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Model-based estimation with link-tracing sampling designs 
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Abstract 

Samples from hidden and hard-to-access human populations are often obtained by procedures in which social links are 

followed from one respondent to another. Inference from the sample to the larger population of interest can be affected by 

the link-tracing design and the type of data it produces. The population with its social network structure can be modeled as a 

stochastic graph with a joint distribution of node values representing characteristics of individuals and arc indicators 

representing social relationships between individuals. In this paper maximum likelihood estimators of population graph 

parameters are described. Predictors of realized population graph quantities are obtained using predictive likelihood. These 

estimators and predictors are compared with conventional data summaries and illustrated with a numerical example. 

                                                           
1. Steven K. Thompson, Department of Statistics, 326 Thomas Building, Pennsylvania State University, University Park, PA 16802 USA; Ove Frank, 

Department of Statistics, Stockholm University, S-10691 Stockholm, Sweden. This research is part of an ongoing, equal collaboration effort and order of 

authorship was determined by a coin toss. 

  

Key Words: Snowball samples; Adaptive sampling; Graph sampling; Ignorable designs; Link-tracing designs; 

Network sampling; Likelihood; Predictive likelihood. 

 

 

 

1. Introduction  
In studies of hidden and hard-to-access human 

populations, link-tracing procedures, in which social links 

are followed from one respondent to another, are commonly 

involved in obtaining the sample. For example, in a study of 

injection drug use in relation to the spread of the HIV 

infection, initial respondents may he asked to identify drug-

injection or sexual partners who are then added to the 

sample. For such a study, the social links are of inherent 

importance for understanding the issues of interest while at 

the same time being useful or essential in building the 

sample. However, inference from the sample to the larger 

population or social structure of interest can be affected by 

the link-tracing procedures and the type of data they 

produce. In this paper we evaluate this inference problem in 

relation to the design and describe some inference methods 

for such studies based on maximum likelihood estimation 

and prediction. 

Human populations with social structure are often 

modeled as graphs, with the nodes of the graph representing 

individuals and the edges or arcs of the graph representing 

social links, relationships, or transactions. The population 

graph itself can be viewed either as a fixed structure or as a 

realization of a stochastic graph model. In real studies of 

human populations, particularly those that are hidden or 

hard to access, it is seldom possible to obtain data on the 

whole population or graph structure. Rather, data are 

obtained from a sample, and the sample may have been 

obtained by innovative and unconventional means, 

including methods taking advantage of the arcs or links 

from one individual to another. The data may contain 

information about characteristics of sample individuals, 

social links within the sample, and in some cases 

information about links between individuals in the sample 

and individuals outside the sample. 

In this paper we use the term “sampling design” to refer 

to the procedure by which the sample is selected, whether 

deliberate or happenstance. For many ethnographic and 

sociological studies of hidden populations, link-tracing 

designs are considered the only practical way to obtain a 

sample large enough to study. In other studies, the social 

structure is itself the object of interest and the link-tracing 

methods are used in order to obtain meaningfully structured 

samples to study. 

The statistical literature on design and estimation with 

link-tracing designs includes procedures variously termed 

snowball sampling, chain-referral sampling, random walks, 

nexus sampling, network or multiplicity sampling, and 

adaptive sampling. A type of link-tracing design in which 

individuals in an initial sample were asked to identify a 

fixed number of acquaintances, who in turn were asked to 

identify the same number of acquaintances, and so on for a 

fixed number of stages or waves, was termed “snowball 

sampling” by Goodman (1961). A Bernoulli procedure was 

assumed for the initial sample. Snowball designs were 

developed in the graph setting with a variety of initial 

probability sampling designs and any numbers of links and 

waves by Frank (1971, 1977a,b, 1978a,b, 1979a), who 

obtained a variety of design and model based methods for 

estimating graph quantities from the sample data. Snijders 

(1992) used the same term “snowball sampling” to include 

designs in which only a subsample of links from each node 

is traced. The case in which only one of the links from a 

node is selected at random and followed to another node, 

and then one of its links selected, and so on, was called a 

“random walk” by Klovdahl 1989. Link-tracing sampling 

methods in which there is only one link from each node 

have been termed “chains” (Erickson 1979). Frank and 

Snijders (1994) consider model- and design-based 
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estimation of a hidden population size, that is, the number of 

nodes in the graph, based on snowball samples. Additional 

practical and statistical issues in sampling from social 

networks with various types of snowball, chain-referral, and 

other link-tracing designs are discussed in Granovetter 

(1976), Morgan and Rytina (1977), Frank (1979b, 1981, 

1988), Watters and Biernacki (1989), van Meter (1990), 

Spreen (1992), Wasserman and Faust (1994), Spreen and 

Zwaagstra (1994), Karlberg (1997), Jansson (1997), Spreen 

(1998), and Robins (1998). 

Design-based estimation methods were developed 

additionally for the closely related designs of network or 

multiplicity sampling, in which social, kinship, and 

administrative links were traced (Birnbaum and Sirken 

1965, Kalton and Anderson 1986, Levy 1977, Levy and 

Lemeshow 1991, Sirken 1970, 1972a, b, Sirken and Levy 

1974, Sudman, Sirken, and Cowan 1988). For example, in a 

survey of a rare disease, an initial sample of households 

might be selected at random and data obtained both for 

residents of the households and for their siblings. The 

design-based estimation in these strategies is helped by the 

symmetry of the links and the encompassing of complete 

connected components in the sample, and unbiased 

estimators have been obtained for network sampling with 

many different initial designs. 

Another link-tracing procedure for which design-based 

estimators are available is adaptive cluster sampling 

(Thompson 1990, 1997, Thompson and Seber 1996), which 

has been formulated in the graph setting as well as the 

spatial setting. Following selection of an initial sample of 

nodes by any of a number of initial designs, the decision on 

whether to follow links from a node or not depends on the 

value of a variable of interest observed for the node. For 

example, in an epidemiological study of a sexually 

transmitted disease, sexual or social links may be followed 

only from respondents who have been infected. Design-

unbiased estimation methods have been worked out for a 

wide variety of adaptive cluster sampling strategies. 

Design-based methods of inference, such as the design-

based estimation methods of network sampling, snowball 

sampling, and adaptive cluster sampling, have the advantage 

that properties such as design-unbiasedness or consistency 

do not depend for their validity on any assumed model for 

the population. On the other hand, these properties do 

depend on the sampling design being carried out as 

specified. The model-based methods described in this paper, 

on the other hand, do depend on an assumed model for the 

population or graph. Their practical advantage is that they 

apply to a wide range of sample selection procedures, and 

thus allow more leeway in how the sample is actually 

selected. 

