.99 10.30 -1.72 10.16 —1.65 10.97 —1.08 11.13
F()=0.2500 -1.27 13.65 —0.88 13.30 —-0.95 8.89 -0.52 8.81
F(#)=0.5000 -0.72 15.26 0.02 15.26 -0.12 6.58 0.25 6.53
F()=0.7500 —-0.37 14.50 0.57 14.76 0.36 7.56 1.05 7.81
F()=0.9375 -0.14 16.16 0.75 16.36 0.56 13.04 1.22 13.08
p=03 and p=0.6
Y 0.25 21.34 0.78 21.09
F()=0.0625 -1.39 11.45 —-0.86 11.37 —-0.35 15.38 0.64 15.64
F()=0.2500 -0.41 19.89 0.14 19.73 1.23 13.79 1.71 13.62
F()=0.5000 -0.10 20.25 0.37 19.89 0.29 8.97 0.78 8.88
F()=0.7500 —-1.40 16.70 -0.49 16.89 -0.75 9.24 0.07 9.49
F(¢)=0.9375 0.71 17.78 1.03 17.57 0.91 15.07 1.34 15.04
p=03 and p =028
Y 0.01 15.22 0.93 15.51
F()=0.0625 —-1.09 7.54 —-0.56 7.69 -1.24 8.64 -0.35 9.07
F($H=02500 -0.44 15.22 —-0.08 14.99 -0.23 8.18 0.29 8.23
F(#) =0.5000 0.05 14.92 0.71 14.84 0.43 6.21 0.86 6.20
F(¢) =0.7500 0.13 12.54 0.86 12.70 0.81 6.85 1.26 6.99
F(¢)=0.9375 1.62 13.13 2.06 13.01 1.86 11.04 2.34 11.02
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Table 4
RIfor vy and vgpg Wwith p=0.3 and p = 0.6
Random imputation Adjusted random
imputation
Estimand UBRR ] UBRR ]
Y 0.27 0.23
F(t) =0.0625 0.60 0.59 0.57 0.56
F() =0.2500 0.35 0.32 0.37 0.35
F(t) =0.5000 0.27 0.23 0.28 0.26
F(¢) =0.7500 0.29 0.26 0.30 0.28
F(¢)=0.9375 0.48 0.46 0.48 0.46

7. Conclusion

We proposed repeated half-sample bootstrap and
balanced repeated replication methods for variance
estimation in the presence of random imputation that
capture the imputation variance by reimputing for each
replication using the same random imputation method as in
the original sample. These repeated half-sample methods are
valid in stratified multi-stage sampling, even when the
number of psu’s sampled in each stratum is very small, e.g.,
2. The key is that these methods use a stratum resample size
that is equal to the original sample size without resorting to
rescaling. These provide a unified method that works
irrespective of the imputation method (random or non-
random), the stratum size (small or large), the type of
estimator (smooth or nonsmooth), or the type of problem
(variance estimation or sampling distribution estimation). It
is important to note that using reimputation to capture the
imputation variance requires that one take greater care in the
definition of the BRR and the Monte Carlo approximation
to the bootstrap variance. In both cases it is important to use
the mean of the replicates in the definition as opposed to
replacing it with the estimator applied to the original
sample.
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