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Calibration and restricted weights 

Alain Théberge 1 

Abstract 

To better understand the impact of imposing a restricted region on calibration weights, the author reviews the latter’s 

asymptotic behaviour. Necessary and sufficient conditions are provided for the existence of a solution to the calibration 

equation with weights within given intervals. A more general formulation of the calibration problem leads to a compromise 

between the need to satisfy the calibration equation and the attempt to obtain weights that are close to Horvitz-Thompson 

weights. If the requirements for the calibration equation are relaxed, then various estimation methods with restricted weights 

can be used. The estimators that are introduced usually have the same asymptotic properties as the calibration estimator with 

no weight restrictions, and some have weights which can be calculated explicitly, without any iterative process. The author 

shows how these estimators can be adapted to take advantage of a synthetic estimator. An approach similar to that used to 

restrict weights is applied to outliers. 

                                                           
1. Alain Théberge, Social Survey Methods Division, Statistics Canada, Ottawa, Ontario, K1A 0T6, Canada. 
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1. Introduction 
 
The calibration estimator has good asymptotic properties. 

However, for samples of small size, or if calibration is done 

at the domain level and some of the domains involve few 

observations, the weights of such an estimator can include 

extreme values. One way of overcoming this problem 

consists in using the calibration method with distance 

measurements which restrict the weights of observations to 

certain intervals about the sampling weights. This approach 

was developed by Deville and Särndal (1992). Other 

methods aimed at providing robust estimates satisfying the 

calibration equation can be found in Duchesne (1999). That 

paper contains an extensive bibliography on robust 

estimators. However, there is no guaranteed solution to the 

calibration equation with restricted weights. Even when 

such weights exist, the statistician might prefer solving the 

problem of extreme weights by relaxing somewhat the 

requirements for the calibration equation, instead of 

tightening the constraints on the weights by using a distance 

measurement that is more “restrictive”. This paper provides 

a formulation of the calibration problem which offers more 

flexibility to the statistician. The problem in fact is one of 

minimization similar to that encountered in ridge regression. 

Bardsley and Chambers (1984) encountered this same 

minimization problem in their search for model-based 

estimators. This formulation of the calibration problem can 

be used to restrict weights without the use of special 

distances between calibrated weights and Horvitz-

Thompson weights. Rao and Singh (1997) combined this 

approach with iterative methods using distance measure-

ments. Other ways of restricting weights will also be 

reviewed. 

In the next section, the calibration method is outlined 

without applying limits to the values of weights. The 

calibration problem thus outlined does not assume there is a 

solution to the calibration equation. The asymptotic proper-

ties of calibrated weights are discussed. These properties 

have a bearing on the asymptotic behaviour of the esti-

mators whose weights are restricted. In section 3, necessary 

and sufficient conditions are provided for the existence of 

restricted weights which satisfy the calibration equation. 

Section 4 discusses how the estimation problem can be 

formulated by varying the importance attributed to the cali-

bration equation. Section 5 provides various means of 

restricting weights without recourse to a specific distance. 

Section 6 introduces an estimator with restricted weights 

which is useful for small domains. Finally, in section 7, out-

liers are discussed in terms of a method similar to that used 

to deal with extreme weights. 

 
2. Calibration 

 
Let N d×∈ℝY  denote a matrix of d  variables of interest 

for a population of size ,N  and let N∈ℝc  denote a vector 

of known constants; a sample s  of size n  is drawn, and the 

sub-script s  is used to designate the sub-vectors or sub-

matrices corresponding to the sample. We wish to estimate 

′Y c  using ,s s
′Y w  where n

s ∈ℝw  is a weight vector for the 

sampled units. For a vector v  and a positive diagonal matrix 

F  of identical dimension, we define 2|| || .′=
F

v v Fv  For an 

auxiliary information matrix ,N p×∈ℝX
N N×∈ℝA  the 

diagonal matrix of sampling weights, given positive diagonal 

matrices n n

s

×∈ℝU  and ,p p×∈ℝT  we seek, among the 

weight vectors n

s ∈ℝW  which minimize 2|| || ,s s
′ ′−

T
X w X c  

the one which minimizes ( )s sD =w
2|| || .

ss s s−
U

w A c  This 

formulation of the problem, which does not assume the 

existence of weights satisfying the calibration equation, 

,s s
′ ′=X w X c  can be found in Théberge (1999). The   
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solution represents the vector of calibrated weights cal.w  We 

have  

1 1/ 2 1/ 2 1 1/ 2 †

cal

1/ 2

( )

( ),

s s s s s s s

s s s

− −′= +

′ ′−

w A c U X T T X U X T

T X c X A c  (1)
 

where †
F  denotes the Moore-Penrose inverse of the matrix 

.F  

To better review the asymptotic properties of calibration 

estimators with restricted weights, let us now examine the 

behaviour of calw  when .n →∞  We assume there exists an 

asymptotic setup in which the size of the population and the 

size of the sample tend towards infinity (see for example 

Isaki and Fuller (1982)), and for which we have 

1/ 2

1/ 2 1 1/ 2

( ) ( 0)

( )

( ).

p

s s s p

s s s p

O N

O n N

O n

γ

− γ

−

′ = γ ≥

′ ′− =

′ =

Y c

X c X A c

T X U X T

 (2) 

It follows that 1/ 2 1 1/ 2 † 1( ) ( ),s s s pO n− −′ =T X U X T  since one 

of the properties of the Moore-Penrose inverse of a matrix 

F  is † † †.=F FF F  Usually, we can expect to have 1γ =  

when each element of the vector c  has a value of 1 

(estimate of a total), and 0γ =  when each element of c  has 

a value of 1/ N  (estimate of a mean). For conditions (2) we 

therefore have, 

1 1/ 2 1/ 2 1 1/ 2 †

cal

1/ 2

1 1/ 2

3/ 2

( )