In fact many real studies of hidden and hard-to-reach 

populations use sample selection procedures, including link-

tracing, that are not readily analyzed based on idealized 

design-induced probabilities. For example, in a study to 

examine the relation of network structure and risk behaviors 

such as needle sharing among drug injectors in the 

Bushwick section of Brooklyn, “index” (initial) respondents 

were used as “auxiliary recruiters” to bring members of their 

networks into the study (Friedman, Neaigus, Jose, Curtis, 

Goldstein, Ildefonso, Rothenberg and Des Jarlais 1997, 

Neaigus, Friedman, Goldstein, Ildefonseo, Curtis and Jose 

1995, Neaigus, Friedman, Jose, Goldstein, Curtis, Ildefonso 

and Des Jarlais 1996). Only about 61% of the linked 

individuals were actually recruited, however. In a long-term 

study on the heterosexual transmission of HIV infection 

(Rothenberg, Woodhouse, Potterat, Muth, Darrow and 

Klovdahl 1995), the target population of interest consisted 

of commercial sex workers, their paying and nonpaying 

partners, persons who use injectable drugs, and the sexual 

partners of drug users in the Colorado Springs area. Persons 

in the purposively-selected initial sample were interviewed 

and, in addition to their individual characteristics, identities 

of their sexual partners were obtained. Persons named by 

two or more respondents were also located and interviewed. 

The wide range of link-tracing procedures used in studies 

such as these has motivated the emphasis in this paper on 

model-based inference methods. 

When we compare the maximum likelihood estimators 

and predictors obtained in this paper with commonly-used 

conventional estimates or data summaries such as sample 

means and proportions of node or link values, we find that 

in most cases the conventional estimates are not the best 

estimates. Similarly, estimators that would be appropriate if 

the data included the whole graph may not be appropriate 

with data on only a sample from the graph. An implication 

of these results is that conventional estimates or unadjusted 

summaries of sample data obtained through link-tracing 

procedures can be misleading if viewed as pertaining to 

population or whole-graph characteristics. The interpreta-

tions of this discrepancy provided in this paper give some 

insight into the conditions under which the best estimate 

would tend to be lower, or higher, than the conventional 

one. 

Notation and basic issues for design and inference in the 

graph setting are presented in section 2. In section 3, a wide 

range of link-tracing procedures, all of which can be 

analyzed using the approach presented in this paper, are 

described. In section 4, a class of graph models that we use 

to illustrate the inference methods of the paper is described. 

Estimative and predictive maximum likelihood methods for 

graph parameters and realized population values are 

described in section 5. 

 
2. Graph models and sampling designs 

 
Consider a graph of N  nodes (units) labeled 1, 2, ..., .N  

Associated with the thu  node is a variable of interest .uY  

We denote the full set of node labels {1, 2, ..., }U N=  and 

the sequence of node variables by 1( ,..., ).NY Y=Y  For two 

distinct nodes u  and ,v  the indicator variable uvX  equals 
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one if there is an arc (directional link) from u  to v  and zero 

otherwise. The matrix of arc indicators, having uvX  as the 

element in the thu  row and the thv  column, is the graph 

adjacency matrix, denoted .X  For convenience we will 

assume the diagonal elements uuX  are zero. The ordered 

pair ( , )u v  is sometimes referred to as a dyad of type 

( , ; , ).u v uv vuY Y X X  A graph model is given by a joint 

probability or density ( , ; )f ψy x  for outcomes y  and x  

of Y  and ,X  respectively, and it may depend on one or 

more unknown parameters .ψ  

A sample s  from the graph is a subset of nodes and a 

subset of node pairs. We can write the combined sample as 
(1) (2)( , ),s s s=  where (1)s  denotes the subset of nodes 

selected for observation of the associated y -values and (2)s  

denotes the subset of node pairs selected for observation of 

the associated x -values. The data consist of the node and 

node-pair labels in the combined sample together with the 

associated node and arc-indicator values, that is d =  
(1) (2)( , ( , ), , : , ( , ) )u vwu v w y x u s v w s∈ ∈  or, more simply, d =  

(1) (2)( , , ).
s s

s y x  Further, it is often convenient to use sy  to 

denote the y -values of the nodes in the combined sample 

and sx  for the x -values of the node pairs in the combined 

sample, with sy  and sx  denoting the values of the 

unsampled nodes and node pairs. Often the sampling 

procedure results in a connection between (1)s  and (2).s  For 

example, if all relationships from sample nodes to other 

sample nodes, and no others, are recorded, then (2)s =  
(1) (1).s s×  In general, however, the nodes on which y -

values are recorded and the node pairs on which x -values 

are recorded may be quite unrelated sets. In particular, the 

link-tracing procedures considered in this paper often lead to 

data on links from nodes in (1)s  to nodes outside of (1).s  

The sampling design is the procedure by which the 

sample is selected. This selection procedure may be 

controlled by the investigators, as is the case with a 

deliberately implemented probability sampling design, or 

may be beyond the control of the investigators and 

determined by the circumstances of the situation. If the 

probability of selecting the sample does not depend on node 

values y  or link values x  or parameters ψ  involved in the 

graph model, we refer to the design as “conventional.” For a 

conventional design the probability of selecting sample s  

can be written ( )p s  or ( ; ),p s ϕ  where ϕ  denotes any 

unknown parameters involved in the design (but not the 

model), as in a Bernoulli sampling with unknown inclusion 

probability ϕ  for each node. The sampling design may 

depend on one or more auxiliary variables that are known 

for the whole population, but that dependence will be left 

implicit in the notation ( ).p s  Conventional designs include 

the classical probability designs such as simple random, 

systematic, stratified, multistage, and unequal probability 

sampling, as well as model-based purposive and balanced 

designs based on auxiliary variables. 

If the probability of selecting the sample depends on any 

y  or x  values, we refer to the design as “adaptive,” since 

the selection procedure adapts to the realized configuration 

of node and link values in the population. In addition, the 

design can involve unknown parameters .ψ  Thus, in 

general the sampling design in the graph setting has a 

selection probability that can be written ( , ; )p s | y x ψψψψ  

where y  denotes the sequence of node values, x  the matrix 

of arc indicator values, and ψ  any parameters involved. 

