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Multilevel modelling of complex survey longitudinal data  
with time varying random effects 

Moshe Feder, Gad Nathan and Danny Pfeffermann 1 

Abstract 

Longitudinal observations consist of repeated measurements on the same units over a number of occasions, with fixed or 

varying time spells between the occasions. Each vector observation can be viewed therefore as a time series, usually of short 

length. Analyzing the measurements for all the units permits the fitting of low-order time series models, despite the short 

lengths of the individual series. We illustrate this paradigm using simulated data that follow the rotation scheme of the Israel 

Labor Force Survey (LFS). This survey employs a rotating panel sampling scheme of two quarters in the sample, two 

quarters out of the sample then two quarters in again. The model consists of two-level linear models for single time points 

that are connected by allowing the second level effects (corresponding to households) and the first level residuals 

(corresponding to individuals) to evolve stochastically over time. The likelihood of the model is easily constructed by 

employing the time series properties of the combined model. However, in view of the large number of unknown parameters, 

direct maximization of the likelihood could yield unstable estimators. Therefore, a two-stage procedure is adopted. At the 

first stage, a separate two-level model is fitted for each time point, thus yielding estimators for the fixed effects and the 

variances. At the second stage, the time series likelihood is maximized only with respect to the time series model 

parameters. This two-stage procedure has the further advantage of permitting appropriate first and second level weighting to 

account for possible informative sampling effects. Empirical results when fitting the model to data collected by the Israel 

LFS are also presented. 
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1. Introduction  
1.1 Background and objectives  
In recent years there has been a growing interest in fitting 

models to data collected from longitudinal surveys that use 

complex sampling designs. This interest reflects expansion 

in requirements by policy makers and social scientists for 

in-depth studies of social processes over time, rather than of 

one-time “snap-shots” provided by cross-sectional analyses. 

A familiar example is the estimation of gross flows between 

social and demographic states such as employment states or 

health and education levels. For discussions of these issues 

and the problems they raise with respect to the design and 

analysis of longitudinal surveys, see Duncan and Kalton 

(1987) and Binder (1998). 

Examples of surveys we wish to consider in this paper 

are of three types: 
 
1. Rotating panel surveys such as labor force surveys 
carried out in many countries. These surveys were 

often designed originally for cross-sectional 

analysis of household and individual data, so as to 

study labor force and other socio-economic 

characteristics on a current basis. Complex rotating 

sampling schemes have later been introduced in 

order to improve comparisons over time. For 

example, the quarterly Israel Labor Force Survey 

(LFS) employs a rotating panel sampling scheme 

whereby each unit in the sample is interviewed for 

two consecutive quarters; it is left out of the 

sample for the next two quarters and then is 

interviewed again for two more consecutive 

quarters. In the U.S.A. and Brazil, a more 

complicated sampling scheme of 4 months in the 

sample, 8 months out of the sample and then 4 

months in again is used. Australia, Canada and the 

U.K. employ sampling schemes by which sampled 

units are interviewed over a succession of months 

or quarters before being dropped from the sample. 

These kinds of surveys are increasingly used for 

short-term longitudinal analysis, such as the 

estimation of gross flows between labor force 

states or studies of social mobility. This has not 

always proved simple due to the complexity of the 

survey designs, difficulties in matching and 

response errors. 

 

2. Medium term panel surveys, such as the U.S. 
Survey of Income and Programme Participation 

(SIPP, Herriot and Kasprzyk 1984), the U.S. Panel 

Study of Income Dynamics (PSID, Survey Re-

search Center 1984) and the Canadian Survey of 

Labor and Income Dynamics (SLID, Webber 

1994). These surveys differ from labor force sur-

veys in being specially designed for longitudinal 

analysis of economic and social characteristics of 

households and individuals. For example, SIPP 

includes an intensive investigation in the form      

of a full retrospective interview every 4 months.   

It provides a complete work history for the       
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survey period (30-48 months) by combining the 

continuous retrospective four-month recall data 

with a reconciliation of data provided for longer 

periods. 
 

3. Longitudinal cohort studies characterized by the 
follow-up of a cohort sample over a long time 

period. For example, in the British Household 

Panel Survey, starting from a sample of addresses 

selected in 1991, data have been collected on the 

same households in subsequent annual waves for 

over seven years. A wide range of data is collected 

on labor force characteristics, economic resources 

and health and education, with emphasis on 

longitudinal aspects. In this survey all members of 

the originally selected households were followed 

and the sample was supplemented by the addition 

of entrants to the sample households, including 

children born to sample household members. 

Other longitudinal cohort studies such as the 

British National Child Development Study and the 

British Cohort Study have surveyed a cohort of 

births over periods of up to 40 years. See Nathan 

(1999) for description and discussion of the latter 

three studies. 
 

Most of the studies associated with these surveys require 
longitudinal analysis for populations that have a complex 
hierarchical structure, based on data collected from complex 
sampling designs. Standard analysis of longitudinal survey 
data often fails to account for the complex nature of the 
sampling design such as the use of unequal selection 
probabilities, clustering, post-stratification and other kinds 
of weighting used for the treatment of non-response. The 
effect of sampling on the analysis is due to the fact that the 
models in use typically do not incorporate all the design 
variables determining the sample selection, either because 
there may be too many of them or because they are not of 
substantive interest. However, if the design is “informative” 
in the sense that the outcome variable is correlated with the 
design variables not included in the model, even after 
conditioning on the model covariates, standard estimates of 
the model parameters can be severely biased, leading 
possibly to false inference. Pfeffermann (1993, 1996) 
reviews many examples reported in the literature that 
illustrate the effects of ignoring the sampling process when 
fitting models to survey data and discusses methods that 
have been proposed to deal with this problem. See also the 
book edited by Skinner, Holt, and Smith (1989) and the 
more recent paper by Pfeffermann, Skinner, Goldstein, 
Holmes, and Rasbash (1998) to which we refer in more 
detail below. It should be emphasized that standard 
inference may be biased even when the original sample 
design is simple random within design strata, due to non-
response, attrition, and imperfect frames that result in de 
facto a posteriori differential inclusion probabilities. Special 
features of longitudinal studies, such as late additions of 
individuals who join panel households, can also lead to de 
facto unequal inclusion probabilities. 

