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Cold deck and ratio imputation 

Jun Shao 1 

Abstract 

Imputation is a common procedure to compensate for nonresponse in survey problems. Using auxiliary data, imputation 

may produce estimators that are more efficient than the one constructed by ignoring nonrespondents and re-weighting. We 

study and compare the mean squared errors of survey estimators based on data imputed using three different imputation 

techniques: the commonly used ratio imputation method and two cold deck imputation methods that are frequently adopted 

in economic area surveys conducted by the U.S. Census Bureau and the U.S. Bureau of Labor Statistics. A cold deck 

method imputes a nonrespondent of an item by reported values from anything other than reported values for the same item 

in the current data set (e.g., values from a covariate and/or from a previous survey). Although sometimes a cold deck 

imputation method makes use of more auxiliary data than the other imputation methods, it is not always better in terms of 

the mean squared errors of the resulting survey estimators. In a simple case we compare explicitly the mean squared errors 

and discuss situations under which one method is better than the other two. In general cases we propose to compare mean 

squared errors empirically based on some consistent estimates of mean squared errors. Estimation of mean squared errors of 

survey estimators in the presence of imputed data is itself an important problem in surveys. A numerical example related to 

the Transportation Annual Survey is presented for illustration. 

                                                           
1. Jun Shao, Department of Statistics, University of Wisconsin, Madison, WI53706 U.S.A. E-mail: shao@stat.wisc.edu. 
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1. Introduction 
 

Imputation is one of the most common procedures to 

compensate for nonresponse in survey problems. In addition 

to many practical reasons for imputation, imputation using 

auxiliary data may produce estimators that are more 

efficient than the one constructed by ignoring non-

respondents and re-weighting. Suppose that we have a 

sample s  selected from a finite population P  consisting of 

some units represented by 1, ... , ,i M=  and that we 

observe { , }iy i ∈ r  (respondents), .⊂r s  Suppose also that 

we have auxiliary data ix ’s observed for all i ∈ s  and 

>0.ix  The commonly used ratio imputation method (see, 

for example, Kalton and Kasprzyk 1986) imputes non-

respondents as follows. First, we create K  imputation cells 

1 2, ... ,k KP P P P P∪ ∪ ∪ =  according to a categorical 

auxiliary variable (which is observed for every i ∈ s  and is 

typically different from x ) such that for every ,k  the 

following model is assumed to hold: 

1 2
,

,

P( 1| , ) P( 1| ),

i k i i i

k

i i i i i

y x x e

i P

a y x a x

= β +

∈

= = =

 (1) 

where kβ  is an unknown parameter, ie  is independent of 

ix  with ( ) 0iE e =  and unknown 2( ) >0,i k iV e a= σ  is the 

indicator of whether iy  is a respondent, and ( , )i ia x ’s are 

independent. Then, within imputation cell ,k  a 

nonrespondent iy  is imputed by ˆ ,k ixβ  where 

ˆ
k i i i i

i i

w y w x
∈ ∈

β = ∑ ∑
k kr r

 (2) 

 

is the best linear unbiased estimator of kβ  under model (1), 

kr  is r  restricted to the thk  imputation cell, and iw  is the 

survey weight associated with the thi  sampled unit. Note 

that model (1) consists of regression model between iy  and 

ix  (with no intercept and with error variance proportional to 

ix ) and a response model which assumes that the response 

mechanism is independent of iy ’s, given ix ’s. This 

response mechanism is termed as missing at random by 

Rubin (1976) or unconfounded response mechanism by 

Lee, Rancourt and Särndal (1994). Based on the imputed 

data set, the Horvitz-Thompson (HT) estimator of ,Y  the 

population total of iy ’s, is 

( )ˆˆ ,R i i i k i
k i i

Y w y w x
∈ ∈ −

= + β∑ ∑ ∑
k k kr s r

 (3) 

where Ks  is s  restricted to the thk  imputation cell. The HT 

estimator of Y  obtained by ignoring nonrespondents and re-

weighting within each imputation cell is 

( )ˆ , .W ik i ik i i i
k i i i

Y w y w w w w
∈ ∈ ∈

= =∑∑ ∑ ∑
k k kr s r

ɶ ɶ  (4) 

It can be seen that if 1,ix ≡  then the estimators in (3) and 

(4) are the same. Both estimators are unbiased if model (1) 

holds. (Throughout this paper, the bias and variance are with 

respect to model (1) and repeated sampling, unless other-

wise specified.) Under model (1), however, RŶ  is more 

efficient than  WŶ  if the size of r  is substantially smaller 

than the size of .s  Even if the regression model in (1) does 

not hold, RŶ  may still be more efficient than WŶ  in terms  

of their mean squared errors with respect to repeated 

sampling (Cochran 1977, Chapter 6) when the response 
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probability is a constant in any given imputation cell (which 

ensures that RŶ  and WŶ  are approximately unbiased with 

respect to repeated sampling). 