Likelihood-based inference, such as maximum likelihood 

estimation or prediction and Bayes methods, is simplified if 

the design can be ignored at the inference stage. The fact 

that the sampling design does not affect the value of a Bayes 

or likelihood-based estimator in survey sampling was noted 

by Godambe (1966) for designs that do not depend on any 

values of the variable of interest and by Basu (1969) for 

designs that do not depend on values of the variable of 

interest outside the sample. Scott and Smith (1973) showed 

that the design could become relevant to inference when the 

data lacked information about the labels of the units in the 

sample. Rubin (1976) gave exact conditions for a missing 

data mechanism  –  of which a sampling design can be 

viewed as an example  –  to be relevant in frequentist and 

likelihood-based inference. For likelihood-based methods 

such a maximum likelihood and Bayes methods, the design 

is “ignorable” if the design or mechanism does not depend 

on values of the variable of interest outside the sample or on 

any parameters in the distribution of those values. For 

frequency-based inference such as design- or model-

unbiased estimation, however, the design is relevant if it 

depends on any values of the variable of interest, even in the 

sample. Scott (1977) showed that the design is relevant to 

Bayes estimation if auxiliary information used in the design 

is not available at the inference stage. Sugden and Smith 

(1984) gave general and detailed results on when the design 

is relevant in survey sampling situations. Thompson and 

Seber (1996) described adaptive designs in which the 

selection procedure deliberately takes advantage of ob-

served values of the variable of interest, and discussed the 

relevance of the design in inference from a variety of design 

and model based perspectives. Similar issues of design and 

inference arise with adaptive experimental designs, such as 

medical experiments in which ethical considerations 

motivate adaptive treatment allocation to favor the more 

promising treatments as the study progresses (cf. Flournoy 

and Rosenberger 1995, Rosenberger 1996, Wei, Smythe, 

Lin and Park 1990). It is important to underscore that a 

design that is said to be “ignorable” for likelihood-based 

inference might not be ignorable for a frequentist-based 

inference, such as model-unbiased estimation, and that even 

though a design may be ignorable at the inference stage, in 

that for example the way an estimator is calculated does not 

depend on the design used, the design is still relevant 

a priori to the properties of the estimator. 

The sample data ( , , )s sd s= y x  are a function of the 

sample selected and of the graph values y  and .x  The 

likelihood can be written 

( , ) ( , ; ) ( , ; )L d p s fψ = |∑ y x y xψ ψψ ψψ ψψ ψ  (1) 
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where the sum is over outcomes ( , )y x  consistent with the 

data .d  Since the y  and x  values for nodes and node pairs 

in the sample are fixed by the data, the sum is over all 

possible values of the unobserved variables sy  and sx  and 

it actually represents the marginal probability of the sample 

s  selected and the associated observed variables sy  and 

.sx  

Thus, in general the likelihood function depends on both 

the design and the model. The quantity , ( , ; ),
s s

f∑y x y x ψψψψ  

based on the model only without consideration of the 

design, was termed the “face-value likelihood” by Dawid 

and Dickey (1977) because inference based on this function 

alone takes the data at face value without considering how 

the data were selected. 

For any design in which the selection of the sample 

depends on graph y  and x  values only through those 

values sy  and sx  included in the data, the design 

probability can be moved out of the sum and forms a 

separate factor in the likelihood. If in addition the design 

and model parameters are distinct and not related, the 

likelihood can be written 

,

( , , ) ( , ; ) ( , ; )
s s

s sL d p s fϕ ψ = | ϕ ∑
y x

y x y x ψψψψ  (2) 

where ϕ  denotes the design parameters and ψ  denotes the 

model parameters. The design then does not affect the value 

of estimators or predictors based on direct likelihood 

methods such as maximum likelihood or Bayes estimators. 

For any such “ignorable” design, the sum in the above 

likelihood, over all values of y  and x  leading to the given 

data value, is simply the marginal probability of the y  and 

x  values associated with the sample data. This marginal 

distribution depends on what sample was selected, but does 

not depend on how that sample was selected. For likelihood-

based inference with a design ignorable in this sense, the 

face-value likelihood gives the correct inference. 

 
3. Some link-tracing designs 

 
A variety of link-tracing designs are described in this 

section. Each of these designs is ignorable in the likelihood 

sense provided the initial sample is selected by an ignorable 

procedure and provided the data include all the values 

involved in the selection procedure. Since for all the designs 

described in this section, the node-pair sample (2)s  has a 

deterministic functional relationship to the node sample (1),s  

the superscript notation will be omitted and the final node 

sample (1)s  will be denoted simply .s  

The simple likelihood methods described in this paper 

apply to a wide range of ignorable link-tracing designs, 

including those described in this section. Further research is 

needed on methods for nonignorable designs, including 

those with nonignorable selection of the initial sample. 

Methods for dealing with nonsampling errors such as non-

response and reporting errors with link-tracing designs are 

also in need of further development (cf., Thompson 1997). 

3.1 Single-wave design  
In a single-wave link-tracing design an initial sample of 

nodes is selected by any ignorable design from the 

population of nodes in the graph. For each node in the 

sample, nodes adjacent from that node are added to the 

sample. The snowball procedure is assumed to stop after 

one wave. Thus, node v  will be added if for some node u  

in the initial sample 1.uvx =  

Let 0s  denote the set of nodes in the initial sample and 

1s  denote the added nodes not in the initial sample. The 

whole sample is 0 1.s s s= ∪  

The entire set of labels can be written as the union of 

three disjoint sets, 0 1 .U s s s= ∪ ∪  The values y  

associated with the nodes can be correspondingly ordered as 

a sequence 
0 1

( , , ),s s sy y y  where ( : )a uy u a= ∈y  is the 

subsequence of y  restricted to indices in subset .a U⊂  

The adjacency matrix x  is ordered correspondingly and 

partitioned into submatrices 
0 0 0 1 0
, ,s s s s s sx x x  and so on, 

where ( : , ).ab uvx u a v b= ∈ ∈x  Ordering the adjacency 

matrix in this way facilitates the specification of factors in 

the likelihood. 

With the design above, the probability of selecting 

sample s  depends only on 
0s Ux  and so can be written 

0
( ),s Up s | x  where 

0s Ux  can also be replaced by its column 

permutation 
0 0 0 1 0

( , , ).s s s s s sx x x  That is, the probability of 

selecting the final sample 0 1s s s= ∪  depends on links 

from the initial sample to other units in the graph, both in s  

and in .s  The data consist of 
0

( , , ).s s Us y x  Since the design 

does not depend on any x  or y  values outside the data or 

on model parameter values, the design is ignorable for 

likelihood-based inference. 
 
3.2 Multi-wave samples  

Consider a snowball sample with 1k +  waves after the 

initial sample. The sample will be denoted 0 1s s s= ∪  with 

0 00 01 02 0... .ks s s s s= ∪ ∪ ∪ ∪  An initial sample 00s  is 

selected by any design that is ignorable in the likelihood 

sense. Links are followed and every node with an arc from 

any node in 00s  and not already in the sample is added to 

form the first-wave sample 01.s  That is, 01 { : 1uvs v x= =  

for some 00 00, }.u s v s∈ ∉  Then links are followed in 01s  

to give the second-wave sample 02 { : 1uvs v x= =  for some 

01 00 01, } { : 1uvu s v s s v x∈ ∉ = =∪  for some 00 01,u s s∈ ∪  

00 01}.v s s∉ ∪  Finally, the ( 1)k + -wave sample, denoted 

simply 1,s  is added by following links from the thk  wave 

sample 0 .ks  That is 1 { : 1uvs v x= =  for some 0,u s∈  

0}.v s∉  No links from 1s  are followed. 