( )

( ) ( )

( ).

s s s s s s s

s s s

p p

p

O n O n N

O n N

− −

− − γ

− γ

′− =

′ ′−

=

=

w A c U X T T X U X T

T X c X A c

 (3)

 

Thus cal s s−w A c  converges in probability to ,0  if 

3/ 2

,
Lim 0.

n N
n N− γ

→∞
=  

For an asymptotic setup such as that of Brewer (1979) in 

which the sampling fraction /n N  is constant, or any setup 

for which the sampling fraction converges to a positive 

number, this condition is verified if < 3/2.γ  

Writing 1 1/ 2 † 1/ 2

cal ( ),s s s s s s s s

− ′ ′= + −w A c U X T H T X c X A c  

where 1/ 2 1 1/ 2,s s s s

−′=H T X U X T  we have 

1/ 2 † †

cal

1/ 2

1/ 2 † 1/ 2

1/ 2 1 1/ 2

2 2

( ) ( )

( )

( ) ( )

( ) ( ) ( )

( ).

s s s s s s s

s s s

s s s s s s s

p p p

p

D

O n N O n O n N

O n N

− γ − − γ

− γ

′ ′ ′= −

′ ′−

′ ′ ′ ′ ′= − −

=

=

w X c X A c T H H H

T X c X A c

X c X A c T H T X c X A c  

(4)

 

Again for an asymptotic setup in which the sampling 

fraction converges to a positive number, we have cal( )sD w  

converging in probability to 0, if 1.γ <  Thus there are 

cases, e.g., for the estimate of a total, where cal s s−w A c  

converges in probability to ,0  but where cal( )sD =w  
2

cal|| ||
ss s−

U
w A c  does not converge to 0. 

 
3. Calibration equation solutions and  

        restricted weights 
 
Even in the absence of weight restrictions, there might 

not be a solution to the calibration equation. By applying 

Graybill (1983, 113) to the calibration problem, we find that 

the calibration equation s s
′ ′=X w X c  can be solved if and 

only if †( ) .s s
′ ′ ′=X X X c X c  If there is a solution, the 

calibrated weights might be negative or exceptionally large. 

Deville and Särndal (1992) proposed using various distance 

measures other than a weighted sum of squares to measure 

the distance between Horvitz-Thompson weights and cali-

brated weights, so as to restrict the weights to certain inter-

vals while satisfying the calibration equation. This approach 

can only work if there are in these intervals weights which 

satisfy the calibration equation. The main goal of this 

section is to find necessary and sufficient conditions for the 

existence of a weight vector sw  within given bounds, such 

that the estimates of totals for auxiliary variables are also 

bounded. In other words, we are seeking conditions for the 

existence of a vector sw  such that ( ) ( )L H

s≤ ≤w w w  and 
( ) ( ),L H

s s
′≤ ≤t X w t  where ( ) ( ) ( ), ,L H L

w w t  and ( )H
t  are 

given. In particular, by assuming ( ) ( ) ,L H ′= =t t X c  we 

would obtain conditions for the existence of weights 

restricted to the intervals ( ) ( ),L H

s≤ ≤w w w  satisfying the 

calibration equation. 

A first step is provided by the following Fan (1956) 

theorem. It is formulated here for a matrix M  of finite 

dimension, although the proof provided by Fan also applies 

to a matrix of infinite dimension. The theorem uses the 

kernel of , ( ),N′ ′M M  defined as the set of vectors αααα  such 

that .′ = 0M αααα   
Theorem: Let m n×∈ℝM  and ,m n∈ ∃ ∈ℝ ℝl w  such that 

≥Mw l  if and only if for any ≥ 0λλλλ  in ( ),′N M  we have 

0.′ ≤l λλλλ  
Corollary: Let m n×∈ℝM  and , ,m n∈ ∃ ∈ℝ ℝl h w  such 

that ≤ ≤l Mw h  if and only if first ≤l h  and secondly 

( ) ,N − +′ ′ ′∈ ⇒ − ≤M l hλ λ λλ λ λλ λ λλ λ λ  where max ( , )+ = 0λ λλ λλ λλ λ  and 

min ( , )− = 0λ λλ λλ λλ λ  with the extrema taken elementwise. 

The corollary is obtained by using the theorem with 

, and
−

+

−    
= = =     − −     

M l
M l

M h

λλλλ
λλλλ

λλλλ
 

Let p  denote the dimension of ( ).N ′M  If p  is equal to 

zero, then ( )N ′∈ Mλλλλ  implies ,= 0λλλλ  and the condition of 

the theorem (or the similar condition of the corollary) is ob-

viously met. If p  is equal to one, then ( )N ′∈ Mλλλλ  implies 

that λλλλ  is a multiple of a vector ,z  and it is sufficient to   
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check the condition for = zλλλλ  and .= −zλλλλ  If we use the 

property ( ) ( ) ,− +− = −λ λλ λλ λλ λ  the problem outlined at the begin-

ning of the section can now be resolved if sX  is a vector. 

The corollary with 

( ) ( )

( ) ( )
, , ,

L H
n

L H
s

    
= = =    ′     

I w w
M l h

X t t
 

and the fact that 

1

s− 
=  
 

X
z  

spans ( ),N ′M  provide the necessary and sufficient 

conditions 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) .