The purpose of this note is to compare the efficiency of 

RŶ  with other estimators of Y  based on data with 

nonrespondents imputed by using a method called cold 

deck. A cold deck method imputes a nonrepondents of y -

variable by reported values from anything other than y -

values (e.g., values from a covariate and/or from a previous 

survey). Cold deck imputation is opposite to hot deck 

imputation in which a nonrespondent is imputed by a 

respondent from the same variable in the current survey. 

The ratio imputation method uses both reported y -values 

and auxiliary data and is sometimes called a “warm deck” 

method. The simplest cold deck imputes a nonrespondent 

, ,iy i ∈ −s r  by ix  and the resulting HT estimator of Y  is 

ˆ .C i i i i
i i

Y w y w x
∈ ∈ −

= +∑ ∑
r s r

 (5) 

The use of this simple cold deck is motivated by the fact that 

under model (1), kβ ’s are close to 1 in many survey 

problems, especially when ix ’s are y -values from a 

previous survey. When some kβ ’s are not equal to 1, CŶ  in 

(5) has a bias which does not vanish even if P=s  (i.e., the 

sample is a census). However, having a small bias may be 

paid off by lowering the variance so that the overall mean 

squared  error  mse 2ˆ ˆ( ) ( )C CY E Y Y= −  may still be smaller 

than the mean squared error mse 2ˆ ˆ( ) ( )R RY E Y Y= − =  
ˆ( ),RV Y Y−  where E  and V  denote the expectation and 

variance under model (1) and repeated sampling. More 

details can be found in section 2. The simple cold deck may 

be improved by another cold deck method, the cold deck-

ratio method, which imputes a nonrespondent iy  by 

/ ,i i ix y xɶ ɶ  where iyɶ  and ixɶ  are reported values from a 

previous survey. The corresponding HT estimator of Y  is 

ˆ / .C i i i i i i

i i

Y w y w x y x−
∈ ∈ −

= +∑ ∑R

r s r

ɶ ɶ  (6) 

The estimator in (6) is unbiased if model (1) holds for iyɶ  

and ixɶ  (i.e., 
1/ 2 )i k i i iy x x e= β +ɶ ɶ ɶ ɶ  with the same kβ  as the 

one for iy  and .ix  These two cold deck methods are widely 

used in economic area surveys conducted by the U.S. 

Census Bureau (King and Kornbau 1994) and the U.S. 

Bureau of Labor Statistics (Butani, Harter and Wolter 

1998). Applying cold deck imputation methods does not 

require knowing the imputation cells, although model (1) is 

assumed to ensure the unbiasedness of CŶ  and ˆ .CY −R  

Although the cold deck-ratio method makes use of more 

auxiliary data, it is not always better than the simple cold 

deck or the ratio imputation method. In section 2 we 

compare explicitly the mean squared errors of ˆ ,RY
ˆ
CY  and 

ˆ
CY −R  in a special case where the sample s  is a simple 

random sample (SRS) and the response probability is a 

constant. Situations under which one method is better than 

the others are discussed. If the sampling design or the 

response mechanism is complex, then it is not easy to 

compare the mean squared errors explicitly. One may, 

however, estimate the mean squared errors of ˆ ,RY
ˆ
CY  and 

ˆ
CY −R  and make an empirical comparison. Variance or mean 

squared error estimation is itself an important problem, 

since it is common to report variance or mean squared error 

estimates along with the estimated totals. These are 

discussed in section 3. 

Our results can also be applied to the problem related to 

two-pahse sampling or double sampling, which is often 

employed when it is cheap to take a large sample { , }ix i ∈ s  

and expensive to obtain y -values so that a subsample 

{ , }iy i ∈ r  is taken in the second-phase, .⊂r s  

A numerical example is discussed in section 4 using data 

from the Transportation Annual Survey conducted by the 

U.S. Census Bureau. 

 
2. SRS with uniform response 

 
To illustrate the idea, we start with the simplest case 

where s is an SRS (without replacement from P  but the 

sampling fraction is negligible); there is only one imputation 

cell so that we can drop the subscript k  for imputation cell; 

and the response probability is a constant >0p  (uniform 

response mechanism). 