If 0 js =Ø for any j k<  then sampling stops, so that the 

number of waves added is less than k  if at some point there 

are no links leading out of the current sample to unsampled 

nodes. 

The data consist of sets of node labels in the different 

waves of the sample and the ordered node pairs from 0s  to 

,U  the sequence of node-values sy  for all nodes in the 

sample, and the link indicator variables 
0s Ux  from 0s  to the 

set U  of nodes in the graph. Thus the data consist of the 
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subgraph data for 0,s  that is 
0 0 00( , , ),s s ss y x  together with 

the node values 
1s

y  for the nodes in the final-wave 1,s  the 

link indicators 
0 1s sx  from 0s  to 1,s  and the link indicators 

0s sx  from the nodes in 0s  to the nodes not in the sample. 

Since the design does not depend on any y  or x  values 

outside the data nor on any of the graph model parameters, 

the design is ignorable and the structure of the data is 

exactly the same with the ( 1)k + -wave snowball as with 

the 1-wave snowball design, and with the notation we have 

used the likelihood and estimation formulas are unchanged 

with the more general design. 
 
3.3 Completed-wave designs  

With a completed snowball sample, the procedure of 

adding waves is continued until no further links lead out of 

the sample. Then the number of completed waves K  is a 

random variable and 0, 1 1Ks s+ =  is the first empty set in the 

sequence 00 01( , , ...).s s  The data are 
0 00( , , )s s Ud s= y x  or 

equivalently 
0 0 0 0 00( , , , ).s s s s ss y x x  Inference can then proceed 

with the same likelihood and estimation formulas but with 

the simplication that the data contains no set 1s  for which 

1s
y  and 

0 1,s sx  are known but from which links are 

unknown. 
 
3.4 Link-tracing adaptive on node values  

Consider a design in which the decision to follow the 

links from node u  depends on the node value .uy  For 

example, in a study on injection drug use, the initial sample 

may contain both users ( 1)uy =  and nonusers ( 0).uy =  If 

the investigators choose to follow social links only from 

users, then the design depends adaptively on the node y -

values as well as the links. Similarly, in a study of sexually 

transmitted diseases, investigators may be instructed to 

follow sexual or social links more frequently from infected 

respondents than from noninfected respondents. The design 

then can be written 
0

( , ),s s Up s | y x  since the selection 

procedure depends on both node and link values. If the data 

contain all values on which the design depends, that is, 

0
( , ),s s Ud s= | y x  then the design is ignorable and 

maximum likelihood inference is simplified as described in 

the following sections. 
 
3.5 Tracing only a subsample of sample links  

The designs described above can be generalized to 

procedures in which only a sample of the links leading out 

from node u  in 0s  are followed. Examples include the 

“random walk” design of Klovdahl (1989) and the 

generalization of snowball designs described in Snijders 

(1992). In the random walk design, an initial respondent is 

asked to give the names of several social contacts. One of 

these contacts is chosen at random to be interviewed and 

asked in turn to name several contacts, one of which is 

chosen at random, and so on. In practice, dead ends can 

occur when a respondent either reports no contacts or 

reports only contacts who are already in the sample. In such 

cases investigators either backtrack and try different leads 

from previous respondents or find a new initial respondent. 

With these subsampling link-tracing designs, the 

procedure for selecting the sample, though complicated 

from a design-probability point of view, depends only on 

values in the sample and on links leading from the sample. 

We again assume that the initial sample is obtained by any 

ignorable procedure. Let 0 00 01 02 0... ks s s s s= ∪ ∪ ∪ ∪  

consist of all of the waves from which at least some links 

are followed. Thus, 01s  consists of the nodes not previously 

included obtained by following a subsample of the links 

from nodes in the initial sample 00 02,s s  consists of the 

nodes not previously included obtained by following a 

subsample of the links from nodes in 00 01,s s∪  and so on. 

No links are followed from the final wave 1.s  Allowing for 

the possibility of dependence on node values, the design can 

be written 
0

( , ),s s Up s | y x  so that with data d =  

0
( , , ),s s Us y x  the design is ignorable for likelihood-based 

inference. 
 
3.6 Data from link-tracing designs  

With any of the single or multi-wave link-tracing designs 

described above, it is of considerable practical importance 

what data are recorded. If the data include only the sample 

node labels, the y -values for nodes in the sample, and the 

arc indicators for pairs of units in the sample, that is, 

( , , ),s ssd s= y x  then the design is nonignorable and must 

be integrated into the likelihood, which can complicate 

analysis. 

Consider also a study in which social links are used in the 

design, to find the sample, but only node characteristics ( y -

values), not relationships are recorded, so that the data are 

( , ).sd s= y  Then the design is nonignorable. 

If on the other hand the data from the link-tracing design 

include not only the linkages within the sample but the out-

linkages (or lack thereof) from all but the last wave to the 

rest of the graph, that is, 
0

( , , ),s s Ud s= y x  then the design 

depends only on graph values in the data and so factors out 

of the likelihood. 

 
4. A graph model with links related  

        to node values 
 

The likelihood-based approach described in section 2 with 

sample data from link-tracing designs of types described     

in section 3 will be illustrated using a class of graph      

models described in this section. This class of models    

builds on conditional independence between dyads as in    

the contact models of Frank (1979a) and Wellman, Frank, 

Espinoza, Lundquist and Wilson (1991). Conditional on    

the node values, independence is assumed between dyads, 

with the distribution of links between pairs of nodes 

depending on node value. Thus, unconditionally these 

models have dependence between dyads because of the 

dependence on the node values. In the models of Holland 
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and Leinhardt (1981), dyads are assumed to be independent 

but with distributions that depend on fixed node parameters. 

Wasserman (1980) also assumed independence of dyads in 

modeling the change in a graph over time as a stochastic 

process. Bayesian extensions and stochasstic blockmodels of 

Holland, Laskey, and Leinhardt (1983), Fienberg, Meyer, 

and Wasserman (1985), Wang and Wong (1987), and Frank 

(1988) provide generalizations to joint distributions with 

dependence between node values and graph links. Models by 

Frank and Harary (1982) for randomly colored graphs 

exhibit a similar structure. The Markov graph models of 

Frank and Strauss (1986) provide another approach to 

dependence among dyads but present difficulties for 

maximum likelihood estimation. Review of a variety of 

graph models is found in Wasserman and Faust (1994) and 

Frank (1997). 

