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A conditional mean squared error of small area estimators 

Louis-Paul Rivest and Eve Belmonte 1 

Abstract 

This paper suggests estimating the conditional mean squared error of small area estimators to evaluate their accuracy. This 

mean squared error is conditional in the sense that it measures the variability with respect to the sampling design for a 

particular realization of the smoothing model underlying the small area estimators. An unbiased estimator for the 

conditional mean squared error is easily constructed using Stein’s Lemma for the expectation of normal random variables. 

This estimator can be calculated for any shrinking strategy; composite and empirical Bayes estimators are considered in this 

work. It can be calculated when the small area estimators are benchmarked to coincide with direct estimators at high level of 

aggregation. It can accommodate skewness in the data and estimated variances. The conditional mean squared error 

estimator does not rely on any smoothing model. The price to pay for this property is a high variance; the new estimator is 

unstable under heavy shrinking. In these situations, it still provides useful diagnostic information about the shrinking model. 

It can also be seen as a building block for estimators of unconditional mean squared errors such as Prasad and Rao’s (1990). 

Examples dealing with the estimation of the under-coverage in the Canadian Census illustrate the application of this new 

estimator. 
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1. Introduction 
 

In survey sampling, the need to develop accurate 

methods of estimation for small areas poses challenging 

statistical problems. For small areas, direct survey estimates 

have too large a variance to be reliable. Small area 

techniques “improve” direct estimates by shrinking them 

towards model based smoothed values. Simple shrinking 

estimators are proposed by Purcell and Kish (1979). In a 

pioneering paper, Fay and Herriot (1979) demonstrate that 

this can lead to interesting gains in precision. The review 

papers of Ghosh and Rao (1994) and of Singh, Gambino 

and Mantel (1994) provide convincing evidence of the 

vitality of this area. 

The estimation of the errors in small area estimation is 

receiving an increasing attention, see Singh, Stukel and 

Pfeffermann (1998) and Booth and Hobert (1998). This 

paper suggests estimating the conditional mean squared 

errors of small area estimators. The conditional mean 

squared error can be estimated for all shrinking strategies, 

either empirical Bayes or decision theoretic (Purcell and 

Kish 1979). Other mean squared errors, such as Prasad and 

Rao’s (1990), and Singh, Stukel and Pfeffermann (1998) 

frequentist proposals measure the variability with respect to 

both, the sampling design and the smoothing model. The 

mean squared error of this paper is conditional in the sense 

that it measures variability with respect to the sampling 

design for a particular realization of the smoothing model. 

This feature is attractive since the conditional estimator 

reflects the conditions under which the survey has been 

carried out (see Särndal, Swensson, and Wretman 1992, 

chapter 7). The drawback of this property is a high 

variability. In some instances, the proposed estimator is too 

variable for practical use. 

When shrinking is important, the conditional mean 

squared error estimators are highly unstable. An uncondi-

tional assessment of the precision of small area estimators 

must be used. In this situation, the conditional estimator 

proposed in this paper still provides some useful informa-

tion. It can be looked at as a diagnostic for comparing 

smoothing models. It can also be a building block for 

constructing Monte Carlo estimates of unconditional mean 

squared errors in situations where closed form formulas, 

such as Prasad and Rao’s (1990), are not available. 

The assessment of the accuracy of estimators for the 

under-coverage, at the provincial and sub-provincial levels, 

of the Canadian Census motivated this work. Alternatives to 

the direct estimates for provincial under-coverage are 

discussed by Royce (1992) andRivest (1995). Dick (1995) 

applies empirical Bayes methods to sub-provincial under-

coverage estimates. These two examples are treated in 

section 5. 

An estimator of the conditional mean squared error is 

presented in section 2. Its construction relies on the 

multivariate version of Stein’s Lemma for the expectation of 

normal deviates. Section 3 suggests changes to the 

conditional estimator to accommodate skewness in the 

distribution of the direct estimators and estimated variances. 

Section 4 discusses the application of the new estimator to 

empirical Bayes estimators. Its relationship with Prasad and 

Rao (1990) prediction variance is highlighted. Examples are 

treated in section 5. 
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2. A conditional mean squared error estimator 
 

Suppose that there are n  small areas and let µ =  

1( , ..., )tnµ µ  denote the unknown population characteristics 

for these small areas. The direct survey estimates for the n  

small areas are 1( , ..., )tny y y=  where the distribution of y  

is ( , ),nN ∑µ  a n -variate normal distribution with mean 

vector µ  and known variance-covariance matrix .∑  As 

pointed out by Ghosh and Rao (1994), the normality 

assumption is likely to hold for many surveys since direct 

survey estimates are usually functions of sums of variables. 

The n n×  matrix ∑  is a design based measure of precision 

for .y  For the time being, this matrix is assumed to be 

known. This assumption is relaxed in section 3.2. The 

uncertainty in y  comes from the random selection of the 

sampling units. Subscript ,S  for sampling design, denotes 

expectations taken with respect to the distribution of .y  

In a typical application of small area techniques, one has, 

ij ijj

i

ijj

w y
y

w
=
∑
∑

 

where ijy  is the y -value for the thj  sample unit in small 

area , iji w  is its sampling weight and the sum is over all the 

sample units in small area .i  In many instances, the variance 

covariance matrix ∑  is diagonal; its ( , )i i  term, is 

Var ( );ii S iyσ =  when they are non null, the off diagonal 

elements of ∑  are denoted by , , 1, ..., .ij i j nσ =  

Several methods have been proposed to improve the 

accuracy of direct survey estimators. They involve shrinking 

iy  towards some indirect estimator of .iµ  The resulting 

estimators can be written as 

1ˆ ( , ..., ), 1, ...,i i i ny g y y i nµ = + =  (1) 

where the ig ’s are functions depending on the shrinking 

strategy. 

In vector form, one can write (1) as ˆ ( )y g yµ = +  where 

,g  whose thi  component is equal to ,ig  is a function 

defined from nR  to .nR  We assume that for each ,i  the 

right partial derivative and the left partial derivative of ig  

with respect to jy  exists for any y  in .nR  When they are 

equal, ( ) /i jg y y∂ ∂  denotes the common value; if they differ 

( ) /i jg y y∂ ∂  is the average between the two values. The 

component of ( )g y  and their partial derivatives are 

assumed to have finite variances. A conditional assessment 

of the precision of µ̂  as an estimator for µ  is given by the 

matrix of the mean product errors which is given by 

ˆ ˆ{( ) ( ) } {( ) ( ) }

{ ( )( ) } { ( ) ( ) }.

t t

S S

t t

S S

E E y g y

E g y y E g y g y

∑µ − µ µ − µ = + −µ

+ −µ +
 

On the right hand side of this equality, the only quantities 

for which there are no obvious estimators are {(SE y−  

) ( ) }tg yµ  and { ( )( ) }.t

SE g y y − µ  Their evaluations are 

eased by the following result which is a multivariate 

extension of Stein’s lemma (Stein 1981). Its proof is given 

in the appendix together with the proofs for Propositions 2, 

3, and 4. 
 