In this case / ,iw N n=  where n  is the size of the 

sample s  and N  is the size of the population .P  Since 

/ 0n N ≈  is assumed, 

22
2ˆmse ( ) x

R x
NY v
n p

 σ µ
≈ + β 

 
 (7) 

for large ,n  where ( )x iE xµ =  and ( )x iv V x=  and, 

throughout the paper, A B≈  means that A  is equal to B  

up to a term which is relatively negligible compared to A  

and B  as all samples sizes in imputation cells increase to 

infinity. A more detailed derivation of result (7) is given in 

the Appendix. For WŶ  in (4), it is easy to see that iw =ɶ  

/ ,N r  where r  is the size of r,  and ˆWY  is unbiased. Then 

2 22
ˆ ˆ ˆmse( ) ( ) ( ) .x x
W W W

vNY V Y Y V Y
n p p

 σ µ β
= − ≈ = + 

 
 

Hence RŶ  is more efficient than WŶ  unless 1=p  and 
2 0.xvβ =  The gain in using RŶ  is proportional to 2β  and 

,xv  both are measures of usefulness of the auxiliary variable 

x  in explaining y  through model (1). 

For the simple cold deck, 

( ) ( )1
2ˆ ,C i i i i i i

i i i i i

N NY y x x e x x
n n∈ ∈ − ∈ ∈ ∈ −

= + = + β +∑ ∑ ∑ ∑ ∑
r s r r r s r

 

where ie ’s are defined in (1). Consequently, 

2
2 2 2 2

ˆ( )

{ ( 1 ) ( 1) (1 ) }

C

x x x

V Y

N p p p v p p
n

=

σ µ + β + − + β− − µ  (8)
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(see the Appendix). The bias of CŶ  is 

ˆ( ) (1 ) (1 )C xE Y Y N p− = µ − − β  

and, hence, 

2

2

2
2 2

2 2

ˆ ˆ ˆmse( ) ( ) [ ( )]

ˆ ˆ( ) [ ( )]

{ ( 1 )

( 1) (1 ) [ (1 )] }.

C C C

C C

x x

x

Y V Y Y E Y Y

V Y E Y Y

N p p p v
n

p p n p

= − + −

≈ + −

= σ µ + β + −

+ β − − + − µ  (9)

 

Comparing (7) and (9), we obtain the following conclusions.  
1. When 1=p  (no response), ˆ ˆmse( ) mse( ).C RY Y=  

2. When 1p <  and 1=β (y  and x  have the same 
mean), ˆ ˆmse( ) < mse( ).C RY Y  

3. When 1<p  and 1,β ≠ ˆ ˆmse( ) mse( )C RY Y≤  if and 

only if 

( )

2 2

2

( 1) [ (1 )] (1 ) /

1 / 0.

x x xp n p v

p p

β − + − µ + − β µ

− σ + ≤  (10)

 

 
 Assume that >0.xµ  In most economic surveys, the 

relative variance 2
xxv µ/  is smaller than p +  

(1 ).n p−  Hence the left hand side of (10) is a 

quadratic function of β  with a positive coefficient 

in the 2β  term and, therefore, the simple cold deck 

is better when β  is in the interval with limits 

2 2

2

/ {[ (1 )]
[ (1 )]

/ } ( 1) /
.

[ (1 )] /

x x x
x

x x

x x x

v p n p
p n p

v p p

p n p v

µ + + − µ+ − µ ±
− µ σ +

+ − µ − µ
 

This interval contains 1 since (10) holds if 1.β =  

Note that [ (1 )] xp n p+ − µ  increases to infinity as 

n  increases to infinity. Hence the interval of β ’s 

for which the simple cold deck is better shrinks to a 

single point ( 1)β =  as .n → ∞  
 

We now consider the cold deck-ratio. Assume that 
1/ 2 2, ( ) 0, ( ) ,i i i i i iy x x e E e V e= β + = = σɶ ɶ ɶ ɶ ɶ ɶ  and that , ,i ie eɶ  

and ( , )i ix xɶ  are mutually independent. Let /i i i iz x y x= ɶ ɶ  

and 1/ 2 1/ 2/ .i i i i i i i iy z x e e x x∈ = − = − ɶ ɶ  Then ˆ( )CE Y Y− − =R  

0  and 

2
2 2 2ˆmse( ) { (1 ) },C x x x

NY p v p
n− = σ µ + β + σ − γR  (11) 

where 2( / )x i iE x xγ = ɶ  (see the Appendix). By (7) and (11), 

( ){ }
2 2 (1 ) 1ˆ ˆmse( ) mse( ) 1R C x x

N p
Y Y

n p−
σ −− = + µ −γR  (12) 

and, hence, the cold deck-ratio is better than the ratio 

imputation method if and only if 1/ 1 / .x xp + ≥ γ µ  Note 

that xx µ≥γ  and xγ  is close to xµ  if ix  and ixɶ  are highly 

and positively related, in which case cold deck-ratio 

imputation can be much better than ratio imputation. 