The maximum likelihood estimation and prediction 

methods of this paper apply equally to sample data with 

graph models other than the class of stochastic block models 

we have used. With other models, the same conditions for 

ignorability apply. We have chosen this class of models 

because it is rich enough to encompass important aspects of 

realism such as dependence between dyads and between 

dyads and node values, and it is simple enough to have 

explicit full-graph maximum likelihood estimators for 

comparison with the estimators based on samples. With 

other classes of models such as the Markov graph models, 

estimation even with full-graph data requires numerical 

methods. 

For practical use of the model based approach it is 

important to have diagnostic tools for evaluations and 

comparisons between alternative models. For example, with 

the two-block model used here the conditional indepen-

dence of dyads could be tested by counting pairs of dyads of 

different types within and between the blocks. Within each 

block there are three types of dyads and six types of pairs of 

dyads. Between the two blocks there are four types of dyads 

and ten types of pairs of dyads. A Pearson goodness-of-fit 

statistic between observed and expected counts of the 22 

types of pairs of dyads within and between the blocks is 

asymptotically chi-square distributed with 12 degrees of 

freedom under the conditional dyad independence assump-

tion. Goodness-of-fit testing for graph models is discussed 

by Holland and Leinhardt (1981) and Frank and Strauss 

(1986), and this direction of research needs further devel-

opment in particular in connection with sample data from 

link-tracing designs. 

In the assumed model the node variables 1, ..., NY Y  are 

independent, identically distributed (i.i.d.) Bernoullie 

random variables with probabilities ( ) ,u iP Y i= = θ  for 

0, 1,i =  with 0 1 1.θ + θ =  Conditional on the node values 

1, ..., ,NY Y  the dyads ( , )uv vuX X  are independent, for 

1 ,u v N≤ < ≤  with conditional distribution given by 

[( , ) ( , ) , ]uv vu u v ijklP X X k l Y i Y j= | = = = λ  for all 

combinations of 0, 1, 0, 1, 0, 1,i j k= = =  and 0, 1.l =  

For all combinations of i  and ,j  the sums over k  and l  

are denoted .. k lij ijkl∑ ∑λ = λ  and equal 1. In order to get 

graph probabilities not depending on node identities, the 

following symmetry requirements are needed 1110λ =  

1101 1011 0111 1010 0101 1001 0110 0010 0001, , , , ,λ λ = λ λ = λ λ = λ λ = λ  

and 1000 0100.λ = λ  The pattern of these restrictions is 

illustrated in Table 1. 

 

Table 1 
 

 ( , )uv vux x  

( , )u vy y  (0, 0) (0, 1) (1, 0) (1, 1) 
 

(0, 0) 

 
 

(0, 1) 

 
 

(1, 0) 

 
 

(1, 1) 

 

 

 

 

With these restrictions, it is convenient to introduce the 

notation 

, ,

, ,

if ( ) (0110) or (1001),

otherwise

i j k l

ijkl
i j k l

ijkl+ +

+ +

′γ =
λ = γ

 

where 00 01 02 10 11 11 122 1, 1,′γ + γ + γ = γ + γ + γ + γ =  and 

20 2521 222 1.γ + γ + γ =  We can interpret 11
′γ  and 11γ  as the 

probabilities of dyads with an arc from an unmarked to a 

marked node only and from a marked to an unmarked node 

only, respectively. Moreover, for ( ) (11), ijij ≠ γ  is the 

probability of a dyad with j  arcs on i  marked and 2 i−  

unmarked nodes. 

It will also be convenient to denote 1 1lij ij l ij• ∑λ = λ = α  

and 11ij i j+λ = β  for 0, 1i =  and 0,j =  1. Here ijα  is the 

probability of an arc from a node of value i  to a node of 

value ,j  and kβ  is the probability of mutual arcs between 

k  marked nodes. 

Let iN  denote the total number of nodes with value i  in 

the graph, for 0,i =  1, so that 0 1 .N N N+ =  Let further 

ijklM  denote the total number of dyads of type ( ),ijkl  that 

is, the total number of ordered node pairs ( , ),u v  with 

,u v<  such that ( , , , ) ( ).u v uv vuY Y X X ijkl=  

The likelihood for the full graph under the model with 

parameters ( , )θ λλλλ  is  

1 1 1 1 1

0 0 0 0 0

( , ; , ) .ijkli
MN

i ijkl

i i j k l

L
= = = = =

  θ = θ λ  
   
∏ ∏∏ ∏ ∏y xλλλλ  (3) 

In terms of the ,sγ  

11

1 1 1 1 2 2

11

0 0 0 0 0 0

( )ijklM RRij

ijkl ij

i j k l i j

′

= = = = = =

 
′λ = γ γ 

 
∏ ∏∏ ∏ ∏∏  

where the sR  are dyad counts corresponding to the pattern 

in Table 1. That is, 00 0000 01 0001 0010, ,R M R M M= = +  



Survey Methodology, June 2000 93 
 

 

Statistics Canada, Catalogue No. 12-001 

02 0011 10 0100 1000, ,R M R M M= = +  11 0101 1010,R M M= +  

11 0110 1001 12 0111 1011, ,R M M R M M′ = + = +  20 1100,R M=  

21 1101 1110,R M M= + 22 1111.R M=  Note that 11 11( )R R′  is 

the number of dyads with an arc from an unmarked 

(marked) to a marked (unmarked) node only. Also note that 

except for ( ) (11), ijij R=  is the number of dyads on i  

marked nodes with j  arcs. 

The maximum likelihood estimators with the whole 

graph as data are the proportions ˆ / ,i iN Nθ = ˆ
ijγ =  

/ ,ij iR R  and 11 11 1
ˆ / ,R R′ ′γ =  where 0 0 0( 1) / 2,R N N= −  

1 0 1,R N N=  and 2 1 1( 1) / 2.R N N= −  In terms of the ,sλ  

this means 11 1
ˆ /ijkl R R′λ =  if ( ) = (0110) ijkl  or (1001) and 

,
ˆ /ijkl i j k l i jR R+ + +λ =  otherwise. 

 
5. Inference from link-tracing designs 

 
5.1 Estimating graph model parameters  

Consider any of the link-tracing designs, for which an 

initial or multiwave sample is selected and links out from 

nodes in 0s  are followed to add the set 1s  of nodes not in 

0s  that are adjacent after nodes in 0.s  The data are 

0
( , , ),s s Ud s= y x  so that the design depends on y  and x  

values only through those in the data and is thus ignorable. 

With the graph model described in the previous section, 

the likelihood with the sample data given by equation (2) in 

section 2 is in this case 

0

1

( , , ) ( , )
u u v uv vu

N

s s U y y y x x

u u v

L d P s
= <

  
θ = | θ λ  

  
∑ ∏ ∏y xλλλλ  

where the sum is over all values uy  and uvx  that are not 

fixed by the sample data. 