PROPOSITION 1: Let y  be a ( , )nN ∑µ  random vector 

then, 

{( ) ( ) } { ( )},t

S SE y g y E g y∑− µ = ∇  

where ( )g y∇  is an n n×  matrix whose th( , )i j  element is 

given by ( ) ( ) / .j
i i jg y g y y= ∂ ∂  

Now according to Proposition 1, ( )g y∑∇  is an unbiased 

estimator for {( ) ( ) }.t

SE y g y− µ  Thus the conditional 

estimator (index “c” stands for conditional) for the matrix of 

the mean product errors is given by 

c ˆmpe ( ) ( ) ( ) ( ) ( ) .t tg y g y g y g y∑ ∑ ∑µ = + ∇ +∇ +  (2) 

The diagonal terms of (2) can be negative. Since they 

estimate mean squared errors, a better estimator for the 

mean squared error of ˆ iµ  is 

2

c ˆmse ( ) max (0, { ( ) ( )} ( ) ).i j

i ii ij j i i
j

g y g y g y+ µ = σ + σ + +∑  

It generalizes an estimator proposed by Bilodeau and 

Srivastava (1988) for James-Stein estimator, and by Robert 

(1992 page 292) for empirical Bayes estimators. When the 

iy ’s are independent, with 0ijσ =  when ,i j≠  then 

2

c

( )
ˆmse ( ) 2 ( ) ,i
i ii ii i

i

g y
g y

y

∂
µ = σ + σ +

∂
 (3) 

and c c
ˆ ˆmse ( ) max{mse ( ), 0}.i i

+ µ = µ  

Kott’s (1989) small area estimator has ( )ig y =  
ˆ ˆ( ),i i iyα γ −  where ˆ iγ  is a measure of location for the y ’s 

and ˆ
iα  is a smoothing parameter. These two statistics 

involve variance estimates calculated at the “unit” level, that 

is using the ijy ’s Kott’s (1989) conditional mean squared 

error is 

2ˆ ˆ ˆˆ( ) (1 2 ) ( ( )) .i ii i i iv yµ = σ − α + α − γ  

This is equal to (3) when both ˆ( / )i id dy α  and ˆ( / )i id dy γ  

are null. Thus Kott’s (1989) estimator for the conditional 

mean squared error does not account for the estimation for 

the variance components. This may account for the biases 

that it exhibited in the simulations reported by Prasad and 

Rao (1999). 

The estimates cmse  and cmpe  can be evaluated 

numerically by taking 

1 1 1

1 1 1

( ,..., , , ,..., )

( ,..., , , ,..., )( )

2

i j j j n

i j j j ni

j

g y y y y y

g y y y y yg y

y

− +

− +

+∈

− −∈∂
=

∂ ∈
 

where ∈  is a small positive number. Thus cmse  and cmpe  

can be calculated in all circumstances, even when g  has no 

explicit form. 
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To illustrate the flexibility of the conditional estimator, 

consider ˆ ˆ ˆ( ) /( ),i iy∗µ = µ µ∑ ∑  an estimator bench-marked 

to agree with the direct estimator for the y -total. One has 
ˆ ( )y g y∗ ∗µ = +  where 

( ) ( ) 1 .
ˆ ˆ

i i

i i

y y
g y g y y∗  

= + − 
µ µ 

∑ ∑
∑ ∑

 

It might be difficult to derive an analytical formula for 

c
ˆmpe ( ),∗µ  however this expression is easily evaluated 

using numerical derivates. Modifications of the conditional 

estimator to account for non-normality in the iy ’s and for 

estimated variances iiσ  are given next. 

 
3. Sensitivity analysis 

 
In many surveys, especially those in the business sector, 

the study variables are skewed. Some of this skewness 

might still be left in the direct estimators .iy  This section 

suggest a correction to the conditional mean squared error to 

account for skewness in the distribution of .y  It also 

proposes ways to account for the estimation of the variances 

iiσ  in the mean squared error calculations. 

In practice the variances iiσ  are estimated. Several 

authors (Dick 1995; Hogan 1992) smooth the variances 

before calculating the small area estimates. They then 

consider the smoothed variances as the true variances in the 

small area calculations. Section 3.2 gives a condition under 

which replacing the estimated variances by their smoothed 

values yields unbiased mean squared error estimators. It also 

consider situations where the sampling variances are 

estimated with random groups (Wolter 1985 chapter 2). 

This method consists in carrying a certain number, say ,k  

of replications of the survey design. This yields, for each 

,i k  estimates of ˆ;i iiµ σ  is then equal to the sampling 

variance of these k  estimates divided by .k  Assuming that 

these k  estimates are normally distributed, one can consider 

that, suitably normalized, the distribution of ˆ iiσ  is chi-

squared with 1k −  degrees of freedom. A conditional mean 

squared error, adjusted for variances estimated with random 

groups, is proposed in this section. To keep the discussion 

simple, we assume in this section that ∑  is a diagonal 

matrix; in other words the iy ’s are assumed to be 

independent random variables. 
 
3.1 Non-normality in the distribution of iy   

In many applications of small area estimation, the 

distributions of the iy ’s are not exactly normal. A simple 

adjustment to (3) is proposed to deal with asymmetry in the 

distribution of the iy ’s. 

Suppose that the skewness of 3 3/ 2, {( ) }/i i S i i iiy E yρ = −µ σ  

is small and non-zero. A first order Edgeworth series for the 

distribution of iy  is given by (see for instance Reid 1991): 

2

3

exp{ ( ) /(2 )}
( )

(2 )

1 3 .
6

i ii

ii

i i i

ii ii

t
f t

t t

− − µ σ
=

σ π

     ρ − µ − µ  × + −        σ σ      

 

Such an expansion is used to correct for skewness in the 

direct estimators (Barndorff-Nielsen and Cox 1989, remark 

2 page 92). Expansions involving additional terms are used 

for correcting for both skewness and kurtosis; they will not 

be considered in this section. The evaluation of 

{( ) ( )}i i iE y g y−µ  under ,f  needed for the construction of 

the conditional mean squared error estimator, is given in 

Proposition 2.  
PROPOSITION 2: When iy  distributed according to 

( ),f t  as iρ  tends to 0. 

3/ 2 2

2

{( ) ( )}

( ) ( )
( ).

2

S i i i

i ii i i
ii S S i

i i

E y g y

g y g y
E E O

y y

− µ =

  ∂ σ ρ ∂ 
σ + + ρ   

∂ ∂    

 

A mean squared error estimator corrected for asymmetry 

is therefore given by c c
ˆ ˆmse ( ) max{0, mse ( )}i i

+ µ = µ  where 

2
3/ 2 2

c 2

( ) ( )
ˆmse ( ) 2 ( ) .i i
i ii ii ii i i

i i

g y g y
g y

y y

∂ ∂
µ = σ + σ + σ ρ +

∂ ∂
 

In practice, it might be difficult to find individual skewness 

coefficients iρ  for each .i  A better strategy might be to 

combine all the data points to come up with a common ρ -
value. 
 