In this paper we propose to deal with the problems 

arising from the hierarchical nature of the target population, 

the longitudinal aspect of the analysis and the effects of 

complex sampling designs by combining three separate 

statistical methodologies. These are multilevel modelling 

(MLM), time series modelling and methods of analysis 

under complex informative sampling. Multilevel models are 

used to deal with the hierarchical structure of many human 

populations like persons within households, pupils within 

classes, classes within schools and so forth. The models, 

extensively employed by social scientists especially in the 

field of education, account for the effects of observed 

covariates at the lower and higher levels of the structure, 

with fixed or random coefficients. Common unobservable 

random effects within the higher levels capture further 

unexplained variations. The method of Iterative Generalized 

Least Squares (IGLS) is commonly used for estimating the 

model parameters, Goldstein (1986, 1995). 

Simple state-space time series models are used to 

combine the multilevel models operating at different time 

points via a set of linear transition equations that account for 

the time series relationships of the random covariate 

coefficients and the higher level random effects. The 

Kalman filter is used for estimating the model parameters 

and predict the random effects for current and future time 

points. Smoothing algorithms can be used for updating past 

predictions, Harvey (1989). Methods of model fitting under 

informative sampling are employed to control the bias 

resulting from the sample selection process. Such methods 

have been investigated in recent years in the context of 

analytic inference from complex sample surveys, mostly for 

cross-sectional analysis of single-level models, cf. Skinner 

et al. (1989). In the present paper we utilize the 

methodology of sample weighting for multilevel modelling 

as developed by Pfeffermann et al. (1998). 

The aims of the present study are then to develop models 

and methods of estimation for longitudinal analysis of 

hierarchically structured data, taking unequal sample 

selection probabilities into account. The main feature of our 

approach is that the model is fitted at the individual level but 

it contains common higher level random effects that change 

stochastically over time. The model enables to predict the 

higher and lower level random effects (like household and 

individual person effects in the present application), using 

the data for all the time points with observations. This 

should enhance model-based inference from complex 

survey data since it permits a better understanding of the 

structure and correlation pattern of the longitudinal 

measurements. In particular, it is bound to improve the 

prediction of individual measurements compared to the use 

of aggregate time series models, which by their nature fail to 

separate the individual (person) effects from the common 

higher level (household) effects. These advantages are 

partly illustrated in the example of section 6 and more so in 

a related paper by Pfeffermann and Nathan (forthcoming) 

which focuses on the imputation of missing data. It is 



Survey Methodology, June 2000 55 
 

 

Statistics Canada, Catalogue No. 12-001 

important to emphasize in this regard that although the 

length of each individual longitudinal record is often very 

short (4 measurements for each individual in our 

application), the number of records is usually sufficiently 

large to warrant the application of classical time series 

estimation and model diagnostic procedures. In this article 

we only consider parameter estimation under a given model 

but the use of test statistics and diagnostic procedures that 

employ the empirical innovations for model identification 

follows through with minor modifications by virtue of the 

use of maximum likelihood estimation methods and the 

consistency of the parameter estimators. 

In section 2 we overview the main features of the 

aforementioned statistical methodologies that are employed 

in subsequent sections. In section 3 we propose a model that 

addresses the longitudinal aspects discussed above. Esti-

mation procedures are discussed in section 4. Section 5 

contains the results of a simulation study carried out for 

assessing the performance of the various estimators under 

different sampling scenarios. Results obtained when fitting 

the model to real data collected by the Israel LFS are 

presented in section 6, followed by a brief summary in 

section 7 of possible model extensions and applications. 
 
1.2 Literature review  
Previous work in this area deals mostly with longitudinal 

data in a non-survey context and does not consider 

hierarchically structured populations. In particular, none of 

the studies that we have come across permits the second 

level effects (common household effects in our application) 

to evolve over time. For example, Goldstein, Healy and 

Rasbash (1994) consider the analysis of repeated 

measurements using a two-level model with individuals as 

second levels and the repeated measurements as the first 

levels. The model extends the standard two-level model by 

permitting the first level measurements to be correlated over 

time. The authors consider several possibilities of modelling 

the auto-correlation structure, which include autoregressive 

models when the measurements are taken at equally spaced 

time points and autocorrelation functions when the 

observations are taken at unequal time intervals. In the latter 

case the autocorrelation function is linearized for estimation 

purposes. 

Several authors study the application of time series 

models for the analysis of longitudinal data. In a series of 

papers by Jones and his co-authors (Jones and Ackerson 

1990, Jones and Boadi-Boating 1991, Jones and Vecchia 

1993) and the book by Jones (1993), the authors consider 

observations taken at unequally spaced time gaps. The 

observations referring to the same subject are allowed to be 

serially correlated by postulating continuous autoregressive 

moving average models. These models contain fixed and 

random effects, but do not have a hierarchical population 

structure. Weighted least squares and state space modelling 

combined with the Kalman filter are used for calculating the 

likelihood function. 

Continuous time autoregressive models for irregularly 

spaced longitudinal data are considered also by Belcher, 

Hampton and Tunnicliffe (1984), using linear stochastic 

differential equations for describing the process generating 

the data. An Empirical Bayes approach is proposed by 

Bryant and Day (1991) for the simultaneous analysis of a 

system of mixed linear models, having linked and serially 

correlated random effects. Chi and Reinsel (1989) consider 

a score test for autocorrelation between individual errors 

under a “conditional independence” random effects model. 