The comparison between the simple cold deck and the 

cold deck-ratio is the same as that between the simple cold 

deck and the ratio imputation method. One only needs to 

replace ( 1) /p p+  in the third term of the left hand side of 

(10) by / .x xγ µ  

The parameters , , ,x xvβ σ µ  and xγ  have to be estimated 

in order to compare the efficiencies of ˆ ˆ,R CY Y  and ˆ .CY −R  

Instead, we can directly compare estimated mean squared 

errors of ˆ ˆ,R CY Y  and ˆ .CY −R  This is discussed next. 

 
3. Stratified sampling with  
       unconfounded response 

 
We consider the following stratified sampling design 

adopted by many U.S. government survey agencies: the 

finite population P  is stratified into H  strata with hN  

units in the thh  stratum; 2≥hn  units are selected without 

replacement from stratum ,h  according to some probability 

sampling plan; and the units are selected independently 

across the strata. 

The survey weights iw ’s are constructed so that if all 

iy ’s are observed, the HT estimator i i iw y∈∑ s  is unbiased 

for Y  under repeated sampling. 

We assume model (1). The response probability is no 

longer a constant, but independent of the y -value. For the 

cold deck-ratio, we also assume that within the thk  

imputation cell, 1/ 2 2, ( ) 0, ( )i k i i i i i ky x x e E e V e= β + = =σɶ ɶ ɶ ɶ ɶ ɶ ɶ  

and , , ( , )i i i ie e x xɶ ɶ  are mutually independent. 

Explicit results for the mean squared errors such as (7), 

(9) and (11) are not easy to obtain. We may, however, make 

empirical comparisons of the efficiencies of ˆ ˆ,R CY Y  and 
ˆ ,CY −R  based on their estimated mean squared errors. 

Estimation of the mean squared errors of ˆ ˆ,R CY Y  and ˆ ,CY −R  

is in fact an important part of the sampling theory. It is well 

known that for imputed data sets, the naive method that 

applies the standard variance estimation formulas by 

treating imputed nonrespondents as observed data leads to 

underestimation. When no correct method (for estimating 

the mean squared error) is available, the naive method is 

used in many survey agencies. 

We now derive estimators for ˆ( )V Y  or ˆmse( )Y  that are 

correct under model (1), where Ŷ  denotes ˆ ˆ,R CY Y  or ˆ .CY −R  

Let mE  and mV  be the expectation and variance with 

respect to model (1) and let sE  and sV  be the expectation 

and variance with respect to repeated sampling (conditional 

on the model and response). Then 

ˆ ˆ ˆ( ) [ ( )] [ ( ) ].m s m sV Y Y E V Y V E Y Y− = + −  (13) 

We first consider ˆ[ ( )],m sE V Y  the first variance component 

in (13). It suffices to obtain an estimator of ˆ( ),sV Y  

conditional on { , , , }i i iy x a i P∈  (and { , , }i iy x i P∈ɶ ɶ  for 

cold deck-ratio), where ia  is the response indicator for .iy  
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The estimation of ˆ( )s CV Y  and ˆ( )s CV Y −R  is simple 

(which is an advantage of using a cold deck method). Let 

2

1
( ) ( )

11
1

h h
i i i i

h h hh i i

n n
v w t w t

N n n
∈ ∈

   = − −   −   
∑ ∑ ∑

s h s h

 (14) 

be the standard variance estimator for i i iw t∈∑ s  when 

{ , }it i ∈ s  is treated as an observed sample (from 

{ , }),it i P∈  where ( )s h  is s  restricted to stratum .h  Then 
ˆ( )s CV Y  can be estimated by using (14) with it =  

(1 )i i i ia y a x+ −  and ˆ( )s CV Y −R  can be estimated by using 

(14) with (1 ) / .i i i i i i it a y a x y x= + − ɶ ɶ  

The estimation of ˆ( )s RV Y  is slightly more complicated 

but similar. Assume that in each imputation cell, the number 

of sampled units is large and the response probabilities are 

bounded away from 0. Note that 

( )ˆ

( )