3.2 Estimated variances  

Consider first a survey where the ˆ iiσ ’s are estimated 

using k  random groups. Assuming normality, one can 

consider that ˆ{( 1) / : 1, ..., }ii iik i n− σ σ =  is a sequence of 

independent 2

1k−χ  random variables which is independent of 

y . Evaluating the conditional mean squared error (3) with 

variance estimates iiσ̂  yields potentially biased estimators, 

since ( )ig y  and its derivatives depend on ˆ .iiσ  The potential 

bias can be expressed as 

( ) ( )
ˆ2 2 .i i
ii ii

i i

g y g y
E E

y y

   ∂ ∂
σ − σ   

∂ ∂   
 (4) 

As shown in the Appendix, this bias is (1/ ).O k  The next 

proposition suggests a small change to (3) that reduces its 

bias (4).  
PROPOSITION 3: Replacing iiσ̂  by ˆ( 1) / ( 1)iik k− σ +  

in the evaluation of ( ) /i ig y y∂ ∂  for calculating the mean 

squared error estimator (3) yields an estimator with an 
2(1/ )O k  bias. 
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The correction factor ( 1) /( 1)k k− +  has been proposed in 

a different context by Scott and Smith (1971). Other 

methods are available for correcting the bias for estimating 

variances, depending on the way in which iiσ  is estimated. 

For instance if the iiσ̂  are independent ˆ{ , var ( )}ii iiN σ σ  

random variables distributed independently of ,y  then by 

Stein’s lemma, (4) is equal to 2ˆ ˆ2var ( ) { ( ) / }.ii i i iiE g y yσ ∂ ∂ ∂σ  

Suppose now that the variances are estimated, not 

necessarily with random groups. In surveys, such as those 

considered in Dick (1995) and Hogan (1992), explanatory 

variables are available to model estimated variances. Small 

area estimators are then calculated with the predicted 

variances iiσɶ  under the smoothing model; this means that 

iiσɶ  enters in the calculation of ig  in (1). Considering (4), 

the mean squared error estimated with the smoothed 

variance, 

2( )
2 ( )i

ii ii i

i

g y
g y

y

∂
σ + σ +

∂
ɶ ɶ  

is unbiased provided that 

( )
2 ( ) 0.i

ii ii

i

g y
E

y

 ∂
σ − σ = 

∂ 
ɶ  

When ( )ig y  is calculated with smoothed variances, (4) 

should be small; the above condition holds provided that 

( )
ˆ( ) 0,i

V ii ii

i

g y
E

y

 ∂
σ − σ = 

∂ 
ɶ  (5) 

where index V  refers to the model for smoothing the 

variances. One can easily test whether this condition holds 

by calculating the correlation between the variance residuals 

and the partial derivatives of the functions .ig  Since, as 

shown in Proposition 5 of the next section, unconditional 

mean squared errors can be derived as expectations of 

c ˆmse ( )iµ  testing whether (5) is true is relevant even when 

unconditional measures of accuracy, such as Prasad and 

Rao’s are calculated. Indeed, replacing variances by their 

predicted values biases the mean squared error estimators, 

conditional or unconditional, when (5) is violated. 

 
4. Mean squared error estimation  
       for empirical bayes estimators 

 
4.1 Model construction  

This section assumes that the iy ’s are independent, i.e., 

that ∑  is diagonal. In an empirical Bayes setting, the 

model ( )M  for smoothing direct estimators expresses the 

parameters iµ ’s as random variables whose distributions 

depend on a p -variate auxiliary variable ix  (Maritz and 

Lwin 1989, chapter 3), 

,i i ix v′µ = β +  (6) 

where β  is a 1p ×  vector of unknown regression 

parameters and the iv ’s are independent random variables 

with mean 0 and variance 2.vσ  Often the iv ’s are assumed to 

be normally distributed; the marginal distribution of ,iy  

with respect to both the sampling design S  and the 

smoothing model ,M  is then 2( , ).t

i ii vN x β σ + σ  The 

empirical Bayes estimators are obtained by shrinking the 

direct estimators iy  towards their predicted values 

under (6). 

The extent of the shrinking depends on estimators of the 

parameters of (6) calculated from the marginal distribution 

of .iy  Several methods are available for parameter 

estimation (Cressie 1992). A popular estimator for 2

vσ  (see 

Lahiri and Rao (1995)) is 

2 1 2

1 1

ˆˆ max 0,( ) ( ) (1 )
n n

t

v i i ii ii
i i

n p y x h−

= =

  
σ = − − β − σ −  

  
∑ ∑  

where 1 1ˆ ( ) , ( ) ,t t t t

ii i iX X X y h x X X x− −β = =  and X =  

1( , ..., ) .tnx x  The weighted least squares estimator of β  is 

1

2
1

ˆ ˆ ,
ˆ( )

n
i i

w
i v ii

x y
A−

=

β =
σ + σ

∑  

where 

2
1

ˆ .
ˆ( )

tn
i i

i v ii

x x
A

=

=
σ + σ

∑  

The empirical Bayes estimator for iµ  is then 

2

2

2

ˆˆ ˆˆ ( )
ˆ

ˆ( ).
ˆ

t v
i i w i i w

v ii

tii
i i i w

v ii

x y x

y y x

σ
µ = β + − β

σ + σ

σ
= − − β

σ + σ

 

(7)

 

Thus for empirical Bayes estimators, one has 

2
ˆ( ) ( ).

ˆ

tii
i i i w

v ii

g y y x
σ

= − − β
σ + σ

 

 
4.2 The conditional mean squared error estimator  

An explicit form for (3) can be obtained from the 

following formula for the derivative of the functions ig  for 

empirical Bayes estimators, 

2 1

2 2 2

ˆˆ( ) ( )
1 ,

ˆ ˆ ˆ( )

t

i v i ii i i

i i v v ii v ii

g y g y x A x

y y

− ∂ ∂σ ∂ σ  
= − − 

∂ ∂ ∂σ σ + σ σ + σ  
 (8) 