L H

L H

L H H

s s

L H L

s s

+ −

+ −

≤

≤

′ ′+ ≤

′ ′≤ +

w w

t t

X w X w t

t X w X w

 (5) 

The third inequality in (5) states that the weighted total of 

the auxiliary variable must not be greater than ( ),H
t  when 

the smallest possible weight ( )L
w  is given to units for which 

the auxiliary variable is positive, and when the greatest 

possible weight ( )H
w  is given to units for which the 

auxiliary variable is negative. The fourth inequality in (5) 

states that the weighted total of the auxiliary variable must 

not be less than ( ),L
t  when the largest possible weight is 

given to units for which the auxiliary variable is positive, 

and when the smallest possible weight is given to units for 

which the auxiliary variable is negative. 

Even for > 1,p  it is sufficient to check the condition of 

the corollary for a finite number of values of .λλλλ  Let 
, 2m p p m×∈ ≤ ≤ℝV  denote a matrix whose columns form 

a basis for ( ).N ′M  It is always possible to construct V  

such that p  of its rows, 1 2, , ..., ,mv v v  are the unit vectors 

of ,pℝ  and we will assume that V  is of this form. It will be 

shown in Appendix A that it is sufficient to check the 

condition of the corollary for vectors =Vλ ϕλ ϕλ ϕλ ϕ  and 

,= −Vλ ϕλ ϕλ ϕλ ϕ  where 1( , ..., )p
′= ϕ ϕϕϕϕϕ  is a non-zero vector 

satisfying 0i
′ =v ϕϕϕϕ  for a subset of )1( −p  linearly 

independent vectors .iv  We must therefore check the 

condition at the most for ( )1m
p −  vectors ,ϕϕϕϕ  i.e., at the most 

( )2 1
m

p −  values of .λλλλ  
Using the corollary with 

( ) ( )

( ) ( )
, , ,

L H
n

L H
s

    
= = =    ′     

I w w
M l h

X t t
 

and noting that the columns of 

s

p

− 
=  
 

X
V

I
 

form a basis for ( ),N ′M  we obtain the following necessary 
and sufficient conditions for the existence of a solution to the 

problem mentioned at the beginning of this section when 

ever n p

s

×∈ℝX  with > 1.p  We must have ( ) ( ),L H≤w w  
( ) ( ),L H≤t t  and for each subset of ( 1)p −  linearly 

independent rows of 

s

p

− 
=  
 

X
V

I
 

it is necessary that  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

L L H H

s s

L L H H

s s

+ − − +

− − + −

′ ′ ′ ′− ≤ − +

′ ′ ′ ′− + ≤ −

ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕϕ ϕ ϕ ϕ

X w t X w t

X w t X w t  (6)

 

for a non-zero vector p∈ℝϕϕϕϕ  orthogonal to each row of the 
subset. The second inequality in (6) is obtained from the 

first by changing the sign of .ϕϕϕϕ  
If sub

p p×∈ℝV  is a non-singular matrix whose rows are 

rows of ,V  then each column of 1

sub

−
V  is a vector perpendi-

cular to ( 1)p −  linearly independent rows of .V  Hence the 

following result: 
 

There exists a weight vector sw  such that ( ) ( )L H

s≤ ≤w w w  

and ( ) ( )L H

s s
′≤ ≤t X w t  if and only if ( ) ( ),L H≤w w  

( ) ( )L H≤t t  and  

1 ( ) 1 ( )

sub sub

1 ( ) 1 ( )

sub sub

1 ( ) 1 ( )

sub sub

1 ( ) 1 ( )

sub sub

( ) ( )

( ) ( )

( ) ( )

( ) ( )

L L

s

H H

s

L L

s

H H

s

− −
+ −

− −
− +

− −
− +

− −
+ −

′ ′− ≤

′ ′− +

′ ′− + ≤

′ ′−

X V w V t

X V w V t

X V w V t

X V w V t

 (7) 

for all non-singular matrixes sub

p p×∈ℝV  whose rows are 

rows of 

.
s

p

− 
=  
 

X
V

I
 

These conditions are somewhat redundant. For example, 

if inequalities (7) are met for sub 1,=V V  then they are neces-

sarily met for any matrix 2V  obtained from 1V  through a 

permutation of rows. 

Another example is provided by weighting observations 

in a contingency table. Assuming ˆ ij ij ijN n w= ( 1, 2, ...,i=  

;R 1, 2, ..., ),j C=  where ijn  is the number of observations 

in cell ( , )i j  of a contingency table and ijw  is the weight of 

each of these observations, we wish to know if there are 

weights ijw  such that ijN̂  satisfies certain constraints. For 

example, motivated by the problem of convergence of the 

raking ratio procedure, Bacharach (1965) provided nec-

essary and sufficient conditions for the existence of weights 

ijw  such that 1
ˆ ˆ0, ( 1, ..., ),R

ij i ij jN N N j C=≥ ∑ = = 1
ˆC

j ijN=∑ =  

.( 1, ..., ),iN i R=  where the values of . jN  and .iN  are 

given. The following result, demonstrated in Appendix B, is 

more general. 
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For arbitrary constants ( ) ( ) ( ) ( )
. ., , , ,L H L H

ij ij j jN N N N ( )

. ,
L

iN  
( ) ( )

. .., ,H L

iN N  and ( )

.. ,HN  there are ˆ ijN  such that 

( ) ( )

( ) ( )

. .
1

( ) ( )

. .

1

( ) ( )

.. ..