The authors derive a maximum likelihood estimation 

procedure and use the estimators for predicting the random 

effects by application of Empirical Bayes. 

Diggle, Liang and Zeger (1994) propose the use of 

generalized linear models for the analysis of longitudinal 

data. They consider a transition (Markov) model by 

considering past values as additional predictor variables. 

Transitional extensions of the GLM are used for maximum 

likelihood estimation under linear link functions, whereas 

for non-linear link functions the estimation is based on 

conditional score functions. Lawless (1999) uses an event 

history approach for the analysis of longitudinal data. By 

this approach, the dependent variable is the number of 

occurrences of a particular event up to a given time point ,t  

with the limiting transitional probabilities being modelled as 

functions of the previous history and covariates. 

Zimmerman and Nunez-Anton (1997) propose a structured 

antedependence model for longitudinal data, primarily in the 

context of growth analysis. Neither of the above studies 

considers a hierarchical structure or a complex sampling 

design. 

Finally, Skinner and Holmes (1999) consider a model for 

longitudinal observations that consists of a “permanent” 

random effect at the individual level and autocorrelated 

transitory random effects corresponding to different waves 

of investigation. The authors study two approaches for the 

estimation of the unknown model parameters with both 

approaches accounting for sampling effects and “non-

informative” attritions. The first approach treats the repeated 

observations as correlated multivariate outcomes and 

derives probability-weighted estimators that account for the 

correlation structure. The second approach considers the 

model as a two-level model with “individuals” as the second 

level units and the repeated measurements as first level 

units. Estimation of the unknown parameters under this 

approach is carried out by a modification of the PWIGLS 

method of Pfeffermann et al. (1998, see section 2.2). 

 
2. Statistical methodologies underlying  

        the proposed approach 

 
2.1 Multilevel models 
 
In what follows we consider a two-level model for the 

response variable y  in a population consisting of 
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1, ...,i M=  second level units (household, schools, …) 

and 1, ..., ij N=  individuals within second level unit .i  

The model is, 

0 , 1, ..., ; 1, ..., ,
ijij ij ij i ij iy x z u z e i M j N′ ′= β + + = =  (2.1) 

where , ,ij ijx z  and 0ijz  are known covariate values of 

dimensions ,p q  and 1 respectively, β  is a fixed parameter 
vector of dimension p  and ~ (0, )i Nµ Ω  and 

2~ (0, )ije N σ  are independent random second level 

effects and first level residuals of orders p  and 1 

respectively. 

The inclusion of the multipliers 0ijz  allows for first level 

heteroscedasticity whereas the common second level effects 

iu  explain the (interclass) correlations between individual 

measurements corresponding to the same second level unit. 

In the simple case of the “random intercept model”, 

,ij ij i ijy x u e′= β + +  these correlations take the familiar 

form, Corr 2 2 2( , ) / ( ).ij ik u uy y = σ σ + σ  The random intercept 

model is often applied for small area estimation (see below). 

As stated in the introduction, models like (2.1) are widely 

used by social scientists for studying the effects of the 

covariate variables and the interrelationships between 

observations corresponding to the same higher level unit. In 

such cases, primary interest is in the estimation of the vector 

coefficient β  and the vector θ  of the distinct elements of 
Ω  and 2.σ  Another, well-known application of the two-
level model is for “small area estimation”, in which case the 

second levels are geographical areas or other domains of 

study. In small area estimation, the target of the analysis is 

the prediction of the second level (area) means ,i i iX Z u′ ′β +  

where iX  and iZ  are the true area covariate means, and the 

estimation of the model parameters is only an intermediate 

step. See Rao (1999) for a recent review. 

Estimation of the unknown model parameters is carried 

out most conveniently by use of the Iterative Generalized 

Least Squares (IGLS) algorithm (Goldstein 1986, 1995). 

For a random sample of m  second level units and in  first 

level units within second level unit ,i  the model holding for 

the sample data is first written in matrix form as 

, 1 ...i i iy X d i m= β + =  (2.2) 

where 1[ , ..., ],
ii i iny y y ′=  1[ , ..., ]

ii i inX x x ′=  and id =  
1[ , ..., ]

ii ind d ′  with 0( ).ij ij i ij ijd z u z e′= +  Then, ~id  

(0, ),iN V  where 2 2

0 ( );i i i i iV Z Z Z V′= Ω + σ = θ  iZ =  
1[ ... ]

ii inz z ′  and 0 0 1 0diag[ ... ].
ii i inZ z z=  The IGLS 

algorithm iterates between the estimation of ,β  with θ  
considered known, and the estimation of ,θ  with β  
considered known. At each iteration, the estimate obtained 

for the other vector parameter on the previous iteration is 

used as the “known” parameter. This process is a special 

case of the EM algorithm and it converges to the cor-

responding maximum likelihood estimators (MLE) under 

the stated normality assumptions. It is known to provide 

consistent estimators under more general conditions. 

 
 

2.2 MLM estimation under informative sampling  
The IGLS algorithm described in section 2.1 assumes 

that the model defined by (2.2) holds for the sample data. 

This would be the case if selection of the first and second 

level units is carried out by simple random sampling. 

However, as discussed in the introduction, the selection of 

the sample could be informative so that the model holding 

for the sample units differs from the model holding in the 

population. For example, in an educational survey, schools 

in poor areas could be sampled with higher probabilities. In 

a household survey, higher selection probabilities could be 

assigned to households in areas characterized by high 

proportions of minorities or to persons that are unemployed. 

