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Abstract 

Survey statisticians frequently use superpopulation linear regression models. The Gauss-Markov theorem, assuming fixed 

regressors or conditioning on observed values of regressors, asserts that the standard estimators of regression coefficients are 

best linear unbiased. Shaffer (1991) showed that the Gauss-Markov theorem doesn’t apply when the regressors are random 

if some aspects of the population distribution of the regressors are known, and introduced an alternative estimator with 

better properties than the standard estimator under some conditions. This paper derives some generalizations, and notes an 

optimality property (locally best linear unbiasedness) of the generalized alternative estimator. Implications for estimation in 

surveys are noted. 
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1. Introduction 
 

In the standard linear regression model for a sample of 

observations,  

,= +∈Y Xββββ  (1) 

the matrix of regressors, ,X  is assumed to be a known, 

fixed matrix. Shaffer (1991) showed that when X  is 

assumed to be random, the Gauss-Markov theorem does not 

hold in general, and described an alternative estimator that is 

more accurate when ββββ  is close to zero. Shaffer gave two 

applications of her results, to estimates of ββββ  and associated 

population quantities in multivariate normal superpopula-

tion models and to ratio estimation of population means and 

totals. 

In the present paper, three generalizations of these results 

are derived.  
(a) The results are generalized from a model in which the 

sample covariance matrix of the errors ∈  is 2 ,σ I  
where I  is the n n×  identity matrix, to the case in 

which the covariance matrix ∑  of ∈  is 2 ,σ B  where 

B  is a known, fixed positive-definite matrix, and to 

some situations in which B  is random (since it is the 

covariance matrix of a randomly-selected sample of 

regressor values). 
 
(b) A generalized estimator is derived that performs well 

when the coefficient vector ββββ  is close to any pre-

specified coefficient vector 0.ββββ  
 
(c) A condition is given for design-unbiasedness of 

estimators of population means and totals based on the 

generalized estimator of .ββββ  

 

Some results under the general model (1) will be given 

first. Then, modifications that apply to the sample survey 

situation will be discussed. 

Under Model (1) with 2 ,= σ I∑∑∑∑  the Gauss-Markov 

theorem asserts that the sample estimator 

1ˆ ( ) ,−′ ′= X X X Yββββ  (2) 

is a best linear unbiased estimator (BLUE) if X  is regarded 

as a fixed matrix. If the rows of X  are treated as realiza-

tions of random vectors , 1, ..., ,ix i n=  the Gauss-Markov 

theorem can be interpreted as an assertion that the estimator 

in (2) has minimum variance in the class of estimators linear 

in Y  and conditionally unbiased, given these realized 

values of .X  However, the use of the term “unbiased” with-

out qualification generally means unconditional unbiased-

ness. If the requirement of unbiasedness is interpreted to 

mean unbiased unconditionally, i.e., on the average over 

random vectors with values in ,X  Shaffer (1991) showed 

that the Gauss-Markov theorem doesn’t apply when 

E( )′X X  is known. In that case, the conditionally biased 

estimator 

1ˆ [E( )] ( )∗ −′ ′= X X X Yββββ  (3) 

is unconditionally unbiased and has smaller variance than β̂βββ  
when ββββ  is small. In fact, when E ( )′X X  is known, no 

BLUE exists. 

Comparison of the variances of (2) and (3) under various 

modeling assumptions, aside from the implications for esti-

mating the coefficients themselves, gives insight into the 

conditions under which various estimators of other para-

meters of the populations have desirable properties, both 

model-based and design-based. 
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2. Generalization of the covariance matrix of ∈∈∈∈  
 

If the covariance matrix of ∈  is of the form 2 ,σ B  where 

B  is a known, fixed positive-definite matrix, the Gauss-

Markov theorem applies to the generalized estimator 

1 1 1ˆ [ ] .− − −′ ′= X B X X B Yββββ  (4) 

The proofs in Shaffer (1991) generalize directly to show 

that, if 1E ( )−′X B X  is known, the estimator 

1 1 1ˆ [E ( )]∗ − − −′ ′= X B X X B Yββββ  (5) 

has smaller variance than (4) when ββββ  is sufficiently close to 

zero. The (unconditional) variances of (4) and (5) are 

1 1 2
ˆ E [( ) ]− −′= σX B X
ββββ

∑∑∑∑  (6) 

and 

1 1 2
ˆ

1 1 1

[E ( )]

Var.{[E ( )] ( ) }.