1 1

ˆ 1, ..., ; 1, ..., ;

ˆ 1, ..., ;

ˆ 1, ..., ;

ˆ ,

L H

ij ij ij

R
L H

j ij j
i

C
L H

i ij i

j

R C
L H

ij

i j

N N N i R j C

N N N j C

N N N i R

N N N

=

=

= =

≤ ≤ = =

≤ ≤ =

≤ ≤ =

≤ ≤

∑

∑

∑∑

 (8) 

if and only if 

( )
( )

( )
( )

( ) ( )

( ) ( )

. .

( ) ( )

. .

( ) ( )

.. ..

( ) ( )

.

( ) ( )

.

( ) ( )

.

( ) ( )

. .

( ) ( )

.. .

1, ..., ; 1, ..., ;

1, ..., ;

1, ..., ;

L H

ij ij

L H

j j

L H

i i

L H

L H

j ij
j T i S

H L

i ij
i S j T

L H

i ij
i S j T

H L

j j
j T i T

L H

j
j T i S

N N i R j C

N N j C

N N i R

N N

N N

N N

N N

N N

N N

∈ ∉

∈ ∉

∈ ∉

∈ ∉

∉ ∉

≤ = =

≤ =

≤ =

≤

−

≤ −

−

≤ −

+ −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑( )

( )

( )
( )

( )

( ) ( ) ( )

. .
1

( ) ( ) ( )

. .
1

( ) ( ) ( )

. ..

H

ij

J
H L H

i ij j
i S j T j

I
L L H

i j ij
i j T i S

L L H

i ij
i S j T

N

N N N

N N N

N N N

∈ ∈ =

= ∉ ∉

∈ ∈

≤ − +

+ −

≤ − +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

 (9)

 

for any {1,2, ..., }, {1, 2, ..., }S R T C⊆ ⊆  

The number of inequalities to be checked can be reduced. 

For example, instead of checking 

( ) ( )( ) ( ) ( ) ( )

. .

L H H L

j ij i ij
j T i S i S j T

N N N N
∈ ∉ ∈ ∉

− ≤ −∑ ∑ ∑ ∑  

for any {1, 2, ..., },S R⊆  and {1, 2, ..., },T C⊆  it can be 

readily shown that an equivalent procedure would be to 

check that 

( )( ) ( ) ( ) ( )

. .
1

min ,
R

L H L H

j i ij ij
j T i j T j T

N N N N
∈ = ∉ ∈

 ≤ − 
 

∑ ∑ ∑ ∑  

for any {1, 2, ..., }.T C⊆  

 
4. Mitigated calibration 

 
There may be dissatisfaction with the two-step approach 

of calibration, where an attempt is first made to find weight 

vectors that best satisfy the calibration equation, and then 

from this set of vectors to find the one which comes closest 

to Horvitz-Thompson weights. For small samples, this 

method may lead to weights which the statistician will find 

too far from Horvitz-Thompson weights. 

There may be a preference for varying the importance 

attributed to the calibration equation relative to the norm of 

.s s s−w A c  Thus, there may be a desire to find a weight 

vector sw  which minimizes 

2

,
s s s

s s

− 
 ′ ′−  V

w A c

X w X c
 

where 

s 
=  
 

0

0

U
V

Tαααα
 

and 0.≥αααα  We then minimize 

2 2

2
( ) .

s
s s s s s

s s s sD

′ ′− + α − =

′ ′+ α −

U T

T

w A c X w X c

w X w X c

 

A similar minimization problem is encountered with ridge 

regression. For 0=α  the solution is provided by Horvitz-

Thompson weights .s s s=w A c  For >0,α  we seek ( )s αw  

minimizing 2|| ( ) || ,s s s− −
V

K w A c b  where ( , ) ,n s
′=K I X  

1( , ( ) )n s s s× ′ ′ ′ ′= −0b X c X A c  and 1

n

n× ∈0 ℝ  is a row vector 

of zeros. Ben-Israel and Greville (1980) yields 

1( ) ( ) .s s s

−′ ′α − =w A c K VK K Vb  (10) 

Thus by substituting the values of , ,K V  and b  we obtain 

1

( )

( ) ( ).

s

s s s s s s s s s

−

α =

′ ′ ′+α +α −

w

A c U X TX X T X c X A c  (11)
 

It is easily shown that 

1

1 1 1 1 1

( )

( ) ,

s s s s

s s s s s

−

− − − − −

′α + α

′= α +

U X TX X T

U X T X U X
 

hence 

1 1 1 1 1

( )

( ) ( ).

s s s

s s s s s s s s

− − − − −

α =

′ ′ ′+ α + −

w A c

U X T X U X X c X A c  (12)
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The estimator ( )s s
′ αY w  thus becomes ˆ ˆ( ) ,s s s s

′ ′+ −Y c Y Y A c  

where ˆˆ ( )s= αY Xββββ  and 

1 1 1 1 1ˆ ( ) ( ) .s s s s s s s

− − − − −′ ′α = + αX U X T X U Yββββ  

The vector of regression coefficients, then, is the one ob-

tained with ridge regression. Just as the calibration method, 

and the generalized regression method described by Särndal, 

Swensson and Wretman (1992), lead to the same estimators, 

a similar parallel can be drawn between mitigated 

calibration and ridge regression. 