All illustrated by Pfeffermann et al. (1998) and also in 

section 5 of the present paper, the use of the IGLS algorithm 

in such cases could yield severely biased estimators for all 

the parameters. The authors propose therefore a probability 

weighted IGLS (PWIGLS) algorithm that protects against 

informative sampling. 

The algorithm is an adaptation of the pseudo-MLE 

method (Binder 1983, Skinner et al. 1989, Pfeffermann 

1993). Suppose that the two-level model defined by (2.1) 

holds for the target population. Had all the population values 

been observed, the IGLS would converge at the end of the 

iterative process to the census estimators,   ˆ ˆ( , ).c cβ θ  At each 

iteration, the intermediate estimators ( ) ( )
ˆ ˆ( , )i iβ θ  are products 

of matrices with elements that are functions of sums of the 

population values. When the IGLS is applied to sample 

data, the population sums are substituted by the 

corresponding sample sums. The PWIGLS consists of 

further replacing the unweighted sample sums by weighted 

sums. Denote by Pr ( )i i sπ = ∈  the second level sample 

inclusion probabilities and by Pr ( )j i j s i s|π = ∈ | ∈  the 

conditional first level inclusion probabilities. The PWIGLS 

estimators are obtained by, 1-replacing each second level 

sample sum of the general form 1
n
i ig=∑  by the weighted 

sum 1 ,n
i i iw g=∑  where 

1−π= iiw  and 2-replacing each first 

level sample sum 1
in
j ijg=∑  by the weighted sum 1

in
j j i ijw g= |∑  

with 1.j i j iw −
| |= π  Note that the weighting process requires 

the knowledge of the inclusion probabilities at both stages 

of the selection process and not just the final overall 

inclusion probabilities .ij j i i|π = π × π  
As established by Pfeffermann et al. (1998), the 

PWIGLS estimators are consistent for the model parameters 

when both the first and second level sample sizes increase, 

but the estimators of the variances are not consistent if the 

first level sample sizes are bounded. For this case, the 

authors propose appropriate scaling of the weights j iw |  that 

eliminates the bias, provided that the sample selection 

within the second level units is noninformative. It is 

important to emphasize that standard weighting of the 

sample measurements by the weights 1,ij ijw −= π  which is 

routinely applied for single level models yields consistent 

estimators only for .β  
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2.3 State-space models  
State-space models as considered here consist of two sets 

of equations: 
 
1. The measurement (observations) equations: 

; ( ) 0,

( ) , 1, ...,

t t t t t t t

t t k k t

y X L E

E H t T−

= β + α + ε ε =

′ε ε = δ =  (2.3)

 

2. The transition (system) equation: 

1 ; ( ) 0,

( , ) , 1, ...,

t t t t t

t t k k t

G E

E Q t T

−

−

α = α + η η =

′η η = δ =  (2.4)

 

 

where 1kδ =  for 0k =  and 0kδ =  otherwise. We also 

assume ( ) 0t sE ′ε η =  for all t  and .s  Note that both ty  and 

tα  can be multivariate. The measurement equations relate 
the observations ty  at any given time point to covariate 

values tX  with fixed (nonstochastic) vector coefficients ,tβ  
and linear functions tL  of an unobservable state vector .tα  
The transition equations describe the time series relation-

ships between the components of the state vector. The 

matrices ,t tX L  and tG  are assumed to be nonstochastic 

although they may change over time, as is the case with the 

vector coefficients .tβ  Notice that the latter vectors can be 
included as part of the state vectors by taking their transition 

matrix to be the zero matrix of corresponding order and 

defining the corresponding residual variances in tQ  to be 

very large. See Sallas and Harville (1981) for details. 

Although not written here in its most general form, the 

state-space model defined by (2.3) and (2.4) is known to 

include as special cases many of the time series and mixed 

linear models in common use. As important examples we 

mention the family of ARIMA models and models with 

random regression coefficients. The MLM defined by (2.1) 

can also be easily structured in a state-space form. To see 

this, replace the index i  by t  and define [ , ],t t tL X Z=  

[ , ],t t tu′ ′ ′α = β 2

0t tH Z= σ  and [ , 0 ]t p qG I=  where pI  

and 0q  define the identity matrix and the zero matrix of the 

appropriate orders. (The matrices tZ  and tX  are defined 

below (2.2).) The vector coefficient tβ  is added for 
convenience to the state vector. The covariance matrix tQ  

is block diagonal with 0p  and t tZ Z′Ω  as the two blocks. 

The use of the zeroes matrix 0p  for the covariance of 

1( )t t−β − β  guarantees that the β -coefficients are fixed over 
time, in accordance with (2.1). (The representation of the 

MLM in a state-space form is not unique.) 

For given covariance matrices { , }t tH Q  and assuming 

that ,t tLβ  and tG  are known for all ,t  the best linear 

unbiased predictor (BLUP) of the state vector at any given 

time ,t  based on all the data accumulated until that time, is 

conveniently obtained by means of the Kalman Filter. Let 

1
ˆ
t−α  define the BLUP of 1t−α  based on the observations 

until time ( 1),t −  with covariance matrix 1 1
ˆCov(t tP− −= α −  

1).t−α  The BLUP of tα  at time ( 1)t −  is then, 1
ˆ
t t| −α =  

1
ˆ
t tG −α  with covariance matrix 1 1

ˆCov( )t t t t tP | − | −= α −α =  
1

ˆCov( )t t t| −α −α = 1 .t t t tG P G Q−
′ + When new observations 

ty  become available, the predictor 1
ˆ
t t| −α  and the corre-

sponding covariance matrix are updated as 

1

1 1 1

1

1 1 1

ˆ ˆ ˆ( )t t t t t t t t t t t t t

t t t t t t t t t t

P L F y X L

P P P L F L P

−
| − | − | −

−
| − | − | −

′α = α + − β − α

′= −  (2.5)

 

where 1 1ˆVar ( )t t t t t t t t tF L P L H y y| − | −
′= + = −  with 1ˆt ty | − =  

1
ˆ

t t t t tX L | −β + α  defining the BLUP of ty  at time ( 1).t −  

The actual application of the Kalman filter requires a proper 

initialization for 1 0
ˆ |α  and 1 0P|  which depends on the model 

under study. See section 4 for the initialization under the 

model proposed in this paper. 