The partial derivatives appearing in (8) can be evaluated 

using standard methods. They are given by 
2ˆ 2 ˆ( ),

( )

tv
i i

i

y x
y n p

∂σ
= − β

∂ −
 

and 
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2 2 2 2 2

ˆ( ) ˆ( ) ,
ˆ ˆ ˆ ˆ( ) ( )

t ti ii ii w
i i w i

v v ii v ii v

g y
y x x

∂ σ σ ∂β
= − β +

∂σ σ + σ σ + σ ∂σ
 

where 

1

2 2 2
1

ˆ ˆ( )ˆ .
ˆ ˆ( )

tn
w k k k w

v v kk

x y x
A−∂β − β

= −
∂σ σ + σ

∑  

From (8), one has a closed form expression for c ˆmse ( ).iµ  

This statistics is an estimator of mean squared error for the 

empirical Bayes estimator for the thi  small area with respect 

to the sampling design only. It is valid for any sample size 

;n  it relies on the sole assumption that the direct estimators 

iy  are normally distributed. When 2 ˆˆ ˆ0, t

v i i wxσ = µ = β  and 

the derivatives in (8) simplify substantially. Since 
2ˆ / 0,v iy∂σ ∂ =  one has 

2 1

c
ˆ ˆˆmse ( ) ( ) 2 .t t

i i i w ii i iy x x A x−µ = − β − σ +  

The properties of the conditional mean squared error 

estimator are best investigated in the simple situation where 

all the parameters of the smoothing model are assumed to be 

known. In this situation, 2( ) / /( )i i ii ii vg y y∂ ∂ = −σ σ + σ  and 

the conditional mean squared error estimator is equal to 

c c
ˆ ˆmse ( ) max{(mse ( ),0}i i

+ µ = µ  where 

2
2

2 2

c 2 2
ˆmse ( ) {( ) }.tii v ii
i i i ii v

ii v ii v

y x
 σ σ σ

µ = + − β − σ σ 
σ + σ σ + σ 

 

The model based alternative to this estimator is the posterior 

variance, 2 2/( ),ii v ii vσ σ σ + σ  which coincides with 

[ ]c ˆ{mse ( )} .M S iE E µ  This estimator is a special case of 

Prasad and Rao (1990) estimator and is denoted PR ˆmse ( ).iµ  

Estimator c
ˆmse ( )i

+ µ  is highly variable when 2

vσ  is small. 

Indeed, when 2

vσ  is close to 0, about 50% of the conditional 

mean squared error estimates are null. To further compare 

the 2 mean squared error estimators, conditional and 

unconditional, observe that when all the parameters of the 

smoothing model are known, the conditional mean squared 

error of ˆ iµ  is 

2
2

2 2

c 2 2
ˆ{mse ( )} {( ) }.tii v ii

S i i i v

ii v ii v

E u x
 σ σ σ

µ = + − β − σ 
σ + σ σ + σ 

 

The next proposition compares the average mean squared 

errors of the estimators, conditional or unconditional, of 

c ˆ{mse ( )}.S iE µ   
PROPOSITION 4: When 2,iiσ = σ  for 1, ...,i n=  and 

when the small area means are iµ ’s are drawn using (6), the 

efficiency of the posterior variance with respect to the 

conditional mean squared error estimator for estimating the 

conditional mean squared error is 

[ ]
[ ]

4 2 2
c

4
PR

ˆMSE {mse ( )}/ 2

ˆMSE {mse ( )}/

M S i v

M S i v

E n

E n

µ σ + σ σ
=

µ σ
∑
∑

 

where MSE ( )S ⋅  denote a mean squared error taken with 

respect to the distribution of the iy ’s which are independent 
2( , )iN µ σ  random variables. 

The above efficiency is larger than 1 provided that 
2 2/ 2.41.vσ σ <  Proposition 4 shows under heavy shrinking, 

the unconditional mean squared error estimator is a better 

estimator of the conditional mean squared error than the 

conditional estimator. This surprising result is caused by the 

large variance of the conditional estimator; when shrinking 

is extensive, it is a poor estimator. 

In some situations, such as that consider in section 5.1, 

shrinking is light and the use of the conditional mean 

squared error estimator is appropriate. The conditional 

efficiency of ˆ iµ  with respect to the direct estimator iy  is 

given by c
ˆ/mse ( ).ii i

+σ µ  This is larger than one provided that 
2 2( ) /( ) 2.t

i i ii vy x− β σ + σ <  Assuming that the smoothing 

model holds true, conditional efficiencies less than 1 can be 

expected for approximatively 16% 2( [ (0.1) 2])P N= <  of 

the small area estimators. This percentage should be higher 

if the smoothing model is deficient. Conditional efficiencies 

less than 1 occur in small areas having large residuals. On 

the other hand, the unconditional efficiencies, calculated 

with the posterior variance are, in this situation, less than 1 

for all small areas. This shows that it is practically 

impossible for all the conditional efficiencies to be less 1; 

this had already been noted by Rao and Shinozaki (1978) 

for James-Stein estimators. 

Many of the observations made in the unrealistic 

situation where all the parameters are known also apply 

when parameters are estimated. The unconditional alter-

native to the conditional mean squared error estimator is 

Prasad and Rao’s (1990) estimator, 

�2 2 1 2 2

PR 2 2 2 2 3

ˆˆ ˆVar( )
ˆmse ( ) 2 ,

ˆ ˆ ˆ( ) ( )

t

ii v ii i i ii v
i

ii v ii v ii v

x A x
−σ σ σ σ σ

µ = + +
σ + σ σ + σ σ + σ

 (9) 

where �
2 2 2 2ˆ ˆ ˆVar( ) 2 ( ) / .v ii v nσ = σ + σ∑  To investigate the 

extent to which Proposition 4 holds when parameters are 

estimated, a small Monte Carlo study was carried out along 

the lines of the approach ii) simulation study of Prasad and 

Rao (1999). In all the simulations, 30=n  and 1,iiσ =  for 

1, ..., .i n=  The smoothing model (6) was ii v+µ=µ  and 

various values of 2
vσ  were used. The results reported in 

Table 1 are based on 5,000m =  Monte Carlo replications. 

The simulations used 5 sets of iµ -values whose vari-

ances are reported in Table 1. For each set, iy  was simu-

lated repeatedly as a ( ,1)iN µ  random variable, 1, ..., .i n=  

The empirical Bayes estimate iµ̂  was calculated for each 

small area and the mean squared error for small area i  was 

calculated as 
* 2ˆMSE ( ) /i I I m= µ − µ∑  where 

*∑  

denotes the sum on the m  Monte Carlo replications. The 

efficiency of the empirical Bayes estimator for small area i  

is 1/MSEi. The mean and the median of the 30=n  small 

area efficiencies are given in Table 1. The 2 mean squared 

errors, conditional and unconditional, were calculated for 
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each small area in the m  Monte Carlo replications; from 

(9), 2 2

PR
ˆ ˆ ˆmse ( ) ( 5 / ) /(1 )i v vnµ = σ + + σ  for each small area. 

