In This Issue

This issue of *Survey Methodology* contains the first in an annual invited paper series in honour of Joseph Waksberg. A brief description of the newly instituted series and a biography of Joseph Waksberg are given before the paper itself. I would like to thank Danny Levine for writing the biography of Joseph Waksberg. I would also like to thank David Binder, Paul Biemer, Graham Kalton, and Chris Skinner, the current members of the Committee for choosing a very prominent survey researcher to author the first paper of the Waksberg Invited Paper Series. My special thanks are due to Graham Kalton who, as the founding Chairman of the Committee, took the lead, negotiated the necessary arrangements with Westat, the *American Statistical Association* and *Survey Methodology* to set the wheel in motion and worked hard to meet the deadline set by the journal for publication of the June Issue.

The author of the Waksberg Invited Paper for 2001 is Gad Nathan. His paper, “Telesurvey Methodologies for Household Surveys – A Review and Some Thoughts for the Future”, presents a methodological history of telephone surveys from the 1930s up to the present day. Topics covered include sampling designs, sampling frames, coverage, nonresponse and weighting. He finishes the paper by describing some of the challenges and opportunities posed by more recent developments such as email, the internet, cell phones, and other emerging technological and social changes.

This issue of *Survey Methodology* also includes a special section on composite estimation with four papers. The first of these papers, by A.C. Singh, Kennedy and Wu, describes the method of regression composite estimation developed by Singh and colleagues over the past few years. They compare the new approach to previous methods of composite estimation, most notably the K-composite and the AK-composite estimators. The paper also includes a heuristic description and motivation of the new approach. Advantages of the new approach are that it yields a single set of estimation weights, leading to internal consistency of estimates, while improving on the efficiency of conventional regression estimators.

Fuller and Rao give an analytical evaluation of the properties of regression composite estimation. They first describe two earlier variants of regression composite estimation called modified regression estimators (MR_1 and MR_2), and analyse the efficiency and behaviour of the estimates over time using a simple time series model for the survey panel estimates. They conclude that a modification which can be viewed as a compromise between MR_1 and MR_2 would have the best properties overall.

In his paper, Bell compares a range of alternative estimators for use in the Australian Labour Force Survey. Estimators considered include the AK-composite estimator, the early variant of regression composite estimation called MR_2, Fuller and Rao’s variant of regression composite estimation, and a BLUE estimator chosen as an “optimal” linear combination of panel estimates. An improved BLUE, obtained by calibrating the BLUE estimator to some population benchmarks, is also proposed. These estimators are compared in terms of their differences from the conventional regression estimator, their standard errors, and their usefulness for seasonal adjustment and trend estimation.

The final paper of the special section, by Gambino, Kennedy and M.P. Singh, describes the regression composite estimator that was implemented for the Canadian Labour Force Survey. This estimator is based on the work of A.C. Singh and colleagues and the compromise suggested by Fuller and Rao. The new estimators are compared to the previously used regression type estimators for a number of series. They find that the new estimators are usually more efficient and stable, and more often allow successful seasonal adjustment of the estimate series.

Kim proposes a new method for variance estimation that accounts for random imputation based on a linear regression imputation model. The method is based on creating a set of pseudo-values for y, such that a conventional variance estimator based on these pseudo-values also accounts for the imputation. Calculation of the pseudo-values is described first for simple random sampling and then for complex designs. The approach is shown to be asymptotically equivalent to the adjusted jackknife of Rao and Sitter, and properties are investigated in a simulation study.
Raghunathan, Lepkowski, Van Hoewyk and Solenberger in “A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models” address the important issue of imputing into a complex data structure where explicit full multivariate models cannot be easily constructed. They adopt the approach of imputing on a variable by variable basis conditioned on all the observed variables. This implies that the imputations are created through a sequence of multiple regressions that vary depending on the type of variable being imputed.

In their article, Dufour, Gagnon, Morin, Renaud and Särndal propose a measurement of distance which can be used to measure the relative incidence of the nonresponse adjustment, calibration and the interaction between these two procedures. This measurement enables them to study and measure the change (from the initial to the final weight) resulting from the weight modification procedure. They use this measurement as a tool to compare the effectiveness of various non-response adjustment methods through a simulation study applied to the data from the Survey of Labour and Income Dynamics. The measurement is also applied to data from the National Longitudinal Survey of Children and Youth.

In recent years there has been an increasing number of attempts to survey homeless people in major cities. The difficulty of constructing a reliable and efficient survey frame and sampling method, and the fluidity of the population over time make surveying of this population particularly difficult. The final paper of this issue, by Ardilly and Le Blanc, describes sampling and estimation for a current survey of homelessness in France. Problems and challenges particular to this type of survey are also described. The proposed survey will sample homeless individuals indirectly by sampling the services such as shelters and meal services which they may use. The weight-share method is shown to be an effective way to obtain unbiased weights for different periods of time such as an average day or an average week.

Finally, I would like to take this opportunity to express my sincere thanks to Frank Mayda, Production Manager of Survey Methodology, who recently retired. His involvement with Survey Methodology since 1987 has been invaluable. I would also like to announce that Eric Rancourt has replaced Frank Mayda as Production Manager.

M.P. Singh