The unknown model parameters ( ,tβ  elements of 
,t tH Q  and possibly tL  and )tG  are ordinarily estimated 

by MLE with the likelihood conveniently constructed by 

use of the “prediction error decomposition”. Assuming that 

dim ( ) ,ty n=  the log-likelihood takes the general form, 

}

1

1

1 1

1log ( ) log (2 ) log
2 2

1 ˆ ˆ( ) ( ) .
2

T

t
t

t t t t t t t

nL T F

Y Y F Y Y

=

−
| − | −

= − π + | |


′+ − −

∑

 (2.6)

 

For a thorough discussion of state-space models and their 

applications, see Harvey (1989). 

 
3. Model for hierarchical longitudinal data  
In this section we propose a time series multilevel model 

which combines separate cross-sectional two-level models 

by modelling the evolution of the first and second level 

random effects over time. Let tS  define the sample 

available at time ,t  composed of tm  level 2 units with hn  

level 1 units in level 2 unit .h  The formulation of the 

overall sample in terms of the subsets tS  covers situations 

where the longitudinal observations are collected at different 

time periods. The proposed model allows also for the 

rotation patterns mentioned previously and for wave non-

response. Note that the samples observed at different time 

points are generally not disjoint and that the assumption that 

hn  is fixed over time is not restrictive. Pfeffermann and 

Nathan (forthcoming) consider the case of temporal missing 

data for which this supposition does not hold. As long as the 

missing data are missing completely at random, 

generalization of the present methodology to this case is 

straight-forward. We assume the following two-level model 

to hold for the sample :tS  

,

1, ..., , 1, ..., ,

hjt hjt t ht t ht ht hjt

t h

y x z v z u e

h m j n

′ ′ ′= γ + + +

= =
 

(3.1)
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where hjty  is the outcome for first level unit j  in second 

level unit , hjth x  and htz  are fixed known covariate vectors 

of dimensions p  and q  respectively, tγ  and tv  are fixed 

(unknown) vector coefficients and htu  and hjte  are 

independent second level and first level random effects. For 

given time ,t  the model defined by (3.1) is basically the 

same as the MLM model defined by (2.1), except that we 

assume hjt htz z=  for all j  and ,t  thus distinguishing 

between first level covariates and second level covariates. 

We assume also for convenience 0 1.hjtz ≡  The model is 

quite general in that all the covariate variables, the fixed 

vector coefficients and the random effects are allowed to 

vary over time in ways defined below. Notice that by 

assuming that (3.1) holds for the sample data, it is implicitly 

assumed that the sampling design is noninformative. See the 

discussion in section 2.2 and also section 4 below. 

As in (2.2), the model defined by (3.1) can be formulated 

in matrix form as, 

,
hht ht t ht t ht ht n htY X Z v Z I e= γ + + µ +  (3.2) 

where 1 1[ , ..., ] , [ , ..., ] ,
h hht h t hn t ht h t hn tY y y X x x′ ′= =  htZ =  

1 htz⊗  and 1[ , ..., ]
hht h t hn te e e ′=  with ⊗  defining the 

Kronecker product. The matrix representation (3.2) can be 

written concisely as, 

,ht ht t ht htY X Z= β + αɶ ɶ  (3.3) 

where [ , ]; [ , ];
hht ht ht ht ht nX X Z Z Z I= =ɶ ɶ [ , ] ;t t tv′ ′ ′β = γ htα =  

[ , ] .ht htu e′ ′ ′  
Next we model the time series relationships of the vector 

coefficients and the random effects. We assume that the 

vectors , 1, 2 ...t tβ =  are fixed without specifying the way 

they evolve over time. This assumption is generally not 

restrictive because in practical applications the overall 

sample size in any given time point is usually sufficiently 

large to allow accurate estimation of the vector coefficients 

without having to borrow information across time. For the 

random second and first level effects we postulate first order 

autoregressive [AR(1)] relationships of the form, 

, 1 , 1;ht h t ht ht h t htu Au e e− −= + δ = ρ + ε  (3.4) 

where A  is a ( )q q×  matrix of fixed coefficients, ρ  is a 
fixed scalar and 2~ (0 , ); ~ (0 , )

h hht q ht n nN N Iεδ ∆ ε σ  are 

independent white noise series. The model defined by (3.4) 

is rather simple and as a further simplification we assume 

that A and ∆  are diagonal, implying that the second level 
random effects are independent. It is assumed also that 

1|ρ | <  and 1kkA| | <  for all k  to guarantee stationarity. 

More complex models can be considered in principle but it 

should be emphasized that unlike in classical (aggregate) 

time series analysis, longitudinal observations may only be 

taken over a very short time period in which case the use of 

models that incorporate lagged values of high order may no 

longer be operational. For example, in the quarterly Israel 

LFS described in the introduction, individuals are in the 

sample for a total of 4 quarters over a time period of 6 

quarters which clearly limits the class of time series models 

that can be postulated for the random effects. 

The AR(1) models defined by (3.4) can be written 

concisely as 

, 1 , 1, ...,ht h h t ht tG h m−α = α + η =  (3.5) 

where, 

2

0
, ,

0

0
~ (0, ), .