Table 1 presents the mean and the median of their absolute 

relative biases, defined a 
*

ˆ| (mse ( ) MSE )| / ( MSE )i i i imµ −∑  

and of their coefficients of variation which are equal to 
* 2 1/ 2ˆ( (mse ( ) MSE ) / ) /MSE .i i i imµ −∑  

 
Table 1 

Relative Efficiency of the empirical Bayes  
estimators (RE), absolute Relative Bias (RB) and  

Coefficient of Variation (CV) of two mse estimators  
(n = 30). All results are expressed in percentage 

 
2ˆ( ) / 29i∑ µ −µ   RE% cRB %  PRRB %  cCV %  PRCV %  

1.3 mean 212 1 47 97 51 

 median 214 1 40 100 43 

2.53 mean 149 2 30 37 31 

 median 163 2 31 37 32 

3.7 mean 129 2 20 23 20 

 median 133 1 21 24 21 

4.24 mean 125 2 19 19 20 

 median 131 1 22 20 22 

4.93 mean 122 1 17 15 18 

 median 133 1 17 13 17 

 
As shown in section 2, c ˆmse ( )iµ  is unbiased; the biases 

reported in Table 1 are caused by Monte Carlo errors. When 

30,n =  the condition 2 2/ >vσ σ 2.4 derived in Proposition 

4 for the conditional estimator to improve on the un-

conditional estimator is not sufficient; the stronger condition 
2 2/ >vσ σ 4 is needed. Noteworthy is the fact that in Table 1, 

for 2( ) / 29>iµ − µ∑ 2.5, the CV of PR ˆmse ( )iµ  is only 

bias. Table 1 confirms that, when 2ˆ yσ  is of the same order of 

magnitude as iiσ  or smaller, the squared residual dominates 

the distribution of the conditional mean squared error 

estimator; in such cases Prasad and Rao (1990) un-

conditional estimator is a better estimator of conditional 

mean squared error. Even in situations when c ˆmse ( )iµ  

cannot be recommended as an estimator for the conditional 

mean squared error, it still provides interesting diagnostic 

information: changes in the conditional estimators give a 

basis for comparing two smoothing models. This is 

illustrated in section 5.2. 
 

4.3 Conditional mean squared error and prediction 

variance  
This section explores the relationship between the 

conditional mean squared error proposed in this paper and 

the prediction variance which is an unconditional measure 

of accuracy. Using the rotation of (6), the prediction 

variance is 2ˆ ˆMSE( ) [ {( ) }].t

i M S i i iE E x vµ = µ − β −  From 

the construction of presented in section 2, one has 

2

c ˆ ˆ{mse ( )} {( ) }.t

S i S i i iE E x vµ = µ − β −  

 

 

Thus we have the following result,  
PROPOSITION 5: The conditional mean squared error of 

empirical Bayes small area estimators satisfies, 

c ˆ ˆ[ {mse ( )}] MSE( ),M S i iE E µ = µ  

where ˆMSE( )iµ  is the unconditional prediction variance. 

Proposition 5 shows that c ˆmse ( )iµ  can be looked at as 

an intermediate step in the evaluation of the unconditional 

mean squared error of ˆ .iµ  Consider for instance the 

calculation of Prasad and Rao (1990) (1/ )o n  approxi-

mation to ˆMSE( ),iµ  

2 2 1 2 2

PR 2 2 2 2 3

ˆVar( )
ˆMSE ( ) ,

( ) ( )

t

ii v ii i i ii v
i

ii v ii v ii v

x A x
−σ σ σ σ σ

µ = + +
σ + σ σ + σ σ + σ

 

where 2 2 2 2ˆVar( ) 2 ( ) / .v ii v nσ = σ + σ∑  The standard 

derivation, as reviewed in section 3.2 of Singh, Stukel, and 

Pfeffermann (1998), is based on Kackar and Harville 

(1984). An alternative derivation, presented in Belmonte 

(1998, 1999), is to take the expectation of c ˆmse ( ),iµ  

obtained using (8), with respect to the marginal distribution 

of the iy ’s, which are independent 2( , )t

i ii vN x β σ + σ  

deviates and to retain only the higher order terms. 

Proposition 5 holds in situations where the small area 

estimators are bench-marked, or where corrections sug-

gested in section 3 are implemented. These are cases for 

which there are no closed form formulas for the prediction 

variances. Proposition 4 suggests a simple method for 

constructing unconditional Monte Carlo estimates. It 

suffices to generate a large number of replicates of 

{ , 1, ..., }iy i n=  where iy  follows a 2ˆ ˆ( , )t

i w v iiN x β σ + σ  

and to calculate c ˆmse ( )iµ  for each one. Averaging the 

c ˆmse ( )iµ ’s gives a plug-in unconditional prediction 

variance,  equal to the MSE of Proposition 4 evaluated at 

estimates 2ˆ ˆ,w vβ σ  of the unknown parameters. Unfortu-

nately, this estimate is biased (this is a first order estimate in 

the terminology of Singh, Stukel and Pfeffermann (1998)). 

For the empirical Bayes estimator given by (7), according to 

(9) the bias of the Monte Carlo estimate derived from 

Proposition 4 is 2 2 2 3ˆ ˆVar ( ) /( ) .ii v ii v−σ σ σ + σ  Further work is 

needed for constructing, using Proposition 4, unbiased 

unconditional prediction variance estimators. 

 
5. Estimating the under-coverage in the  

        1991 Canadian Census  
In 1991, the under-coverage of the Canadian Census was 

estimated using two surveys, the Over-coverage Study, 

which estimates the number of persons double counted or 

erroneously counted in the Census and the Reverse Record 

Check (Burgess 1988) for the persons missed in the Census. 

Combining these figures gives estimates of the under-

coverage of the Census. This section investigates several 

estimators of census under-coverage. 
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5.1 Provincial estimations  
The 1991 under-coverage rates for the ten Canadian 

provinces and the two territories with their coefficients of 

variation, expressed in percentage, are given in Table 2. The 

proportion ip  of the population living in each province (the 

word province is used in this section to denote the 10 

Canadian provinces and the two territories) is also provided. 

The coefficients of variation (CV) of Table 2 were 

calculated from variances estimated with 5 random groups. 

Thus, one can consider that the sampling variances have a 
2

4χ  distribution. Throughout this section, we assume that the 

provincial under-coverage estimates and their variances are 

independent. 

Several estimators for provincial under-coverage are 

proposed by Royce (1992). Rivest (1995) proposed a 

composite estimator that shrinks the provincial under-

coverage rate towards the national rate. It is given by: 

ˆ ˆ(1 ) ,c

i i Nr r r= α + − α  

where N i ir p r= ∑  is the national under-coverage rate and 

the shrinking parameter α̂  is given by: 

2 2

2 2 2
ˆ .

(1 )

i i N

i i i i i N

p r r

p p p r r

−
α =

− σ + −
∑

∑ ∑
 

This is the value of α  that is optimal for loss functions for 

the estimation of provincial totals and of provincial shares of 

the population; see Royce (1992) and Rivest (1995) for 

details. One has ( ),c

i i ir r g r= +  where 

2

2 2 2

(1 )
( ) ( ).