On the basis of equation (12), we can also use Ben-Israel 

and Greville (1980), and the fact that † †( )′ ′=F F FF  with 
1/ 2 1/ 2,s s

−′=F T X U  to show that 

callim ( ) .s
α→∞

α =w w  

This result was to be expected, since finding the vector 

( )s αw  which minimizes 2( ) || ||s s s sD ′ ′+ α −
T

w X w X c  

when α→∞  is equivalent to finding the weight vector 

which minimizes ( )s sD w  among those which minimize 
2|| || .s s

′ ′−
T

X w X c  

Rao and Singh (1997) defined tolerances for each of the 

p  constraints of the calibration equation, and they estab-

lished a relationship between these tolerances and the matrix 

.αT  
For [0, [α∈ ∞  the function ( )s αw  is represented by a 

curve in n
ℝ  which links point s sA c  to point cal.w  If 1,p =  

i.e. if X  is a vector, this curve is a line segment. In fact, in 

this case the matrix 1 1 1 1( )s s s

− − − −′α +T X U X  and the vector 

s s s
′ ′−X c X A c  are scalars, and the weights ( )s αw  given by 

(12) are therefore equal to Horvitz-Thompson weights plus 

a multiple of vector 1 .s s

−
U X  And again for 1,p =  we have 

cal

1 1

lim ( )

[ ( ) /( ) ]

s s s

s s s s s s s s

α→∞

− −

α = =

′ ′ ′+ −

w w A c

X c X A c X U X U X

 

which leads to the estimator 

cal

1 1
[ ( ) /( ) ]( )

s s s s

s s s s s s s s s

− −

′ ′=

′ ′ ′ ′+ −

Y w Y A c

Y U X X U X X c X A c

 

Taking 1 diag( ),−=U A X  we obtain the ratio estimator 

1 1[ ( ) /( ) ]( ),s s s s s n s s n s s s× ×′ ′ ′ ′ ′+ −1 1Y A c Y A X A X c X A c  

where a b

a b

×
× ∈1 ℝ  is a matrix of ones. 

Ben-Israel and Greville (1980, 111, exercise 15) showed 

that ( ( ))s sD αw  is an increasing monotonic function of .α  

Note however that for a unit , | ( ) |k k kk s w a c∈ α −  is not 

necessarily a monotonic function of .α  As α  increases, the 

weight vector ( )s αw  moves away from the Horvitz-

Thompson weight vector, but this does not necessarily apply 

to each coordinate of the vector. 

In this article, mitigated calibration is used to restrict 

weights, i.e. when the size of the sample is relatively small. 

It can easily be shown, however, that for an asymptotic 

setup satisfying (2) and for which ˆ ( ) ( )s α − α → 0β ββ ββ ββ β  in 

probability, with 

1 1 1 1 1( ) ( ) ,− − − − −′ ′α = + αX U X T X U Yββββ  

we have ( )s s
′ αY w  is an asymptotically unbiased estimator 

whose asymptotic variance is 

( ) diag( ) ( )diag( ) ( ),N N

∗ ∗
×′− − −1Y Y c A A c Y Y∏∏∏∏  

where ( ),∗ = αY Xβ ∏β ∏β ∏β ∏  is the matrix of inclusion 

probabilities of order 2, and diag( )c  is the diagonal 

matrix formed from vector .c  

 
5. Estimation methods with restricted weights 
 
In order to avoid obtaining weights having extreme 

values, we may wish to force the weight vector to be within 

a given region. This restricted region will be assumed to be 

convex and closed, and s sA c  will be assumed to be a    

point in this region. For example, if ( ) ( ),L H

s s< <w A c w   

we may wish to restrict the weights to region { :sR =
w

w  
( ) ( )}.L H

s≤ ≤w w w  We will assume that 

( ) ( )

n n
lim and lim > .L H

s s s s
→∞ →∞

− < −0 0w A c w A c  

The approach described in section 3 consists in selecting a 

distance measure between calibrated weights and Horvitz-

Thompson weights which will provide weights that satisfy 

the calibration equation and which lie in the restricted 

region, should such weights in fact exist. The approach dealt 

with in this section is to temperate the requirement that the 

calibration equation be satisfied when the vector of 

calibration weights calw  is outside the restricted region. 

Various means to temperate this requirement lead to 

different weighting methods. 

When calw  lies outside the restricted region, we could for 

example look for those points on the curve ( )s αw  para-

metered by 0α ≥  which are on the border of this region. 

One property of these points is that they solve the minimiza-

tion problem described in section 4 for corresponding values 

of ,α  thus through matrix ,T  the importance of each 

calibration equation can be weighted. Using the example of 

the restricted region provided above, if  

cal lim ( )s
α→∞

= αw w  

lies within this region, then res1 cal=w w  can be used as a 

restricted weight vector, otherwise res1 ( )s= αw w  with 
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α < ∞  can be chosen such that ( )s αw  is on the boundary 
of the restricted region. If the asymptotic setup is such that 

conditions (2) are met with 3/ 2γ <  then for n  sufficiently 
large, the probability that calw  will be within the restricted 
region is equal to one. In fact, we have cal s s−w A c  
converging in probability to .0  The asymptotic properties 

of the estimator using the restricted weights, res1,w  are 
therefore identical to those of the calibration estimator. It is 

worth noting that since | |k k kw a c−  is not necessarily a 
monotonic function of ,α  it is possible for ( )s αw  to be on 
the boundary of the restricted region for several values of 

,α  even if the restricted region is convex. Finding all these 
values is not necessarily a simple matter, and a decision has 

to be taken as to which value to use. 