0

h

h

ht

h ht
n ht

ht h h
n

A
G

I

N Q Q
Iε

δ   
= η =   ρ ε  

∆ 
η =  σ 

 (3.6)

 

By writing the proposed model using the equations (3.3), 

(3.5) and (3.6) and setting , 0,ht ht htZ L H= =ɶ  it is easily 

seen to belong to the class of state-space models presented 

in section 2.3, with no residual errors in the measurement 

equation. The model is defined for distinct second level 

units h  but unlike in classical time series analysis where the 

data consist of a single long series, the data in our case 

consist of many independent short (longitudinal) series that 

could be observed over different time periods. Note that the 

transition matrix, hG  and the covariance matrix, hQ  depend 

on h  through the second level size hn  but they are time 

invariant. In situations where the second level sizes are not 

fixed over time (for example, because of missing data), 

these matrices also change accordingly. 

 
4. Estimation of the model parameters 

 
In principle, the likelihood function holding for the 

model defined by (3.3), (3.5) and (3.6) can be maximized to 

obtain the maximum likelihood estimators (MLE) of all the 

unknown model parameters. However, the number of 

estimated parameters would usually be very large, which 

can intensify the computations and result in statistically 

unstable estimators. For instance, even for 2p q= =  and 

10T =  there are already 46 unknown parameters. We 

propose therefore a two-stage estimation procedure that 

employs MLM estimation for the “cross-sectional 

parameters” and state-space model estimation for the “time 

series parameters”. The use of this procedure has the further 

advantage of accommodating appropriate weighting to 

protect against informative sampling. 

The procedure starts off by fitting the MLM defined by 

(3.1) to each sample tS  separately, to obtain IGLS esti-

mates of the time-dependent fixed effects [ , ]t t tv′ ′ ′β = γ  and 

the variances of the random effects htu  and .hjte  Notice that 

by (3.4), 
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2 1

2 2 2

Var ( ) ( ) ;

Var ( ) (1 )

ht

hjt e

u I A

e

∗ −

ε

= ∆ = − ∆

= σ = − ρ σ  (4.1)

 

using familiar relationships holding for AR(1) models. The 

use of this step yields estimates 2ˆ ˆ ˆ{ , , }t t et

∗β ∆ σ  for 
2{ , , }t e

∗β ∆ σ  respectively. Under the model, the true 

variances 2( , )e
∗∆ σ  are fixed over time and assuming that 

the sample sizes at the various time points are fairly 

constant, the estimates ˆ t
∗∆  and 2ˆ

etσ  can be averaged to yield 

single estimates 

2 2

1 1

ˆ ˆ/ ; / .
T T

t e et
t t

T T∗ ∗

= =

∆ = ∆ σ = σ∑ ∑  (4.2) 

In the second stage the remaining parameters are 

estimated by maximizing the likelihood of the combined 

model defined by (3.3) (3.5) and (3.6), with the parameters 

estimated in the first stage held fixed at their estimated 

values. Since observations on different second level units 

are independent, the log-likelihood has the form 

log ( ) log ( )h hL L∑=  where ,hL  the contribution to the 

likelihood from second level unit ,h  is defined by (2.6) with 

the index h  added to all the components thus distinguishing 

between different second level units. As pointed out before, 

the number of time points for which the second level units 

are observed and the time periods over which the 

observations are taken may differ between units so that the 

notation T  in (2.6) for the number of time points needs also 

to be changed to .hT  

When fitting the model to data obtained from rotating 

panel sampling designs as in the empirical study of the 

present paper, a further modification is required to account 

for the intermediate periods without observations. For 

example, for the Israel LFS described in the introduction, 

with rotation pattern of two quarters in the sample, two 

quarters out of the sample and two quarters in again, 

4hT =  but the transition equations from 2t =  to 3t =  

(the next quarter with observations) have to be changed to 

account for the two quarters with missing observations. 

Repeated substitutions in (3.5) yield the following 

relationships: 

3

3 2 3 3 3

4 2

3 4 2 2

; ~ (0, ),

( ) 0
.

0 ( 1)
h

h h h h h h

h

n

G N Q

A A I
Q

I

∗ ∗ ∗

∗

ε

α = α + η η

 + + ∆
=  ρ + ρ + σ 

 (4.3)

 

In order to apply the Kalman filter and compute the 

likelihood, it is needed to set initial values for 1 0|α  and 1 0.P |  

This is simple under the present model as [ , ]ht ht htu e′ ′ ′α =  

is stationary with zero mean and covariance matrix defined 

by (4.1). Thus, the filter is started by setting, 

1 0 1 1

1 0 1 1

2 1 2 2 1

( , ) 0;

Var[ , ]

diag{( ) , (1 ) }.
h

h h h

h h h

n

E u e

P u e

I A I

|

|

− −
ε

′ ′α = =

′ ′=

= − ∆ σ − ρ  (4.4)

 

In the empirical study described in the next two sections we 

compare two methods regarding the set of parameters 

estimated in the second stage. 
 
Method 1: The parameters estimated in Stage 2 are the 

three AR coefficients 11 22, ,A Aρ  and the corresponding 

residual variances 2 Var ( )hjtεσ = ε  and Var ( ),ht∆ = δ  

(equation 3.6, three variances in total). Note that under this 

method the only estimates utilized from Stage 1 are the 

fixed parameter estimates ˆ ˆ ˆ{ [ , ]}.t t tv′ ′ ′β = γ  By (4.1), the 

variances Var ( )htu
∗∆ =   and  2 Var ( )e hjteσ =  are estimated 

as 

2 1 2 2 1 2ˆˆ ˆ ˆˆ ˆ( ) ; (1 ) .eI A∗ − −
ε∆ = − ∆ σ = − ρ σ  (4.5) 