(1 )

i i i
i i N

i i i i i N

p p
g r r r

p p p r r

− σ
= − −

− σ + −
∑

∑ ∑
 

A closed form expression for the conditional mean square 

error estimator can be calculated easily by noting that  

2
2

2
2 2 2

( ) (1 )
2 ( )

(1 )

ˆ(1 ) (1 ).

i i i i
i i N

i
i i i i i N

i

g r p p
p r r

r p p p r r

p

∂ − σ
= −

∂  − σ + − 
− − − α

∑

∑ ∑  

The second partial derivative of ( )ig r  can also be 

calculated; it has the same sign as .i Nr r−  Thus positive 

skewness in the under-coverage rate, that is likely when 

estimating rare events such as being missed by the census, 

increases the conditional mean squared error in provinces 

where the under-coverage is above the national rate. 

For 1991, ˆ 0.874α =  and the national under-coverage 

rate is 2.872%.Nr =  Table 2 gives the provincial 

composite under-coverage estimates, c
ir  together with their 

efficiencies ceff /mse ( ),c c

ic ii ir= σ  where cmse ( )cir  is 

calculated as defined in section 2, with the correction 

proposed in section 3.2 to account for estimated variances. 

The composite estimator is an improvement over the direct 

estimators in all cases except three, that correspond to the 

provinces with the most extreme under-coverage rates. 

Table 2 also gives the empirical Bayes estimator B
ir  

calculated with a location smoothing model. Under model 

(M), the true under-coverage rate iθ  is assumed to be 

distributed as a 2( , ).vN β σ  The parameter estimates are 
2 4ˆ 1.45 10v

−σ = ×  and ˆ 2.61%.wβ =  Two efficiencies with 

respect to direct estimators are presented, eff B

ic  which is 

calculated with the conditional mean squared error estimator 

for ,Bir  including the adjustment of section 3.2 to account 

for estimated variances, and PReff B

i  which is calculated with 

Prasad-Rao unconditional estimator. The large under-

coverage rate in the N.W. Territories is responsible for the 

large estimate for 2ˆ ;vσ  this makes the empirical Bayes 

estimators B

ir  much closer to the direct estimators ir  than 

the composite estimators. Redoing the analysis without the 

N.W. Territories and Yukon changes the empirical Bayes 

estimates drastically. 
 

 

Table 2 
Two estimators of provincial under-coverage and their efficiencies  

Province ip  ir  CV c
ir  eff cic  

B
ir  eff Bic  PReff Bi  

Newfoundland 2.06 1.994 15.96 2.105 1.12 2.038 1.07 1.04 
Prince Edward Island 0.47 0.931 30.00 1.176 0.65 1.025 0.93 1.03 

Nova Scotia 3.26 1.889 20.05 2.013 1.11 1.959 1.09 1.06 
New Brunswick 2.66 3.245 13.73 3.198 1.29 3.162 1.14 1.09 

Québec 25.19 2.605 8.35 2.639 1.16 2.605 1.04 1.02 
Ontario 37.24 3.641 8.46 3.544 0.87 3.572 1.02 1.04 
Manitoba 3.96 1.86 20.83 1.987 1.10 1.936 1.09 1.06 

Saskatchewan 3.58 1.798 18.87 1.933 1.04 1.863 1.06 1.05 
Alberta 9.24 1.995 14.57 2.106 1.01 2.032 1.06 1.03 

British Columbia 12.01 2.733 9.86 2.751 1.26 2.727 1.07 1.03 
Yukon 0.10 3.83 15.99 3.709 1.27 3.56 1.05 1.17 

N.W. Territories 0.22 5.439 11.28 5.116 0.96 4.813 0.49 1.18 
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In Table 2, the composite estimator performs better than 

the empirical Bayes estimator; it provides gains in 

conditional efficiency larger than 10% in 7 of 12 provinces. 

Three efficiencies are smaller than 1; the discussion in 

section 4.2 suggests that efficiencies less than 1 are 

unavoidable. The relatively poor precision of ˆ iiσ  (they are 

estimated using only 4 degrees of freedom), lowers the 

conditional efficiencies of the empirical Bayes estimators. It 

does not affect the composite estimator as much since it 

uses the same shrinking parameter for all provinces. The 

conditional efficiencies capture the poor performances of 

the c
ir  and B

ir  in the provinces with the most extreme 

under-coverage rates. This is missed by the Prasad Rao 

efficiencies. They highlight the gains that smoothing brings 

to the two territories where the under-coverage rates are 

highly variable. The Prasad Rao efficiencies are meaningful 

only if one accepts the hypothesis of provincial ex-

changeability underlying the smoothing model. This is 

doubtful since under-coverage tends to be higher in large 

urban provinces than in small rural areas.  
5.2 Sub-provincial estimations  

Dick (1995) considered the estimation of the adjustment 

factors for census under-coverage for age ×  sex categories 
within each province for the 1991 census. The adjustment 

factor for a small area is defined as F = 1 + (estimated 

under-coverage)/(census count). With four age categories, 

0-19, 20-29, 30-44, 45+, and two sexes, there are 96 small 

areas. The explanatory variables are interactions between 

the indicator variables for the 12 provinces, the 4 age groups 

and the two sexes, and the proportions of renters (R) and of 

people that do not speak either official language (L) in the 

96 small areas. In each one, the estimated variance was 

given by ˆ iiσ = (under-coverage variance)/(census count) 2.  

Dick (1995) regressed the log-variances on the census 

count to smooth the variance. He considered the 

exponentials of the predicted values for the log-variances 

( )iiσɶ  as the known variances. This underestimates the 

variability. 

Indeed, the average predicted variance iiσɶ  represents 

only 68% of the average unsmoothed variance. Multiplying 

iiσɶ  by exp 2ˆ( / 2) 1.54,rσ =  where 2ˆ
rσ  is the residual 

variance of the smoothing model, corrects this problem. 

Fitting Dick’s (1995) model using the “unbiased” smoothed 

variance yields 2ˆ 0.vσ =  This is a degenerate situation 

where empirical Bayes estimators are equal to linear model 

predicted values. Note also the correlation between the 

variance residuals and the partial derivatives of ,ig  

calculated as if 2ˆ >vσ 0, is 0.25. This suggests that (5) is 

violated. Using iiσɶ  exp 2ˆ( / 2)rσ  in the calculation is likely to 

over-estimate the precision the small area estimates. To 

illustrate the application of the conditional mean squared 

error estimator, these problems are ignored and the 

remainder of this section assumes that the sampling 

variances iiσ  are known and equal to their smoothed 

values .iiσɶ  

The model fitted by Dick (1995) has ten independent 

variables; the weighted least squares estimates and their 

standard errors, given by the square roots of the elements on 

the diagonal matrix of 1ˆ ,A−  appear in Table 3. The 

conditional mean squared errors c
ˆmse ( )i

+ µ  for the 96 small 

areas can be calculated using (8). One had c
ˆmse ( ) 0i

+ µ =  

and c
ˆmse ( )>i ii

+ µ σ  for respectively 51 and 15 small areas. 