( )

[ ( ) ],

R i i i i
k i i

i i k i k i i
i i

k i i i k i k i i
k i i

i i i i i i i i
i

Y w x w x

w y x w x

w a y x w x

w a y x x

∈ ∈

∈ ∈

∈ ∈

∈

= 


× − β + β 


≈ ζ − β + β 
  

= ζ − β + β

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑

k k

k k

k k

s r

r s

s s

s

 

where ( ) / ( )k i i i i i iE w x E w x∈ ∈ζ = ∑ ∑
k ks r  and ki ζ=ζ  and 

ki β=β  for .i ∈ ks  After estimating kβ  by kβ̂  and kζ  by 
ˆ / ,k i i i i i iw x w x∈ ∈ζ =∑ ∑

k ks r  we estimate  ˆ( )s RV Y  by using 

(14) with ˆ ˆ ˆ( ) ,i i i i i i i it a y x x= ζ − β + β  where   ˆ ˆ
i kζ = ζ  and 

ˆ ˆ
i kβ = β  for .i ∈ ks  

Before we discuss the estimation of ˆ[ ( ) ],m sV E Y Y−  the 

second variance component in (13), it should be noted that 
ˆ ˆ[ ( ) ] / [ ( )] ( / ).m s m sV E Y Y E V Y O n N− =  This is because 

the variance of ˆ( )sE Y Y−  (if it is nonzero) is typically of 

the order ,N  whereas the order of ˆ( )sV Y  is typically 

nN /2  and thus the order of ˆ[ ( )]m sE V Y  is nN /2  under 

some regularity conditions. Hence, in theory, it is not 

necessary to estimate ˆ[ ( ) ]m sV E Y Y−  if the sampling 

fraction Nn /  is negligible. However, the constant in 

( / )O n N  is unknown and, hence, one may still want to 

estimate ˆ[ ( ) ]m sV E Y Y−  in applications even when Nn /  is 

small. 

We now consider the estimation of the second variance 

component in (13). For ˆ ,CY  

ˆ( ) [ (1 ) ]

(1 ) ( ).

s C i i i i

i P

i i i i
i P i P

E Y Y a y a x

y a y x

∈

∈ ∈

− = + −

− = − − −

∑

∑ ∑
 

Then, under model (1), 

2ˆ[ ( ) ] (1 )

(1 ) ( 1) .

k

m s C m k i i
k i P

m i i i
i P

V E Y Y E a x

V a x

∈

∈

 − = σ −
  

+ − β − 
 

∑ ∑

∑
 

If we estimate 2
kσ  by 

2 2ˆˆ ( ) ,k i i i k i i i i
i i

a w y x a w x
∈ ∈

σ = − β∑ ∑
k ks s

 

then an estimator of ˆ[ ( ) ]m s CV E Y Y−  is 

2

2

2

( ) ( )

ˆ (1 )

1 ,
1

C k i i i
k i

h
i i

h hh i i

v a w x

N
u u

n n

∈

∈ ∈

= σ −

 + − −  

∑ ∑

∑ ∑ ∑

ks

s h s h
 (15)

 

where  ˆ(1 ) ( 1)i i i iu a x= − β −  and ki β=β ˆˆ  for .i ∈ ks  

For ˆ ,CY −R  

ˆ( ) (1 ) ( / )s C i i i i i

i P

E Y Y a y x y x−
∈

− = − − −∑R ɶ ɶ  

and 

2 2 2

ˆ[ ( ) ]

ˆ(1 ) (1 ) / .
k k

m s C

m k i i k i i i
k i P k i P

V E Y Y

E a x a x x

−

∈ ∈

− =

 σ − + σ −
  
∑ ∑ ∑ ∑

R

ɶ
 

Hence ˆ[ ( ) ]m s CV E Y Y− −R  can be estimated by 

2 2 2

2
ˆˆ (1 ) (1 ) / ,C k i i i k i i i i

k i i

v a w x a w x x−
∈ ∈

 = σ − +σ −
  

∑ ∑ ∑
k k

R
s s

ɶ ɶ  (16) 

where 

2 2ˆˆ ( )k i i k i i i
i i

w y x w x
∈ ∈

σ = − β∑ ∑
k ks s

ɶɶ ɶ ɶ ɶ  

and 

ˆ
.k i i i i

i i

w y w x
∈ ∈

β = ∑ ∑
k ks s

ɶ ɶ ɶ  

For ˆ ,RY  

( )ˆ( )
k k k k

s R i i i i i i
k i P i P i P i P

E Y Y x a x a y y
∈ ∈ ∈ ∈

− ≈ − 
  

∑ ∑ ∑ ∑ ∑  

and from Taylor’s expansion, 

{ }
R

2

ˆ[ ( ) ]