Another option for restricting weights would be to use as 

a restricted region those weights sw  which satisfy 
( )s sD l≤w  for a bound 0.l >  Then res2 cal=w w  is taken 

as a restricted weight vector if calw  lies in the restricted 
region, otherwise we seek 0α >  such that ( ( )) .s sD lα =w  
This value of α  is unique and can be found through 
iteration. Next we calculate the weights res2 ( )s= αw w  

which correspond to this value of α  using equation (12). If 
the asymptotic setup is such that conditions (2) are met with 

1,γ <  and if l  does not vary with ,n  then for n  

sufficiently large, the probability that calw  will be within the 
restricted region is equal to one. In fact, we have cal( )sD w  
converging in probability to 0. The asymptotic properties of 

the estimator using restricted weights, res2,w  are then 
identical to those of the calibration estimator. Unfortunately, 

when estimating a total, we must expect to have 1.γ =  In 
order to overcome this snag, we can use l n  as a bound, 
instead of .l  We can justify this bound on the basis that the 

length of the main diagonal of a hypercube of n
ℝ  is equal 

to the diameter of the sphere which circumscribes this 

hypercube, whereas the diameter of the sphere inscribed in 

this same hypercube is smaller by a factor of .n  The fact 
remains that a statistician might be uncomfortable using an 

asymptotic setup where the bound increases with the size of 

the sample. Furthermore, with this approach, the weights of 

the observations cannot be limited individually. Only the 

distance between the restricted weight vector and the 

Horvitz-Thompson weight vector is controlled. 

With the methods described above, we look for those 

points on curve ( )s αw  which lie on the boundary of the 
restricted region. The value of α  for which ( )s αw  lies on 
the boundary of the restricted region must often be found 

iteratively. It would be simpler to replace the curve ( )s αw  
by the line segment linking s sA c  to cal.w  For the restricted 
region ,R

w
 the restricted weight vector would be 

res3 cal=w w  if calw  is in the restricted region, otherwise 

res3w  would be equal to the point at which the line segment 
crosses the boundary of restricted region, i.e. 

res3 cal( ),s s s s= + ξ −w A c w A c  

 

 

where 

( )

cal
k

( )

cal

min{max[( ) /( ),

( ) /( )]},

L

s s s s

H

s s s s

ξ = − −

− −

w A c w A c

w A c w A c

 

vector division being elementwise, the maximum of the two 

vectors being elementwise, and 
k
min  providing the mini-

mum  element.  We  could  also  consider  the  weight vector 

of the restricted region, res4,w  which comes closest to cal.w  
Again for restricted region ,R

w
 we would have 

( ) ( )

res4 calmin[max ( , ), ].L H=w w w w  

The asymptotic properties of estimators using restricted 

weights res3w  or res4w  are identical to those of the calibra-
tion estimator, as long as cal s s−w A c  converges in probabi-
lity to ,0  which is usually the case. 

One interesting property of all the approaches discussed 

in this section is that, no matter what the restricted region, 

the existence of restricted weights is guaranteed. This is not 

always the case when using an approach based on distance 

measures. A simple example will now be introduced to 

allow comparisons between a few approaches. 

We wish to estimate a total on the basis of a simple 

random sample of size 2 in a population of size 20. In other 

words, 20 1×= 1c  and 20 110( ).×= 1a  We use the auxiliary 
information vector (1, 2, 3,..., 20) ,′=X  assume that the 

selected sample is {2,12}s =  and choose U  as a diagonal 
matrix with .kk ku x k= =  A rectangular restricted region is 
provided using points ( ) (0, 0)L ′=w  and ( ) (20, 13) .H ′=w  

In other words, the weight of the first sample unit must be 

greater than 0 and less than 20, whereas the weight of the 

second sample unit must be greater than 0 and less than 13. 

Under these conditions, the calibrated weights cal =w  
(15, 15)′  lie outside the restricted region. Since 1,p =  
weights ( )s αw  lie on the line segment which links s s =A c  

(10, 10)′  to cal.w  We therefore have res1 res3,=w w  which 
means that the two methods give the same result. In this 

case, we have res1 res3 (13, 13) .′= =w w  The method which 

consists in choosing that point in the restricted region which 

lies closest to the calibrated weights yields res4 (15, 13) .′=w  
On the other hand, if we look for res5,w  the restricted 

weights obtained while requiring that the calibration 

equation be satisfied and while using a distance mea-

surement which assumes an infinite value outside the 

restricted region, then there is no solution. In fact, for any 

weight in the restricted region 196,s s
′ ≤X w  whereas 

210.′ =X c  If we had, say, ( ) (30, 13) ,H ′=w  then using 

( )s sD w  as a distance measurement within the restricted 
region we would have res5 (27, 13) .′=w  These weights are 
fairly distant from cal (15, 15)′=w  and from s s =A c  

(10, 10) .′  Such is the price to be paid for insisting on 
having weights which meet the calibration equation. 
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6. Estimators for domains with  

        a synthetic component 
 
Restricted weights are used because of the properties of 

the calibration estimator for small sample sizes. For large 

sample sizes, we normally have cal s s−w A c  converging in 
probability to ,0  i.e. weights that are not problematic. A 

statistician faced with a problem of extreme weights must 

therefore in all likelihood also face another problem of small 

sample sizes, i.e. estimation for small domains. This section 

introduces an estimator whose asymptotic properties are 

those of the calibration estimator, but which uses restricted 

weights and takes advantage of a synthetic estimator. 

Let s= ɶɶY Xββββ  denote a synthetic estimate for ,Y  we 

have 

( )

( )

s s s s

s s s

s

s

′ ′=

′ ′=

′ ′

′=

′=

ɶɶ

ɶ

ɶ≃

ɶ

ɶ

ββββ

ββββ

ββββ

ββββ

Y w X w

X w

X c

X c

Y c
 

(13)

 

with equality at the third step if the weights satisfy the 

calibration equation .s s
′ ′=X w X c  The weights calw  given 

by (1) minimize 2 .s s
′ ′|| − ||

T
X w X c  We can therefore 

estimate ′Y c  using 

res
ˆ ( ) .s s

′ ′= − +ɶ ɶY Y w Y cττττ  (14) 

There will be equality between this estimator and 

estimator cals
′Y w  once the sample is sufficiently large for 

the calibration equation to be satisfied and for calw  to lie in 
the restricted region, i.e. once res cal.=w w  The asymptotic 

properties of these two estimators are therefore identical 

under certain conditions discussed in the previous section. 