− −

− − −

′= σ

′ ′+

X B X

X B X X B X

ββββ

ββββ

∑∑∑∑
 (7)

 

When 0,=ββββ  Shaffer shows that (7) is smaller than (6), and 

therefore, assuming continuity of (7) as a function of ,ββββ  it is 

smaller than (6) when ββββ  is in a neighborhood of zero. 

The results will now be applied in the sample survey 

context. Let NX  refer to the N p×  matrix, and NY  to the 

1N ×  vector, in a finite population. If the N  population 

elements are considered to be a sample from an infinite 

hypothetical population of potential elements satisfying (1), 

and if a sample of size n  of the finite population is taken, 

the proofs in Shaffer (1991) generalize directly to show that 

1 1 1ˆ [E ( )]∗ − − −′ ′=N N N N N N NX B X X B Yββββ  (8) 

and 

1 1 1ˆ [E ( )]∗ − − −′ ′=n n n n n n nX B X X B Yββββ  (9) 

have variances smaller than those of their corresponding 

conditional versions ˆ
Nββββ  and ˆ

nββββ  respectively, if ββββ  is close 

to zero, where the expectation in (8) is over the infinite 

population of hypothetical elements, and the expectation in 

(9) is over either the same infinite population or over the 

finite population of N  elements satisfying (1). In order to 

apply these results, the expectations in (8) and (9) have to be 

known. 

If NX  is to be regarded as fixed, the population model 

can be written as 

,= +N N NY X β ∈β ∈β ∈β ∈  (10) 

 

where N∈∈∈∈  is a vector of randomly distributed error terms as 

in (1). Under Model (10), ˆ
Nββββ  and ˆ

N

∗∗∗∗ββββ  are identical, but ˆ
nββββ  

is still distinct from ˆ .n
∗∗∗∗ββββ  Under Model (10), for a random 

sample of size ,n  if  

1 1E[( ) / ] ( ) / ,− −′ ′=n n n N N NX B X n X B X N  (11) 

the alternative estimator can be written in the form 

1 1 1ˆ [( / ) ( )] .− − −′ ′=n N N N n n nn N X B X X B Y
∗∗∗∗ββββ  (12) 

In model (10), Equations (11) and (12) will apply if NΒ  

is diagonal and the sampling plan is self-weighting, and 

under some other conditions and sampling plans, e.g., if 

NΒ  is block (cluster) diagonal and complete clusters are 

sampled. If NΒ  is diagonal, nΒ  is not necessarily fixed. 

For example, suppose a population consists of both men and 

women, and the variances of the two sexes on the charac-

teristic of interest are known and are different. In that case, 

if a self-weighting sample is taken, and Model (10) is 

assumed to hold in both subpopulations, nΒ  will be 

diagonal, with entries that are a function of the proportions 

of the two genders in the sample.  

 
3. Locally best linear unbiased estimation 

 
Under the model (1), the estimator (5) is the locally best 

linear unbiased estimator (LBLUE) when 0;=ββββ  i.e., the 

estimator, linear in Y  and unbiased for ββββ  with smallest 

variance in a neighborhood of 0.=ββββ  Furthermore, the 

generalized linear estimator 

0

1 1 1

( ) 0 0
ˆ [E ( )] [ ( )],

− − −′ ′= + −X B X X B Y X
∗∗∗∗
βββββ β ββ β ββ β ββ β β  (13) 

allowing for the addition of a constant, is the LBLUE at 

0,=β ββ ββ ββ β  for an arbitrary vector 0.ββββ  The proof of these 

results in given in Appendix A. This generalized estimator 

(13) could be useful in a survey sampling situation in which 

it was reasonably sure that ββββ  would be close to some 

specified value. The variance of (13) is easily shown to 

equal (7) with 0( )−β ββ ββ ββ β  substituted for .ββββ  (See Appendix 

A.) Under Model (10) estimators (8), (9), and (12) 

generalize to 

0,

1 1 1

( ) 0 0
ˆ [E ( )] [ ( )],

N

− − −′ ′= + −N N N N N N NX B X X B Y X∗∗∗∗
βββββ β ββ β ββ β ββ β β  (14) 

0,

1 1 1

( ) 0 0
ˆ [E ( )] [ ( )],

n

− − −′ ′= + −n n n n n n nX B X X B Y X∗∗∗∗
βββββ β ββ β ββ β ββ β β  (15) 

and 

0,

1 1 1

( ) 0 0
ˆ [( / ) )] [ ( )],

n
n N − − −′ ′= + −N N N n n n nX B X X B Y X∗∗∗∗

βββββ β ββ β ββ β ββ β β  (16) 

respectively. 
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4. Conditions for design unbiasedness 
 

Assume the Model (10) holds, and that the uncondition-

ally unbiased estimator can be expressed in the form (16). 