(1 ) .
k k k

m s

m k i i i i i
k i P i P i P

V E Y Y

E x a x a x
∈ ∈ ∈

− ≈

σ − 
  

∑ ∑ ∑ ∑
 

It can be estimated by 

( )2

2
ˆ 1 .R k i i i i i i i i

k i i i

v w x a w x a w x
∈ ∈ ∈

= σ − 
  

∑ ∑ ∑ ∑
k k ks s s

 (17) 

Finally, RŶ  and ˆCY −R  are unbiased buy CŶ  has a bias 

(1 ) (1 ) ,
k

k m i i
k i P

E a x
∈

− β − 
  

∑ ∑  
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which can be estimated by 

ˆ(1 ) (1 ) .k i i i
k i

a w x
∈

− β −∑ ∑
ks

 

Thus, we obtain the following estimated mean squared 

errors: ˆmse( )RY  can be estimated by 

�
1 2

ˆmse( ) ,R R RY v v= +  

where Rv1  is obtained using (14) with ˆ ˆ( )i i i i i it a y x=ζ −β +  
ˆ ˆ ˆ,i i i kxβ ζ = ζ  and ki β=β ˆˆ  for ,i ∈ ks  and Rv2  is given 

by (17); ˆmse( )CY  by 

�
2

1 2
ˆˆmse( ) (1 ) ,C C C k i i

k i

Y v v w x
∈ −

 = + + − β
  
∑ ∑

k ks r

 

where 1Cv  is obtained by using (14) with i i it a y= +  

(1 )i ia x−  and 2Cv  is given by (15); and ˆmse( )CY −R  can be 

estimated by 

�
1 2

ˆmse( ) ,C C CY v v− − −= +R R R  

where 1Cv −R  is obtained by using (14) with i i it a y= +  

(1 ) /i i i ia x y x− ɶ ɶ  and 2Cv −R  is given by (16). 

Under model (1) and the asymptotic settings in Krewski 

and Rao (1981), Rao and Shao (1992) or Valliant (1993), 

the derived mean squared error estimator are asymptotically 

unbiased and consistent as all sample sizes in imputation 

cell increase to infinity. 

For cold deck or cold deck-ratio imputation, the first term 

1( Cv or 1 )Cv −R  in the estimated mean squared error is the 

same as the one obtained by applying a standard formula 

(such as (14)) and treating imputed nonrespondents as 

observed data. For ratio imputation, applying (14) and 

treating imputed nonrespondents as observed data produces 

the following estimator of mse ˆ( ):RY  

2

1
( ) ( )

11
1

h h
R i i i i

h h hh i i

n n
v w z w z

N n n
∈ ∈

  = − −   −   
∑ ∑ ∑

s h s h

ɶ  (18) 

with ˆ(1 ) ,i i i i i iz a y a x= + − β  which is different from the 

first term Rv1  in our estimator � ˆmse( )RY  and, hence, is not 

asymptotically valid even if Nn /  is negligible. 

 
4. An example 

 
We consider an example using a data set from the 

Transportation Annual Survey (TAS) conducted by U.S. 

Census Bureau. 

The TAS is a survey of firms with one or more 

establishments that are primarily engaged in providing 

commercial motor freight transportation or public 

warehousing services in U.S. A stratified simple random 

sample is selected without replacement from employers 

contained in the Census Bureau’s Standard Statistical 

Establishment List. The strata, which are also the imputation 

classes in this example, are constructed according to 

company’s size within each industry. 

There are various variables in this survey. We consider 

the estimation of the population totals of the current year 

annual revenue ( )y  in four industries. The variable y  has 

nonrespondents. Three covariates without nonrespondents 

are considered: the current year annual payroll, the previous 

year annual revenue, and the previous year annual payroll. 

The sample size, response size for ,y  and the sampling 

weight in each stratum and industry are given in Table 1. 