The advantage of using estimator τ̂τττ  is that it provides a 
synthetic estimate when columns of sY  and s

ɶY  are zero. 

 
7. Outliers 

 
Outliers could be dealt with in much the same way as 

extreme weights. The strategy is the following: we adopt a 

restricted region for cal,s
′Y w  we show that when n  is 

sufficiently large cals
′Y w  lies within the restricted region, 

and we adopt a more “reasonable” estimator to replace 

cals
′Y w  in those cases where cals

′Y w  lies outside the 
restricted region. For a stratified sample, we would normally 

have one restricted region per stratum. 

In section 2, it was shown that under certain conditions 

for the asymptotic setup, 3/ 2
cal ( ).s s pO n N− γ− =w A c  We 

thus have 1/ 2
cal ( ),s s s s pO n N− γ′ ′− =Y w Y A c  and if we 

assume that 

1/ 2( ),s s s pO n N− γ′ ′− =Y A c Y c  (15) 

then 1/ 2
cal ( ).s pO n N− γ′ ′− =Y w Y c  An expert (or a group of 

experts) could determine on the basis of information 

gathered independently of survey data that it would not be 

reasonable to have cals
′Y w  outside a certain region. If ′Y c  

lies within the restricted region (i.e. if the expert does not 

find it unreasonable to have an estimate of the parameter 

which would be equal to the true value, ,′Y c  of the 
parameter), if 0,γ =  and if the restricted region does not 

vary with n  or N  (or if 1,γ =  and the restricted region 

varies in proportion to N ), then for sufficiently large ,n  the 

probability that cals
′Y w  will lie within the restricted region is 

equal to one. In those cases where cals
′Y w  lies outside the 

restricted region, we could use as an estimate the point in 

the restricted region that lies closest to cals
′Y w  or we could 

assume that the weight of the few observations that are 

deemed outliers is equal to one, and distribute their original 

weights (less the number of outliers) among the observa-

tions that are not outliers. The asymptotic properties of this 

modified estimator used to deal with outliers are then 

identical to those of the unmodified estimator. 

In the case of a non-stratified sample, this method is 

relatively easy to apply. If however the sample is stratified, 

and if constraints are imposed on estimates for each stratum, 

then we have two additional problems. First, if the 

asymptotic setup is such that the number of strata increases 

in proportion to the size of the sample, then the assumption 

given in (15) does not hold, since the mean sample size per 

stratum remains constant as .n →∞  We need to determine 
whether it is reasonable to adopt an asymptotic setup in 

which the number of strata is constant (or increases less 

rapidly than n ). Such an asymptotic setup is less plausible 

if the number of observations per stratum is small. The 

second problem is linked to the difficulty for the expert to 

impose constraints on estimates for each of the strata. The 

greater the number of strata, the greater the risk that ′Y c  
will not lie in the restricted region defined by the expert. In 

fact, in the case of a stratified sample, it is preferable for the 

expert to use information that is independent of the survey 

data, in order to ensure strata homogeneity, prior to fina-

lizing stratification. In other words, it is preferable to use the 

information available before the survey, in order to prevent 

outliers, rather than to correct them. If the information has 

been used in such a way that, before the survey, there is no 

reason to believe that there is any unrepresentative 

observation in any stratum, then there is no justification for 

assuming the opposite once the data have been collected. 
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8. Conclusion  
If for large sample sizes the calibrated weights remain 

within a restricted region, then the asymptotic properties of 

the estimator with restricted weights are obviously identical 

to those of the calibration estimator. For a given asymptotic 

setup, we can usually expect to have cal s s−w A c  
converging in probability to ,0  i.e. for sufficiently large 

sample sizes the calibrated weights calw  will remain within 
the restricted region R

w
 if s sA c  lies within .R

w
 However, 

we have seen that for the estimate of a total, we do not 

necessarily have convergence to 0 for cal( ).sD w  We must 
therefore avoid having a restricted region defined by 

2

ss s s l|| − || ≤
U

w A c  at least if we are estimating a total and 
not a mean. 

We have provided necessary and sufficient conditions for 

the existence of weights restricted to intervals which satisfy 

the calibration equation. If such weights do not exist, the 

idea of satisfying the calibration equation exactly must be 

abandoned. The problem of calibration with restricted 

weights can be reformulated in such a way that a solution 

will always be possible. Some of the approaches described 

in this paper make it possible to obtain a solution without 

recourse to iterative methods. These are simple methods that 

are easy to interpret. The asymptotic properties of these 

estimators are usually identical to those of the calibration 

estimator without weight restrictions. 

The problem of extreme weights is encountered for small 

sample sizes, thus the problem of estimating for small 

domains should be considered simultaneously. It is possible 

to take advantage of synthetic estimators while using an 

estimator with restricted weights having good asymptotic 

properties. 