 
Method 2: The only parameters estimated in Stage 2 are the 

AR coefficients 11 22, ,A Aρ  (Equation 3.4). Note that with 

this method the variances ∆  and 2

εσ  are set in the like-
lihood as, 2( )I A ∗∆ = − ∆  and 2 2 2(1 ) eεσ = − ρ σ  utilizing 
(4.1), where 2

eσ  and ∗∆  are defined by (4.2). 
The estimation procedures described so far assume 

implicitly noninformative sampling. As discussed in the 

introduction, complex sample surveys often involve 

selection with unequal probabilities that could be correlated 

with the values of the response variable. When this is the 

case, the model holding for the sample data may differ from 

the model holding in the population. A further advantage of 

the proposed two-stage estimation method is that it can be 

adapted to protect against informative sampling. This is 

done by applying the weighting procedure described in 

section 2.2 in the first stage, replacing the iterative IGLS 

algorithm by the PWIGLS procedure. Thus, for each sample 

,tS  PWIGLS is used for estimating the MLM model 

parameters instead of using the IGLS. 
 
Comment 1: Informative selection of the first and second 

level units does not affect the conditional distributions of the 

random effects as defined by (3.4). Thus, although the 

distribution of 1hu  and 1he  could be largely distorted 

because of the sample selection at time 1,t =  this has no 

effect on the distributions of 2 1,h hu u|  or 2 1.h he e|  The 

implication of this property is that the computation of the 

likelihood in the second stage remains the same, but care 

should be taken of a proper initialization of the Kalman 

filter. As defined by (4.4), the filter is initialized by the 

unconditional means and variances of the random effects 

under the model, but at time 1t =  the moments holding for 

units in the sample can be different because of the sampling 

effects. As is well known, for long enough series and under 
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some regularity conditions, the estimates derived from 

maximization of the likelihood are not sensitive to the 

initialization procedure but with short series, improper 

initialization under informative sampling could distort the 

estimation process. Nonetheless, as illustrated in section 5, 

having a moderate number of longitudinal observations 

even of very short length (at most 4 observations in our 

application) and weighting the likelihood contributions by 

the inverse of the sample inclusion probabilities (application 

of the pseudo likelihood approach) yields approximately 

unbiased estimators for all the time series model parameters. 

 
5. Simulation results 

 
In this section we report the results of a Monte Carlo 

study carried out for assessing the performance of the 

various estimation procedures described in section 4 under 

noninformative and informative rotating sampling schemes. 

 
5.1 Description of simulation study 

 

A) Generation of population data and sample rotation 

scheme 

 Population values have been generated for individuals 

(first level units) within households (second level units), 

using the model defined by (3.1) and (3.4) (see below). 

The number of persons hn  observed within household 

h  was selected at random with possible values of 2, 3 

or 4. A new panel of households has been generated in 

each of 11 quarters and a sample of these households 

has been observed following the Israel Labor Force 

Survey rotation scheme of two quarters in the sample, 

two quarters out of the sample and two quarters in 

again. As easily checked, this process yields a complete 

sample of four panels in each of the quarters 6-11, with 

one panel in each quarter observed for the first time, 

one panel observed for the second time, one for the 

third time and one for the fourth and last time. (In the 

first quarter there is only one panel, in the next three 

quarters there are two panels and in the fifth quarter 

there are 3 panels.) In what follows we only consider 

the data observed for quarters 6-11. 
 
B) Population model 

 The model used for generating the y -values for a given 

household h  is defined by (3.1) and (3.4) with 

1 2( , )hjt hj hjx x x′ ≡  and 2(3, ),ht hz z′ ≡  such that the 

covariate values are fixed over time. The x -values 

were generated independently from the uniform 

distribution [1, 2].U  Values 2hz  were generated from 

the uniform distribution [1, 5].U  In order to simplify 

the presentation and evaluation of the results, we also 

set the model coefficients to be time invariant such   

that (6, 2)t
′γ = γ = −  and (1, 2).tv v ′= =  The 

random error terms were generated independently 

between households using the model (3.4) with 

[ ]diag 0.5, 0.7 ,A = [ ]diag 0.8, 0.5 ,A = 0.4ρ =  and 
2 0.25.εσ =  Notice from (4.1) that Var ( )htu

∗= ∆ =  
diag[1.067, 0.980]  and 2Var ( ) 0.298.hjt ee = σ =  

 

C) Sample selection 

 We consider two separate sampling schemes. 

 

C1) Noninformative sampling 

Population values have been generated for panels of 30 

households, with all the households belonging to a 

given panel selected to the sample and observed 

following the sample rotation scheme described in A 

above. The total number of sampled households in each 

of the quarters 6-11 is therefore m = 120. All the 
individuals belonging to a given household have been 

observed, yielding an expected sample size of n = 360 
individuals for each of the quarters. This sampling 

scheme corresponds to simple random sampling of 

households and individuals within the selected 

households. 

 

C2) Informative sampling 

Population values have been generated for panels of 55 

households. Households with random effects 1,1 0hu <  

(the value of the first random effect at the first time 

point) have been sampled with probability 1, house-

holds with random effects 1,1 0hu >  have been sampled 

independently (Poisson sampling) with probability 0.1. 

All the individuals belonging to a sampled household 

have been observed. This sampling scheme yields an 

expected sample size of approximately 30 households 

per panel and expected sample sizes of approximately 

m = 120 households and n = 360 individuals per 
quarter, similarly to the sampling scheme C1. 

 

Comment 2: It should be emphasized that even though 

there are 4 panels observed in each of the quarters 6-11, 

there are only 11 separate panels that are used for estimation 

of the model parameters. Moreover, out of the 11 panels, 

only the panel entering the sample in quarter 6 for the first 

time is observed in 4 quarters, only 2 panels are observed in 

3 quarters, 6 panels are observed in 2 quarters and 2 panels 

are observed in only one quarter. This implies a total of 13 

panels transitions, with about 390 household transitions 

observed for estimation of the time series parameters. (By a 

panel transition we mean that the same panel is observed on 

two occasions. For 3 of these panel transitions there is a 

time gap of 2 quarters between the two observations). We 

refer to this sample structure when assessing the estimation 

of the time series model parameters. 