Similar to the notation for population counts in the 

previous section, let ( )in a  denote the number of nodes 

u a∈  with uy i=  for arbitrary subsets .a U⊂  Let 

( , )ijklm a b  be the count of pairs of nodes ( , )u v  such that 

, , ( , , , ) ( ),u v uv vuu a v b y y x x ijkl∈ ∈ =  and u v<  if both 

u  and v  belong to .a b∩  An index replaced by a dot 

means summation over that index. For instance, according 

to the link-tracing designs described in section 3, only 

0 1( , )ijkm s s•  is observed, not 0 1( , ).ijklm s s  

With data from any of the link-tracing designs described 

in section 3, the likelihood function is 

0 0

0

0 1 0

( , )( )

( , ) ( , )

( , ; ) ( , )

.

ijkli

ijk i k

m s sn s

s s U i ijkl

i ijkl

m s s m s v

ijk j ijk
jijk v s ik

L d P s

• • •
• •

∈

  
θ = | θ λ  

  

   
× λ θ λ   

  

∏ ∏

∑∏ ∏ ∏

y xλλλλ

 (4)

 

For the link-tracing designs in which all links, rather than 

a subsample, from the initial sample are traced, all of the 

elements in the submatrix 
0s sx  are zero and 

00 ( , )i s vm • • =  

0( )in s  for ,v s∈  which simplifies the likelihood function 

to 

0 0

0

0 1 0

( , )( )

( )

( , ) ( )

0

( , ; ) ( , )

.

ijkli

ijk i

m s sn s

s s U i ijkl

i ijkl

n s

m s s n s

ijk j ij
jijk i

L d P s

•

• •

  
θ = | θ λ  

  

   
× λ θ λ   

  

∏ ∏

∑∏ ∏

y xλλλλ

 (5)

 

The factor 
( )sn s

i∏θ  gives the probability of the observed 

node values in the sample. The factor 0 0( , )ijklm s s

ijkl∏λ  gives the 

probability of the observed dyad types within 0 0s s×  given 

the node values. The factor 0 1( , )ijkm s s

ijk
•

•∏λ  gives the 

probability of the observed dyad types in 0 1s s× . Since uvx  

but not vux  is observed, for 0u s∈  and 1,v s∈  the 

marginal probability that uvx k=  given uy i=  and 

vy j=  is .ijk•λ  

The final factor of (5), with square brackets, gives the 

probability that there are no arcs from the initial sample to 

s.  For a node v  of the ( )n s  nodes outside the sample, jθ  

is the probability that .vy j=  From any of the 0( )in s  

sample nodes 0u s∈  with ,uy i=  the conditional 

probability of no link to ,v  that is, that 00, .uv ijx •= λ  

More formally, the bracketed term can be obtained by 

conditioning on the number ( )jn s  of nodes of type j  in s.  

Conditional on ( ),jn s  the probability that all the link 

indicators from 0s  to s  are zero is obtained as follows. 

From the )( 0sni  nodes of type i  in 0s  to the ( )jn s  nodes 

of  type  j  in s,  the probability that all links are zero is 
0( ) ( )

0 .i jn s n s

ij •λ  Using the binomial distribution of 1( )n s  with the 

law of total probability, the probability that all the links 

from 0s  to s  are zero, given ,sy  is 

0

1

0

( )
( ) ( ) ( )

0
( ) 0 1

( )

( )

0

( )

( )

.

j i j

i

n s
n s n s n s

j ij
n s j i j

n s

n s

j ij
j i

n s

n s
•

=

•

    
θ λ    

     

 
= θ λ 

 

∑ ∏ ∏ ∏

∑ ∏

 

(6)

 

With the completed-wave design, the above likelihood 

expressions are simplified since the terms 
0 1( , )ijk s sm •  are all 

zero, so that the factors involving these terms are all equal to 

one. We also note that 0 1ijj ij•λ = − α  and 1ij ij•λ = α  can 

be substituted to simplify the likelihood.  
5.1.1 Estimative likelihood equations  

The maximum likelihood estimators for the parameters 

1,θ ,ijα  and kβ  are obtained as the common solutions to the 

equations 

1

log log log
0

ij k

d L d L d L

d d d
= = =

θ α β
 (7) 

for 0, 1, 0, 1, 0, 2.i j k= = =  Differentiating the 

logarithm of the likelihood (5) with respect to 1θ  and 

setting equal to zero gives 

1 1 0

log log log
0

d L L L

d

∂ ∂
= − =

θ ∂θ ∂θ
 

where the partial derivatives are given by 
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0

0

( )

0

( )

0

( )log
( )

i

i

n s

ikk i
n s

k k j ijj i

n sL
n s

•

•

λ∂ = +
∂θ θ θ λ

∏
∑ ∏

 

for 0, 1.k =  

Moreover, 

10 01 00 00

log log log log log

ij ij ji ij ji

d L L L L L

d

∂ ∂ ∂ ∂
= + − −

α ∂λ ∂λ ∂λ ∂λ
 (8) 

and 

00 11 01 10,

log log log log log

k ij ij ij iji j
i j k

d L L L L L

d
+ =

 ∂ ∂ ∂ ∂
= + − − β ∂λ ∂λ ∂λ ∂λ 

∑  (9) 

where the partial derivatives are given by 

0

0

0 0 0 1

( ) 1

0 0

( )

0

( , ) ( , )log

( )
(1 ) ( ) .

i

i

ijkl ijk

ijkl ijkl ijk

n s

j i ij

n s

j ijj i

m s s m s sL

n s
k n s

•

•

−
•

•

∂ = +
∂λ λ λ

θ λ
+ −

θ λ∑ ∏

 

It is convenient to write the likelihood equation for 1θ  as 

01

1 0 1 0

( )( ) ( ) ( 1)
0

n sn s n s ρ −
− + =

θ θ θ ρ + θ
 (10) 

where 

0 0
( ) ( )1 1

10 1

00 00 0

1
.

1

i i
n s n s

i i

i ii i

•

•= =

λ − α   ρ = =   λ − α   
∏ ∏  

Note that 0 0 1 0( ) ( )

0 1 ,
n s n sρ = ρ ρ  where 1 0(1 ) /(1 )i i iρ = − α − α  

is the ratio between the probabilities of no arc from an i -

node to a positive and a zero node, respectively. 