It is also possible to modify the calibration estimator, or 

any other asymptotically consistent estimator, so as to deal 

with outliers. The conditions under which this modified 

estimator will have asymptotic properties identical to those 

of the unmodified estimator are not easily verified, just as it 

is difficult to verify whether an outlier is in fact unrepre-

sentative. However, such conditions make it possible to 

identify those factors which allow an estimator that is 

corrected for outliers to be statistically valid. 
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Appendix A 

 
We wish to verify that ( ) ( ) ( )− +′ ′Ω = −ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕl V h V  has a 

value of zero or less. First, it is easily shown that this is true 

for a vector ,ϕϕϕϕ  if and only if it is true for a vector kϕϕϕϕ  with 
arbitrary > 0.k  Only the direction of ϕϕϕϕ  matters. It is 
therefore sufficient to verify the condition for ϕϕϕϕ  of norm 

equal to one. For this proof, we will use the 11 -norm of 

,ϕϕϕϕ
1 1

|| || | |.
p

l ii=
= ϕ∑ϕϕϕϕ  Vectors ϕϕϕϕ  with 

1
|| || 1l =ϕϕϕϕ  are located 

in hyperplanes whose intersections lie on points orthogonal 

to the unit vectors, i.e. points at least one of whose 

coordinates is zero. Function Ω  varies linearly except at 
points ϕϕϕϕ  orthogonal to one or more rows of .V  Even when 
the domain of Ω  is restricted to vectors ϕϕϕϕ  with 

1
|| || 1l =ϕϕϕϕ  

that are orthogonal to )1(0 −<≤ pj  linearly independent 
rows of ,V  function Ω  still varies linearly except at points 
orthogonal to other rows of V  or orthogonal to unit vectors 
(which are likewise rows of V ). The maximum of Ω  for 

1
|| || 1l =ϕϕϕϕ  is therefore reached at a point ϕϕϕϕ  orthogonal to 

)1( −p  linearly independent rows of .V  It is therefore 
sufficient to verify the condition for two vectors of opposite 

direction which are orthogonal to )1( −p  linearly 
independent rows of ,V  and this for each subset of )1( −p  
linearly independent rows of .V  

 
Appendix B 

 
Let vec ( )F  denote the vector obtained by piling 

successive columns of matrix a b×∈ℝF  with the first 
column on top, and let the Kronecker product of two 

matrices F  and G  be defined as 

11 1

1

.

n

m mn

f f

f f

 
 
 ⊗ =
 
 
 

⋯

⋮ ⋮

⋯

G G

F G

G G

 (B1) 

The result is derived from the corollary in section 3 with 

1

1

1

ˆ, vec (( ) ),

RC

R C

ij

R C

RC

N
×

×

×

 
 
 ⊗
  ′= =
 ⊗
 
 
 

1

1

1

I

I

M w

I

 

( ) ( )

( ) ( )

1. 1.

( ) ( )

. .

( ) ( )

.1 .1

( ) ( )

. .

( ) ( )

.. ..

vec(( ) ) vec (( ) )

, .

L H

ij ij

L H

L H

R R

L H

L H

C C

L H

N N

N N

N N

N N

N N

N N

   ′ ′
   
   
   
   
   
   
   
   

= =   
   
   
   
   
   
   
   
      
   

⋮ ⋮

⋮ ⋮

l h  (B2) 
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Only a finite set of conditions need be verified, first by 

noting that the columns of 

1 1 1

1

1

1 1 1

R C R C RC

R R C R

C R C C

R C

× × ×

× ×

× ×

× ×

− ⊗ − ⊗ − 
 
 
 =  
 
  
 

1 1 1

0 0

0 0

0 0

I I

I

V

I

 (B3) 

form a basis for ( ).N ′M  In other words, ,′ = 0M V  the 

columns of V  are linearly independent, and ( )N ′M  is of 

dimension 1.R C+ +  Note also that the last 1++ CR  

rows of V  are the unit vectors. Finally, we verify the 

conditions of the corollary for all vectors =λ ϕλ ϕλ ϕλ ϕV  and 

= − ,λ ϕλ ϕλ ϕλ ϕV  where ϕϕϕϕ  is orthogonal to CR +  linearly 

independent rows of .V  This last step is described in greater 

detail in the following paragraph. 

An arbitrary subset of CR +  linearly independent rows 

of V  which includes the last row of V  is denoted ,L  and 

the subset of all rows of V  which are linear combinations 

of rows of L  is denoted .L+  If L+  includes row 

iRC + ( 1, ..., )i R=  if and only if {1, 2, ..., },i S R∉ ⊆  
and includes row ( 1, ..., )RC R j j C+ + =  if and only if 

{1, 2, ..., },j T C∉ ⊆  then we set ( , , 0) ,S T
′ ′ ′= −ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ  

where the thi  element of R

S ∈ℝϕϕϕϕ  is equal to 1 if Si∈  and 
to 0 otherwise, and the thj  element of C

T ∈ℝϕϕϕϕ  is equal to 
1 if Tj∈  and to 0 otherwise. Then 

1 1(( ) , , , 0) ,S C R T S T× × ′ ′ ′ ′= − ⊗ + ⊗ −1 1ϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕϕ ϕ ϕ ϕ ϕV  

therefore ϕϕϕϕ  is orthogonal to all rows of ,L+  and all the 

more so ϕϕϕϕ  is orthogonal to all rows of .L  Likewise, vector 
( , , 1)S T

∗ ′ ′ ′= −ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ  is orthogonal to all rows of a subset of 
CR +  linearly independent rows of V  which includes row 

iRC + ( 1, ..., )i R=  if and only if ,i S∉  and includes row 
RC R j+ + ( 1, ..., )j C=  if and only if ,j T∉  but does 
not include the last row of .V  The condition − +′ ′− ≤λ λλ λλ λλ λl h  
with =λ ϕλ ϕλ ϕλ ϕV  provides the fifth set of inequalities in (9). 
Likewise, by assuming λλλλ  equal to , ∗− ϕ ϕϕ ϕϕ ϕϕ ϕV V  and ∗− ϕϕϕϕV  
we obtain the last three sets of inequalities in (9). 
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