Suppose there exists a 1p× –vector g  such that 1− =N NB X g  

1N  and, for every sample of size 1, ,n − = 1n n nB X g  where 

1N  and 1n  are vectors of ones of length N  and ,n  

respectively. Then, given a simple random sample,  

 

(a) the estimator  

0, 0,( ) ( )
ˆˆ

n n
′= NY X ∗∗∗∗

β ββ ββ ββ βββββ  (17) 

is a design-unbiased estimator of ,NY  where ′ =NX  

(1/ ) ,N ′1N NX  and 

 

(b) 
0,( )

ˆ
n

Y ββββ  is a generalized difference estimator of .NY  
 

The proof is given in Appendix B. 

 

Note that a vector g  satisfying the conditions of this 

theorem exists if the model includes an intercept (i.e., X N  

includes a column of ones) or if NB  is diagonal and the 

variance is proportional to the values of one of the regres-

sors. Many applications of regression modeling to sample 

survey estimation are based on models that incorporate 

these assumptions. Särndal, Swensson and Wretman (1991, 

pages 231 and 232) discuss these and more general models, 

and Chapter, 6, section 4 of that reference has examples of 

commonly applied models incorporating these assumptions. 

Chapter 6 as a whole discusses both the general difference 

estimator of NNY  and the analogous general regression 

estimator based on ˆ .nββββ  The material in that Chapter also 

suggests generalizations of these results to more complex 

estimators and sampling plans. 

 
5. Discussion 

 
To apply the results to estimates of properties of a finite 

population, it will be assumed that the matrix B  is diagonal 

or has the special block-diagonal form and associated 

sampling plan discussed above. From the results in section 

3, it follows that the estimator (17) of NY  has smaller 

variance than the estimator 

ˆ( )

ˆ ˆ=
n

N nY X
ββββ

ββββ  (18) 

when ββββ  is close to 0.ββββ  Note that (18) can be written 

ˆ

1 ˆ ˆ ,i
∈ ∉

 ′ ′= +
  
∑ ∑

Nn
i n n

i s i s

Y X X
ββββ

β ββ ββ ββ β  (19) 

and i
′X  is the thi  row of ,X  and S  is the set of elements 

in the sample. Royall (1970) showed that the best linear 

model-unbiased estimator of NY  (unbiased conditionally on 

the obtained sample) is 

1 ˆ .i i n
∈ ∉

 ′+
  
∑ ∑
i s i s

Y X
N

ββββ  (20) 

In some important cases, the first term in (20) is equal to the 

first term in (19), in which case (20) and (19) are identical. 

This will be true, for example, if 2= σB I  and the model 

(10) contains an intercept, or if 1p =  and B  is diagonal 

with diagonal entries proportional to the values of the single 

regressor. In such cases, (20) and (19) are identical, and the 

design-unbiased and unconditionally-model-unbiased esti-

mator (17) has a smaller expected squared discrepancy from 

NY  than the best linear conditionally-model-unbiased 

estimator (20) when ββββ  is close to 0.ββββ  Furthermore, if the 

sampling fraction is negligible, (17) has smaller expected 

squared discrepancy than (20) when ββββ  is close to 0,ββββ  even 

without the requirement that the first terms of (20) and (19) 

be equal. 

If β̂βββ  is replaced by ˆ ∗∗∗∗ββββ  in (20), the resulting estimator is 

no longer unconditionally unbiased. It can be shown, how-

ever, using concepts of dependence (Lehmann 1966) that 

under the conditions on B  noted at the beginning of this 

section, the resulting estimator will have smaller expected 

squared discrepancy from NY  than (20) and (19) even with-

out the further restrictions noted in the previous paragraph.  

 
6. Conclusion 

 
Since the conditions under which the estimator (5) of ββββ  

is more efficient than the estimator (4) are very restrictive, 

and the estimators of population characteristics based on (5) 

can be derived in other ways, the results given here may be 

of more theoretical than practical interest. The results do 

give additional insight into some situations in which simple 

estimators like the sample mean and the generalized differ-

ence estimator are more efficient in estimating the popula-

tion mean than are ratio estimators, poststratified estimators, 

regression estimators and other complex estimators. The 

equations (6) and (7) for comparative variances of (4) and 

(5) provide an alternative method of comparing respective 

variances under different regression models and different 

values of .ββββ  Many of these results hold under very simple 

sampling plans, but it should be possible to generalize them 

to more complex, unequal probability sampling plans. 
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Appendix A 
 
Proof that ˆ

0

∗∗∗∗
ββββββββ  is LBLUE at 0ββββ   

Assume model (1), with 2Var( | ) .= σY X B  (The general 

proof given here applies directly to the model (10) as well.) 