The 15 small areas with large conditional mean squared 

errors need special attention: can the prediction model be 

improved for these areas? Two systematic features among 

the 15 corresponding residuals are noteworthy: there are 2 

large positive residuals in the M/0-19 category and 2 large 

negative residuals in the F/45+ category. This suggests 

adding M/0-19 and F/45+ as independent variables. The 

additional column to the X matrix for M/0-19 contains 1’s 

for the 12 small areas for males between 0 and 19 years old 

and 0 elsewhere; that for F/45+ is constructed in a similar 

way. Only F/45+ improves the fit; adding this explanatory 

variable gives the modified Dick model of Table 3. The 

absolute value of the t -statistic for F/45+ is 3; this is clearly 

significant. 

It is interesting to compare the conditional mean squared 

errors obtained with the modified Dick model with those for 

Dick’s model. Using the modified model decreases cmse+  in 

26 small areas and increases it in 21; showing a slight 

improvement with the modified model. 

The sub-provincial empirical Bayes adjustment factors 

can be aggregated at the provincial level. Provincial 

adjustment factors pF  are given by 

ˆ

ˆ
i i

p

p

i
p

C F

F
C

=
∑

∑
 

where iC  represents the census count for the thi  small area 

and 
p∑  is the summation over the 8 small areas in 

province .p  A mean squared error for the provincial 

adjustment factor, either conditional or unconditional, can 

be calculated using a mean product error matrix mpe as 

( )
2

1ˆ ˆ ˆmse( ) mpe( , ).p i j i j

p p
i

p

F C C F F
C

= ∑∑
∑

 

Conditional mean squared errors are obtained by using 

formula (2) for mpe. Lahiri and Rao (1995) give a formula 

for the off-diagonal terms of the unconditional mean 

product error matrix whose diagonal is given by Prasad Rao 

(1990) mean squared errors. 
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Table 3 
Two linear models for small area correction factors: dick ( p = 11) and modified dick ( p = 12). 

Parameter estimates are given with their standard errors in parentheses   
Category Variable Dick modified Dick 
mean intercept 1.0076 (0.0018) 1.0099 (0.0018) 

Age* Sex Interaction M/20-29 0.0563 (0.0038) 0.0541 (0.0037) 
 M/30-44 0.0207 (0.0036) 0.0185 (0.0035) 
 F/20-20 0.0243 (0.0038) 0.02223 (0.0037) 
 F/45+ - -0.0102 (0.0037) 

Province* Renters Interaction BC*R 0.0436 (0.0115) 0.0433 (0.0110) 
 Ontario*R 0.0791 (0.0100) 0.0789 (0.0102) 
 Québec*R 0.0253 (0.0097) 0.0259 (0.0090) 
 N.-B*R 0.1039 (0.0194) 0.1032 (0.0186) 
 Yukon*R 0.0633 (0.0179) 0.0634 (0.0175) 
 NWT*R 0.0687 (0.0117) 0.0680 (0.0285) 

Language*Sex*Age Interaction L*F/0-19 0.0802 (0.0293) 0.0680 (0.0285) 

Variance  3.3681e-05 (2.45e-05) 2.21e-05 (2.30e-05) 

 

Table 4 
Direct ( )pF  and empirical Bayes ( )bpF  estimates of the  

provincial correction factors with their conditional (eff )pc  and 
their unconditional PR(eff )p  efficiencies. A conditional efficiency 
is ∞  when the conditional mean squared error estimator is null  

PROVINCE pF  b
pF      eff pc  PReff p  

Newfoundland 1.0203 1.0176 6.49 2.94 

Prince Edward Island 1.0094 1.0153 1.03 4.52 

Nova Scotia 1.0193 1.0171 25.3 2.59 

New Brunswick 1.0335 1.0367 0.67 1.11 

Québec 1.0268 1.0262 1.12 0.93 

Ontario 1.0378 1.0396 0.68 0.93 

Manitoba 1.0190 1.0176 ∞  2.46 

Saskatchewan 1.0183 1.0166 ∞  2.54 

Alberta 1.0204 1.0187 7.37 1.98 

British Columbia 1.0281 1.0293 1.09 1.03 

Yukon 1.0396 1.0400 1.41 1.17 

N.W. Territory 1.0575 1.0550 1.40 1.32 
 

Direct and empirical Bayes aggregated estimates are 

presented in Table 4 with two efficiencies. The empirical 

Bayes estimates retain much of the interprovincial 

differences. This suggest that the explanatory variables of 

the smoothing model have captured most of the differences 

between the provincial under-coverage rates. A notable 

exception is Prince Edward Island’s small correction factor 

which is not accounted for by the explanatory variables. 

This is the only province for which the two efficiencies 

differ substantially. The conditional efficiencies are more 

unstable than the Prasad Rao efficiencies. Except in Prince 

Edward Island, both tell similar stories: in New Brunswick, 

Quebec, Ontario, and British Columbia, the aggregated 

empirical Bayes estimates do not improve much on the 

direct estimators. 

 
6. Conclusions 

 
The estimator of the conditional mean squared error 

proposed in this paper has several interesting features. It can 

be implemented with any shrinking strategy. It is 

conditional on the realization of the smoothing model used 

to produce the small area characteristics; thus the condi-

tional estimator has a large sampling variance. Simple 

modifications to the estimator are available to handle 

skewness in the data and estimated variances. In an 

empirical Bayes setting, it provides diagnostic information 

concerning the smoothing model. It can also be used as 

building blocks for estimators of the prediction variances 

when this variance has no closed form expression. 
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Appendix  

Proof of proposition 1  
Let 1/ 2∑  be a symmetric square root for ,∑  such that 

21/ 2( )∑ ∑=  and 1/ 2 ( ).z y−∑= − µ  Note that z  has a 

(0, )nN I  distribution. In terms of the random vector 

, {( )z E y − µ 1/ 2 1/ 2( ) } { ( )}.tg y E zg z∑ ∑= µ +  Now the 

conditional expectation of 1/ 2( )i jz g z∑µ +  given 

1 1 1, ..., , , ..., )i i nz z z z− +  is equal to  



76 Rivest and Belmonte: A conditional mean squared error 

 

 

Statistics Canada, Catalogue No. 12-001 

( )
2

1/ 2exp( / 2)
.