An interpretation of the influence of the graph structure 

on estimation of 1θ  is provided by considering the graph 

parameters α − and hence ρ − as fixed. Denote the sample 

proportion of positive nodes by 1
ˆ ( ) / ( ).c n s n sθ =  This is the 

conventional or naive estimator of 1,θ  using the sample 

proportion of positive nodes. If 1,ρ =  then the maximum 

likelihood estimator 1θ̂  would be ˆ .cθ  If 1,ρ <  then the 

maximum likelihood estimator 1θ̂  would be less than ˆ ,cθ  

and if 1,ρ > 1
ˆ ˆ .cθ > θ  In particular, 1 0i iα = α  for 

0, 1i =  implies 1ρ =  and the maximum likelihood 

estimator  is  1
ˆ ˆ .cθ = θ  

Consider for instance the case in which for any given 

value of ,uy  a link from node u  to node v  is more likely 

when 1vy =  than when 0,vy =  so that 1 0,i iα > α  for 

0,i =  1. Then 1 10(1 ) /(1 ) 1,i− α − α <  for 0,i =  1, so 

that 1ρ <  and the maximum likelihood estimator 1θ̂  is less 

than the conventional estimator ˆ .cθ  One could say that the 

link-tracing design is leading investigators to an un-

representatively high proportion of positive nodes, and the 

maximum likelihood estimator is adjusting for this. 

In specific cases some of the ijklλ  might be set to zero 

and the likelihood equations have to be modified 

accordingly. Some specific cases will now be illustrated. 
 
5.1.2 A symmetric model  

Symmetric models have 0ijklλ =  for k l≠  so that arcs 

are always mutual or, equivalently, they can be considered 

as undirected edges. 

The full symmetric model has parameters ijkk jikkλ = λ  

for , , 0, 1,i j k =  with 00 11 1.ij ijλ + λ =  Here 11ijλ =  

i j ij ji+β = α = α  and  

0( )1
1

0

1
.

1

in s

i

ii

+

=

− β ρ =  − β 
∏  

Letting 0 ,( , ) ,ijkl i j k lm s s r + +=  we obtain the maximum 

likelihood estimators as the solutions to the equations 

01

1 0 0 1

( )( ) ( ) (1 )
0

n sn s n s − ρ
− + =

θ θ θ + ρθ
 (11) 

02 00 0 0 0

0 0 0 0 1

( ) ( )
0

1 (1 ) ( )

r r n s n s θ
− − =

β − β − β θ + ρθ
 (12) 

[ ]1 0 0 0 0 11012

1 2 1 0 1

( ) ( ) ( )
0

1 (1 ) ( )

n s n s n srr θ + ρθ
− − =

β − β − β θ + ρθ
 (13) 

20 1 0 122

2 2 2 0 1

( ) ( )
0.

1 (1 ) ( )

r n s n sr ρθ
− − =

β − β − β θ + ρθ
 (14) 

If the symmetric model is further simplified by assuming 

0 1 0,β = β =  there are only the two parameters 1θ  and 2,β  

and the equations to be solved are 

1 2 22 1 0/ ( )r N n sθ β =  

and 

1 0( )1 1
2

0 0

( ) /
(1 ) .

( ) /
n sN n s

N n s

− θ
= − β

− θ
 

For instance suppose the value 1uy =  indicates injection 

drug use and 1uvx =  indicates u  and v  are injection 

partners, so that links are only possible between users and 

tracing these links can only add users to the sample. As an 

illustration, consider a population of size N = 10,000 with 

statistics 1 0 0 0 1( ) 7, ( ) 43, ( ) 47,n s n s n s= = =  and 22r =  

42.  The likelihood equations are 1 2 0.0006θ β =  and 
7

1 0 2(10,000 47/ ) /10,000 43/ ) (1 ) ,− θ − θ = − β  leading to 

the maximum likelihood estimators 1
ˆ 0.12θ =  and 2β̂ =  

0.005.  The naive estimator for 1θ  in this case would be the 

sample proportion 47/90  =  0.52 and the naive estimator for 

2β  would be 
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47
42 0.039,

2

 
= 

 
 

the proportion of links between users in the sample out of 

the number possible. 
 
5.1.3 An asymmetric model  

A specific asymmetric model has ijkl ijk ij l• •λ = λ λ =  
,ijk jil• •λ λ  so that all arcs are independent. Now i j+β =  

ij jiα α  and we obtain the maximum likelihood estimators as 

the solutions to the equations 

1 1

0 0

( ) /

( ) /

N n s

N n s

− θ
ρ =

− θ
 

and 

1

0 0 0 0
1 ( ) ( ( ) / )

ij ij

j
ij ij i j

m

m n s N n s

α
=

− α + ρ θ − θ
 

for 0,1 0,1,i j= =  where 0( , ).ijk ijkm m s s•=  

In particular, if we specify this asymmetric model by 

,ij ijα = α  so that arcs are possible with probability α  only 

between marked nodes, then the equations to be solved are 

1 0( )1 1

0 0

( ) /
(1 )

( ) /
n sN n s

N n s

− θ
= − α

− θ
 

and  

111

110 1 1 1 0

.
1 [ ( )] ( )

m

m N n s n s
α =
− α + θ −

 

Again, iterative methods are appropriate. 
 
5.2 Predictive likelihood for the total of the 

unobserved node values  
For predicting the value of the unobserved random 

variable 1( )n s  from the observed data, the relevant 

likelihood is 

[ ]
0

0 0

0 1 0

1

( , )( ) ( )

1

( , ) ( ) ( )

0

, ; , ( ) ( , )

( )

( )

.

ijkli i

ijk i j

s s U

m s sn s n s

i ijkl

i ijkl

m s s n s n s

ijk ij

ijk ij

L d n s p s

n s

N s

P •

+

• •

θ = |

   × θ λ   
   

   
× λ λ   

   

∏ ∏

∏ ∏

y xλλλλ

 (15)

 

Use of the term “prediction” implies only that the object of 

inference is a random variable rather than a fixed, unknown 

parameter, and does not necessarily imply forecasting in 

time. 

The estimative likelihood for 1( )n s  is obtained from (15) 

by substituting the estimates θ̂  and λ̂  that maximize the 

(marginal) likelihood (5). The value of 1( )n s  maximizing 

the estimative likelihood would be the estimative maximum 

likelihood predictor of 1( ).n s  While estimative likelihood 

methods tend to produce reasonable point predictions in 

many cases, they are less useful as a basis for prediction 

intervals, since the estimates of the parameters are in 

essence treated as the true values (cf., Bjørnstad 1990, 1996, 

Lejeune and Faulkenberry 1982). For this reason, we 

emphasize the use of the profile predictive likelihood. 