Consider the sample estimator 

0

1 1 1

( ) 0 0
ˆ [E ( ] ( ).

− − −′ ′= + −X B X X B Y X
∗∗∗∗
βββββ β ββ β ββ β ββ β β  

Let 0= −τ β βτ β βτ β βτ β β  and 0.= −Z Y Xββββ  Then E ( | ) ,=Z X X ττττ  
2Var( | ) ,= σZ X B  and 1 1 1ˆ [E( )]− − −′ ′= =X B X X B Z

∗∗∗∗ττττ  

0( ) 0
ˆ .
∗ −βββββ ββ ββ ββ β  

Thus, the properties of 
0( )

ˆ ∗
ββββββββ  at 0=β ββ ββ ββ β  are the same as 

those of (0)
ˆ ˆ=∗ ∗∗ ∗∗ ∗∗ ∗β ββ ββ ββ β  at 0,=ββββ  so without loss of generality it 

will be shown that (0)
ˆ ∗∗∗∗ββββ  is LBLUE at 0.=ββββ  Also without 

loss of generality, it will be assumed that .=B I  

Let ( )′C X Y  be an arbitrary unconditionally-unbiased 

estimator of ,ββββ  where ( )C X  is a matrix of functions of 

,X  of the same dimensions as .X  The requirement of 

unconditional unbiasedness necessitates the restriction 

E[ ( ) ]′ =C X X I  (Shaffer 1991). Conditioning first on X  

and then using the expression for unconditional variance, 

the variance of ( )′C X Y  is 2E[ ( ) ( )]′ σ +C X C X  

Var( ( ) ).′C X Xββββ  Since we are considering variance at 

0,=ββββ  only the first term is nonzero. Letting ( )′ =C X  
1[E( )] ,−′ ′X X X  the variance of ˆ ∗ββββ  is 1 2[E( )] .−′ σX X  

Let ɶββββ  be an arbitrary unconditionally-unbiased estimator 

of the form ( ) .′C X Y  Then ˆVar( ) Var( )∗= +ɶβ ββ ββ ββ β  
ˆVar( )− +ɶ ∗∗∗∗β ββ ββ ββ β ˆ ˆ2Cov( , ),∗ −ɶ ∗∗∗∗β β ββ β ββ β ββ β β  so ˆVar( )∗ ≤ββββ Var( )ɶββββ  if 

ˆ ˆCov( , ) 0,− ≥ɶ∗ ∗∗ ∗∗ ∗∗ ∗β β ββ β ββ β ββ β β  or if ˆ ˆCov( , ) Var( ).≥ɶ∗ ∗∗ ∗∗ ∗∗ ∗β β ββ β ββ β ββ β β  An easy 

calculation, using the restriction E[ ( ) ] ,′ =C X X I  shows that 
ˆ ˆCov( , ) Var( ),∗ ∗=ɶβ β ββ β ββ β ββ β β  which proves that 

0( )
ˆ ∗∗∗∗
ββββββββ  is LBLUE 

at 0.ββββ  

 
 

 

 

 

 

 

 

 

 

 

Appendix B  
Proof of the result in section 4 

0( ) 0

1 1

1

0

1 1 1

0

1

0

0 0

0 0

ˆ

( / ) [ ( / ) ( ) ]

( )

( / ) ( )

( )

( / ) ( )

.

− −

−

− − −

−

′ ′=

′ ′+

′ −

′ ′ ′ ′= +

′ −

′ ′= + −

′ ′= +

1 1 1

1

1 1

∗∗∗∗
βββββ ββ ββ ββ β

ββββ

ββββ

ββββ

β ββ ββ ββ β

β ββ ββ ββ β

N N

N N N N N

n n n n

N N N N N N N

n n n n

N n n n

N n N

X X

N X n N X B X

X B Y X

X n g X B X X B X

X B Y X

X n Y X

X Y X

 

(B.1)

 

where NB  and nB  are the appropriate population and 

sample matrices, respectively. The final expression in (B.1) 

is the generalized difference estimator based on a value 0ββββ  

chosen independently of the sample. This proves part (b) of 

the result; since the difference estimator is unbiased for Y  

in a self-weighting sample, the result in (a) follows. 
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