 
Table 1 

Sample sizes, response sizes, and  
sampling weights across industries and strata  

Industry Stratum Sample 

Size 

Response 

Size 

Sampling 

Weight 

1 0 31 24 1.00 

 1 14 6 12.43 

 2 11 7 8.91 

 3 10 4 6.10 

 4 11 6 5.73 

 5 16 12 2.70 

 6 18 13 2.17 

2 0 86 82 1.00 

 1 8 2 32.91 

 2 13 10 9.85 

 3 11 9 10.82 

 4 12 10 6.08 

 5 13 10 3.60 

3 0 38 30 1.00 

 1 14 9 87.91 

 2 11 8 67.39 

 3 13 10 44.48 

 4 14 13 25.28 

 5 16 13 15.57 

 6 18 12 9.80 

 7 15 11 6.23 

 8 15 14 4.68 

 9 40 33 2.13 

4 0 28 23 1.00 

 1 7 5 32.14 

 2 13 6 16.75 

 3 10 7 12.90 

 4 14 12 7.00 

 5 13 9 6.18 

 6 11 7 4.70 

 7 17 12 3.31 

 8 19 14 1.89 

 9 22 16 1.82 

 
First, we use the previous year annual revenue as the 

covariate x  in simple cold deck imputation and ratio 

imputation. The current year annual payroll and the previous 

year annual payroll are used as yɶ  and ,xɶ  respectively. For 

four industries and three imputation methods, Table 2 lists 

the estimated totals, the proposed estimated MSE’s for the 

estimated totals, the naive estimated MSE’s for the 

estimated totals (obtained by treating imputed values as 
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observed data), and the MSE ratios (the proposed estimated 

MSE over the naive estimated MSE). Note that the 

proposed estimated MSE is the sum of 1v  and 2v  for the 

ratio and cold deck-ratio methods or the sum of 1 2, ,v v  and 

the squared estimated bias for the simple cold deck method. 

Values of 1v  and 2v  are also included in the table 
 

Table 2 
Estimated totals and MSE’s when x = the previous  

year annual revenue, y =ɶ the current year payroll, and  
x =ɶ the previous year annual payroll  

  Method 

Industry Estimate Cold Deck Cold Deck-

Ratio 

Ratio 

1 Total 5.31 × 109 5.19 × 109 5.42 × 109 

 1v  7.73 × 1014 8.46 × 1014 2.60 × 1015 

 2v  1.39 × 1015 2.50 × 1015 1.81 × 1015 

 Proposed MSE 2.30 × 1015 3.34 × 1015 4.40 × 1015 

 Naive MSE 7.73 × 1014 8.46 × 1014 2.46 × 1015 

 MSE Ratio 2.97 3.95 1.79 

2 Total 1.66 × 1010 1.63 × 1010 1.67 × 1010 

 1v  4.00 × 1015 4.19 × 1015 5.57 × 1016 

 2v  6.03 × 1015 2.88 × 1016 6.54 × 1015 

 Proposed MSE 1.02 × 1016 3.30 × 1016 6.23 × 1016 

 Naive MSE 4.00 × 1015 4.19 × 1015 5.58 × 1016 

 MSE Ratio 2.54 7.87 1.12 

3 Total 3.54 × 1010 3.53 × 1010 3.59 × 1010 

 1v  1.32 × 1016 1.80 × 1016 1.94 × 1017 

 2v  5.44 × 1016 8.62 × 1016 6.77 × 1016 

 Proposed MSE 6.97 × 1016 1.04 × 1017 2.62 × 1017 

 Naive MSE 1.32 × 1016 1.80 × 1016 1.87 × 1017 

 MSE Ratio 5.27 5.80 1.40 

4 Total 1.27 × 1010 1.22 × 1010 1.30 × 1010 

 1v  2.11 × 1016 2.14 × 1016 5.13 × 1015 

 2v  3.91 × 1015 8.26 × 1015 5.06 × 1015 

 Proposed MSE 2.59 × 1016 2.97 × 1016 1.02 × 1016 

 Naive MSE 2.11 × 1016 2.14 × 1016 5.06 × 1015 

 MSE Ratio 1.23 1.39 2.01 

 
Next, to see the effect of using a wrong covariate in using 

the simple cold deck method, we repeat the previous 

computations using the current year annual payroll as the 

covariate ,x  and the previous year annual revenue and 

payroll as yɶ  and ,xɶ  respectively. The results are reported in 

Table 3. 

The following is a summary of the results in Tables 2 

and 3.  
1. The simple cold deck method depends heavily on 

the choice of the covariate .x  When x  is the 

previous year annual revenue (Table 2), the 

difference among the estimated totals provided by 

three methods is negligible; in terms of the 

estimated MSE, the simple cold deck method is the 

best. However, when x  is the current year annual 

payroll (Table 3), the estimates from the simple cold 

deck is obviously too low; in terms of the estimated 

MSE, the simple cold deck method is the worst, 

because of its large bias (shown in Table 3). 
 