2

i i
j i

R

z z
g z dz∑

−
µ +

π∫  

Integrating by parts shows that the above integral is equal to 

( )1/ 22exp( / 2)
,

2

ji
i

R
i

g zz
dz

z

∑∂ µ +−

π ∂∫  

Observe that 

( )
( )

1/ 2

1/ 2 1/ 2

1

.
n

j k
ki j

ki

g z
g z

z =

∑
∑ ∑

∂ µ +
= µ +

∂
∑  

Since 1/ 2∑  is symmetric, 1/ 2 1/ 2.ki ik∑ ∑=  Thus the above 

expression is the scalar product between 1/ 2,t

ie ∑  the thi  row 

of 1/ 2( ie∑  represents a 1n ×  vector of 0’s except for the thi  

component which is 1), and 1/ 2( ) ,jg z e∑∇ µ +  the thj  

column of ( ),g y∇  evaluated at 1/ 2 .y z∑= µ +  We have  

( ){ }

( ){ }

1/ 2
1 1 1

1/ 2 1/ 2
1 1 1

,..., , ,...,

,..., , ,..., .

i j i i n

t

i j i i n

E z g z z z z z

e E g z e z z z z

− +

− +

∑

∑ ∑

µ + =

∇ µ +
 

This equality also holds unconditionally, { (i jE z g µ+  
1/ 2 )}z∑ 1/ 2 1/ 2{ ( )} .t

i je E g z e∑ ∑= ∇ µ +  In other words, 

( ){ } ( ){ }1/ 2 1/ 2 1/ 2 .E zg z E g z∑ ∑ ∑µ + = ∇ µ +  

This completes the proof.  
Proof of proposition 2  

Let iE  denote the conditional expectation with respect to 

,iy  given 1 1 1( , ..., , , ..., )i i ny y y y− +  and ( ) ( ),i ih y g y=  for 

fixed values of 1 1 1( , ..., , , ..., ).i i ny y y y− +  One has 

{( ) ( )} ( ) ( ) ( ) .i i i i iR
E y h y t h t f t dt− µ = − µ∫  

To evaluate this expression, one can integrate by parts. 

Integrating ( )it − µ exp 2 1/ 2{ ( ) /(2 )}/(2 )i ii iit− − µ σ πσ  in 

the above integrand yields 

1/ 2

2 2

1/ 2

{( ) ( )} { ( )}
2

( ) exp{( ) /(2 )}
( ) 1 ,

(2 )

ii i
i i i i ii i i

i i ii
R

ii ii

E y h y E h y

t t
h t dt

σ ρ
′− µ = σ +

 − µ − µ σ 
× − 

σ πσ  
∫

 

where ( )h t′  is the derivative of ( ).h t  Repeated integrations 

by parts show that 

2 2

1/ 2

2

1/ 2

2

1/ 2

( ) exp{( ) /(2 )}
( )

(2 )

exp{( ) /(2 )}
{ ( )( ) ( )}

(2 )

exp{( ) /(2 )}
{ ( ) ( )}

(2 )

i i ii
R

ii ii

i ii
R i

ii

i ii
R ii

ii

t t
h t dt

t
h t t h t dt

t
h t h t dt

− µ − µ σ

σ πσ

− µ σ
′= − µ +

πσ

− µ σ
′′= σ +

πσ

∫

∫

∫

 

where ( )h t′′  is the second derivative of ( ).h t  This yields 

3/ 2

{( ) ( )}

{ ( )} { ( )} ( ).
2

i i i i

ii i
ii i i i i i

E y h y

E h y E h y o

− µ =

σ ρ
′ ′′σ + + ρ

 

Taking, on both sides, the expectation with respect to the 

distribution of 1 1 1( , ..., , , ..., )i i ny y y y− +  completes the 

proof. 
 
Proof of proposition 3  

Let iE  denote the expectation taken with respect to the 

distribution of ˆ ,iiσ  given all the other random quantities 
ˆ( , , ).jjy j iσ ≠  In this context one can write 

ˆ( ( )) /( ) ( ),i i iig y y h∂ ∂ = σ  where h  is a function possibly 

depending on ˆ( , , ).jjy j iσ ≠  A Taylor series expansion of 

h gives: 

2
3

ˆ ˆ( ) ( ) ( ) ( )

ˆ( )
ˆ( ) (( ) ).

2

ii ii ii ii ii

ii ii
ii ii ii

h h h

h O

′σ = σ + σ σ − σ

σ − σ
′′+ σ = + σ − σ

 

Since ˆ( 1) /ii iik − σ σ  follows a 2

1k−χ  distribution, 
2 2ˆ{( ) } 2 /( 1),i ii ii iiE kσ − σ = σ −  and the centered moments 

of higher orders are 2(1/ ).O k  The above expansion reduces 

to, 

3
2{ ( ) / } ( ) ( ) (1/ ).

1

ii
ii i i i ii ii iiE g y y h h O k

k

σ
′′σ ∂ ∂ = σ σ + σ +

−
 

It is clear that the bias of ˆ ˆ( )ii iihσ σ  as an estimator of this 

expression is (1/ ),O k  provided that ( ) 0.iih′ σ ≠  One has, 

neglecting 2(1/ )O k  terms, 

2

ˆ( 1)
ˆ

1

ˆ( 1)
ˆ( ) ( )

1

ˆ( ) ( 1)
ˆ .

2 1

ii
i ii

ii
ii ii ii i ii ii

ii ii
i ii ii

k
E h

k

k
h h E

k

h k
E

k

 − σ  
σ  +  

 − σ  ′≈ σ σ + σ σ − σ  +  

 ′′ σ − σ  
+ σ − σ  +   
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Elementary manipulations show that in the above formula, 

the coefficient of ( )iih′ σ  is null and 

2 3
2ˆ( 1)

ˆ 2 (1/ ).
1 1

ii ii
i ii ii

k
E O k

k k

 − σ σ  
σ − σ = +  + −   

 

This shows that 

2ˆ( 1)
ˆ { ( ) / } (1/ ).

1

ii
i ii ii i i i

k
E h E g y y O k

k

 − σ  
σ = σ ∂ ∂ +  +  

 

The proof is completed by noting that this equality holds for 

the unconditional expectation, taken with respect to the joint 

distribution of ˆ( , , 1,..., ).iiy i nσ =  
 
Proof of proposition 4  

The mean squared error of the posterior variance as an 

estimator of the conditional mean squared error has only a 

bias term, 

4
2

2 2 2

2 2
{( ) } ,t

i i v

v

x
 σ

µ − β − σ 
σ + σ 

 

while the mean squared error of c ˆmse ( )iµ  has only a 

variance component which is given by 

4
2

2

2 2

4
2

2 2 2

2 2

Var {( ) }

{2 4( ) }.

t

S i i

v

t

ii i i

v

y x

x

 σ
− β 

σ + σ 

 σ
= σ + µ − β σ 

σ + σ 

 

The efficiency reported in Proposition 4 can be evaluated as 

the ratio of the 2 average mean squared errors defined 

above. It is given by, 

4 2 2

2 2 2

2 4 ( ) /
.

{( ) } /

t

i i

t

i i v

x n

x n

σ + σ µ − β

µ − β − σ
∑

∑
 

Taking expectations of the numerator and of the denomi-

nator with respect to model (6) yields the result. 
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