Rather than substituting fixed estimators of the parameters 

into (15) and maximizing this estimative likelihood with 

respect to 1( ),n s  the likelihood (15) is now simultaneously 

maximized with respect to both parameters and 1( ).n s  This 

means that for each value of 1( )n s  there are parameter values 

1[ ( )]i n sθɶ ɶ  and 1[( ( )]ijkl n sλɶ  which maximize (15) with respect 

to θ  and .λ  Substitution of these values into (15) defines the 

profile likelihood 1[ ( ); ]pL n s d  for 1( ).n s  The value of 1( )n s  

maximizing the profile likelihood is the profile maximum 

likelihood predictor of 1( ).n s  

For any given value of 1( ),n s  the likelihood is maxi-

mized where the derivatives with respect to the remaining 

parameters equal zero. The maximizing values of iθ  are 

straightforward and are given by 

( ) ( )
.i i

i

n s n s

N

+
θ =ɶ  (16) 

For the remaining parameters we use d log / ijL dα  and 

d log / kL dβ  from (8) and (9), with the partial derivatives 

now given by 

0 0 0 1

0

0

( , ) ( , )log

( ) ( )
(1 )

ijkl ijk

ijkl ijkl ijk

i j

ij

m s s m s sL

n s n s
k

•

•

•

∂ = +
∂λ λ λ

+ −
λ

 (17)

 

Note that the ( )jn s  for 0,j =  1 are contained in (15) 

only in the factors 

( )

1

( )

( )
jn s

j

j

n s

n s

 
Λ 

 
∏  

where 0( )

0 .in s
ij j ij •∏Λ =θ λ  Since L  is proportional to a bino-

mial probability with parameters ( )n s  and 1 0 1/( ),Λ Λ + Λ  

it follows that the maximum of L  over 1( )n s  is obtained 

for 1( )n s  equal to the integer closest to 

1 01

0 1 0 1

( )

2( )

n s Λ − ΛΛ
+

Λ + Λ Λ + Λ
 

or either of the integers closest to this number if there are 

two of them. In fact (see, for instance, Feller 1957, page 

140), the mode of a binomial distribution with parameters 

( , )n p  is the integer in the interval [( 1) 1, ( 1) ]n p n p+ − +  

or either of the endpoints if they are integers. Thus, the 

mode is the integer or the integers that are closest to the 

interval midpoint ( 1) (1/ 2) ( ) / 2,n p np p q+ − = + −  

where 1 .q p= −  

If initial values of the parameter estimators are obtained 

from the solution of (7) and substituted into the ,jΛ  then a 

predicted value 1( )n s  is given as above. If this predicted 

value is inserted into (16) and (17), then new estimates of the 

parameters are obtained that can be substituted into the jΛ  to 

find a new predicted value of 1( ),n s  continuing until the 
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values converge to the solution minimizing (15). Alter-

natively, the solution can be found by direct computation of 

the likelihood (15) for different values of 1( ),n s  substituting 

the solutions obtained from (16) and (17) for the parameter 

values. 
 
5.2.1 Example: Symmetric model  

The predictive likelihood equation (15) for the symmetric 

model is 

[ ]
0

11( ) 00 0 00,

( ) ( )

1

1

( , ) ( ) ( )

,

( )
, ; , ( ) ( , )

( )

(1 ) .

i i

ij s s ij i j

n s n s

s s U i

i

m m s s n s n s

i j i j

i j

n s
L d n s p s

n s

+

+
+ +

  θ β = | θ   
   

 
× β −β 
 

∏

∏

y x

 

(18)

 

Let 0( , )kl klr r s s=  denote the count of node pairs in 

0s s×  with total node value k  and total number of links .l  

With the symmetric model, l  can take only the values 0, 

indicating no link between the nodes, or 2, indicating a 

symmetric link. In particular, 02 0011 0( , ),r m s s= 12r =  
0111 0( , )m s s + 1011m 0( , ),s s  and 22 1111 0( , )r m s s=  denote 

the sample counts of links between nodes of total value ,k  

for 0, 1, 2,k =  respectively. With this notation the last 

factor in (18) can be written 

,0 0

2

2 ( ) ( )

0

(1 ) .
i jk i j
i j kk

r n s n s
r

k k

k

+ =
+∑

=

β − β∏  

Denote by 
1

[ ( )]
k k
c c n s=  the number of possible node 

pairs in 
0
s U×  having total value ,k  so that 

0
,

0
,

( ) ( )

( ) ( ) ( ) .

k k i j
i j

i j k

i j j
i j

i j k

c r n s n s

n s n s n s

•

+ =

+ =

= +

= +  

∑

∑
 

For any given value of 
1
( ),n s  the likelihood is maximized 

by [ ( ) ( )] /
i i i

n s n s Nθ = +ɶ  for 0,i =  1 and 
2
/

k k k
r cβ =ɶ  

for 0,k =  1, 2. Note that θɶ  and the 
k

βɶ  are functions of the 

unobserved variable 
1
( ).n s  

The profile predictive likelihood function for 
1
( )n s  is 

obtained by substituting the maximizing values θɶ  and 
k

βɶ  

for the parameters in (18), giving 
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which is a function of 
1
( )n s  alone. The maximum profile 

likelihood predictor of 
1
( ),n s  easily obtained by straight-

forward computation, is an integer between 0 and ( )n s  

giving the largest value of (19). 
 

5.3 On assessing accuracy of estimates  
For confidence intervals and other forms of inference, the 

inverse of the observed Fisher information ˆ( )I ϕϕϕϕ  is 

suggested, where ϕ̂ϕϕϕ  is the vector of parameter maximum 

likelihood estimates and I  is the matrix of negated second 

derivatives of the log likelihood function evaluated at those 

estimated values. The use of the observed, as opposed to 

expected, Fisher information to assess the accuracy of an 

estimate is described in Efron and Hinkley (1978). More 

recently, Lindsay and Li (1997) argue that the observed 

information gives a better assessment of the realized, as 

opposed to expected, error of the estimate. In developing 

large-sample approximations to the properties of the 

estimators of θ  and λ  it is important to make appropriate 

assumptions about how λ  depends on N  so that the graph 

model and the sample do not degenerate. See for instance 

the asymptotic results for some simple graph models given 

by Palmer (1985). 

As with the calculation of the maximum likelihood 

estimates themselves, the calculation of the observed 

information matrix is not affected by the link-tracing 

sampling design, since the design is ignorable for likelihood 

based on inference. This is in contrast to the expected Fisher 

information, the value of which is affected by the design in 

addition to the graph model, unless the design is a 

conventional one not depending on any y  and x  values. 

For a (1 )− ε -level prediction interval for a random 

variable such as 
1
( ),n s  one method would be to use a 

central region having mass (1 )− ε  of the normalized profile 

likelihood function for 
1
( )n s  (cf., Bjørnstad 1990, 1996). 

For the symmetric model, the (1 )− ε  prediction interval for 

1
( ),n s  is readily obtained by computing (19) for 

1
( ) 0,n s =  

1, 2, …, until the computed values become negligible, 

normalizing by dividing by the cumulative total 
1

( )
( ) 0

n s
n s p

L=∑  

and using the / 2ε  and 1 / 2− ε  quantiles as the interval 

endpoints. 
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