Table 3 
Estimated totals and MSE’s when x = the current year annual  

payroll, y =ɶ the previous year annual revenue, and  
x =ɶ the previous year annual payroll  

  Method 

Industry Estimate Cold Deck Cold Deck-

Ratio 

Ratio 

1 Total 4.49 × 109 5.19 × 109 5.39 × 109

 Bias -8.99 × 108  

 1v  8.10 × 1014 8.46 × 1014 2.85 × 1015

 2v  1.38 × 1015 2.64 × 1015 1.75 × 1015

 Proposed MSE 1.03 × 1016 3.49 × 1015 4.60 × 1015

 Naive MSE 8.10 × 1014 8.46 × 1014 2.55 × 1015

 MSE Ratio 12.68 4.12 1.81 

2 Total 1.59 × 1010 1.63 × 1010 1.71 × 1010

 Bias -1.21 × 109  

 1v  4.36 × 1015 4.19 × 1015 5.74 × 1016

 2v  8.20 × 1015 1.48 × 1016 8.95 × 1015

 Proposed MSE 2.73 × 1016 1.90 × 1016 6.64 × 1016

 Naive MSE 4.36 × 1015 4.19 × 1015 5.62 × 1016

 MSE Ratio 6.25 4.54 1.18 

3 Total 3.10 × 1010 3.53 × 1010 3.47 × 1010

 Bias -3.62 × 109  

 1v  1.25 × 1016 1.80 × 1016 2.30 × 1017

 2v  4.56 × 1016 9.25 × 1016 5.41 × 1016

 Proposed MSE 1.89 × 1017 1.10 × 1017 2.84 × 1017

 Naive MSE 1.25 × 1016 1.80 × 1016 1.83 × 1017

 MSE Ratio 15.13 6.15 1.56 

4 Total 1.06 × 1010 1.22 × 1010 1.20 × 1010

 Bias -1.35 × 109  

 1v  1.93 × 1016 2.14 × 1016 5.84 × 1015

 2v  2.67 × 1015 4.62 × 1015 3.07 × 1015

 Proposed MSE 4.03 × 1016 2.60 × 1016 8.92 × 1015

 Naive MSE 1.93 × 1016 2.14 × 1016 8.92 × 1015

 MSE Ratio 2.09 1.22 1.72 

 
2. There is no definite conclusion on the relative 

performance (in terms of the estimated MSE) of the 

ratio imputation method and the cold deck-ratio 

method. In this example, the cold deck-ratio is better 

for industries 1-3, whereas the ratio imputation 

method is better for industry 4. Some scatter plots of 

the data (not shown) indicate that the correlation 

between x  and xɶ  in industries 1-3 is higher than 

that in industry 4, which might be the reason for the 

difference in relative performance of the two 

imputation methods. See also the discussion after 

formula (12) 
 
3. The naive estimated MSE’s are much lower than 

the proposed estimated MSE’s and are too 

optimistic. For example, in Table 3, the naive 

MSE’s for the simple cold deck method are always 

smaller than those for the cold deck-ratio method, 

although we know that the simple cold deck does 

not work well in this case. In this example, 12 vv /  

is not small because of some large sampling 

fractions. Since the naive estimated MSE is    

either equal to 1v  (for the cold deck imputation 
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methods) or not very different from 1v  (for ratio 

imputation), the underestimation in using the naive 

estimated MSE is mainly due to treating imputed 

values as observed values in strata with large 

sampling fractions (and ignoring the bias of the 

simple cold deck estimators in the case of Table 3). 
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Appendix 

 
1. Proof of (7): When ˆ ˆ/ 0, ( ) ( ).R Rn N V Y Y V Y≈ − ≈  

Then (7) follows from 

( ) ( ) ( ){ }2 22 2

2

22
2

ˆ( )R i i i

i i i

x
x

NV Y E x x V x
n

N v
n p
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 = σ +β
  

 σ µ
≈ + β 

 

∑ ∑ ∑
s r s

 

for large ,n  where the last approximate equality 

follows from the fact that conditioned on ix ’s, 

( ) .i ii iE x p x∈ ∈∑ ∑=r s  
 

2. Proof of (9): Under model (1), 
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3. Proof of (11): Under the assumed conditions on 

( , )i iy x  and ( , ),i iy xɶ ɶ  
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