The whole process of generating population values and 

selecting the sample has been repeated 100 times for each of 

the two sampling schemes C1 and C2, with one sample 

selected from each population. For each sample we applied 
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the two estimation procedures described in section 4. The 

simulations were run using the Gauss software package. 

Maximization of the likelihood has been carried out using 

the numerical optimization procedure, OPTMUM. 
 
5.2 Results  
The results of the simulation study are summarized in 

Tables 1- 4 as averages over the 100 samples selected under 

the two sampling schemes. Each table contains the mean 

estimates of the model parameters, the empirical standard 

deviations (SD) of the estimators and the conventional t -

statistics obtained by dividing the difference between the 

mean estimates and the true parameter values by the 

standard errors (SE), computed as SD/10. Notice that the 

estimates of the fixed vector coefficients ( , )t t tv′ ′ ′β = γ  are 

the same under the two estimation methods. 

Perhaps the most important outcome of this study, 

revealed from Table 1, is that under noninformative 

sampling it is indeed possible to fit successfully simple but 

nontrivial time series models to very short longitudinal 

series, provided that the number of observed series is 

sufficiently large. (The model is not trivial because even 

after subtracting the fixed effects, the dependent response 

variable is the sum of three AR(1) processes.) This 

conclusion is further strengthened by the fact that 8 out of 

the 11 panels have been observed for at most 2 times, 

yielding a total of 13 panel transitions, three of which with a 

gap of 2 quarters. See Comment 2 at the end of section 5.1.  
Table 1 

Means, Standard Deviations (SD) and t-statistics of estimators 
under two estimation methods. Noninformative sampling 

 

  Method 1 Method 2 

Parameter True 

Value 

Mean SD t-statistic Mean SD t-statistic 

1γ  6.000 6.002 0.03 0.677 6.002 0.03 0.677 

2γ  -2.000 -2.000 0.03 0.078 -2.000 0.03 0.078 

1v  1.000 0.989 0.08 -1.357 0.989 0.08 -1.357 

2v  2.000 2.008 0.08 0.997 2.008 0.08 0.997 

11A  0.500 0.497 0.07 -0.391 0.491 0.07 -1.271 

22A  0.700 0.696 0.07 -0.532 0.695 0.07 -0.820 
*
11∆  1.067 1.054 0.08 -1.668 1.045 0.08 -2.677 
*
22∆  0.980 0.991 0.10 1.042 0.990 0.11 0.906 

ρ  0.400 0.398 0.02 -0.937 0.397 0.02 -1.637 
2
eσ  0.298 0.298 0.01 -0.062 0.297 0.01 -1.382 

 
Evaluation of the performance of the two sets of 

estimators in Table 1 shows that all the estimators under 

Method 1 are highly insignificant based on the conventional 

t -statistics and only the estimator of 11

∗∆  is significant 

under Method 2. Note that even in that case the absolute 

relative bias is about 2% and considering that MLE of time 

series parameters are generally not strictly unbiased, such a 

small bias in one of 10 parameters is expected. Notice also 

that the standard errors of the mean estimators under the two 

methods are very similar, a result observed also in the other 

tables. 

Next we consider the case of informative sampling. 

Table 2 shows the results obtained when ignoring the 

informative sampling process, using the same estimation 

procedures as used for the noninformative case. As 

indicated very clearly by this table, some of the parameter 

estimates are highly significant, particularly the estimators 

of the parameters indexing the time series model of the 

random effects 1h tu  that define the sample selection 

probabilities. Thus, we find that the absolute relative bias in 

estimating 1v  is about 27%, and large absolute relative 

biases are also observed for the estimators of 11A  and 11.
∗∆  

(The model defined by (3.1) can be rewritten as hjty =  
hjt t ht ht hjtx z u e∗′ ′γ + +  where ,ht ht tu u v∗ = +  such that for 

tv v≡  as under the simulation model, 1 1( )).h tv E u∗=  Note 

that the three biases are negative, which is explained by the 

fact that the selection mechanism utilized for this study 

oversamples individuals with observations that contain 

negative random effects 1,1.hu  In this case again, the two 

estimation methods perform very similarly.  
Table 2 

Means, Standard Deviations (SD) and t-statistics of  
estimators under two estimation methods. Informative  

sampling, unweighted estimators  
  Method 1 Method 2 

Parameter True 

Value 

Mean SD t-statistic Mean SD t-statistic 

1γ  6.000 5.998 0.02 -0.768 5.998 0.02 -0.768 

2γ  -2.000 -2.000 0.03 0.104 -2.000 0.03 0.104 

1v  1.000 0.728 0.09 -34.385 0.728 0.09 -34.385 

2v  2.000 2.005 0.09 0.564 2.005 0.09 0.564 

11A  0.500 0.438 0.09 -6.742 0.434 0.09 -7.453 

22A  0.700 0.738 0.09 4.078 0.735 0.09 3.941 
*
11∆  1.067 0.995 0.09 -7.766 0.994 0.09 -7.883 
*
22∆  0.980 1.003 0.10 2.352 0.987 0.10 0.698 

ρ  0.400 0.407 0.02 3.184 0.405 0.02 2.218 
2
eσ  0.298 0.298 0.01 0.644 0.296 0.01 -1.800 

 

Table 3 shows the results obtained when using the 

PWIGLS algorithm for the estimation of the MLM 

parameters (section 2.2) and weighting the time series 

likelihood contributions log ( ) {1/ 2 log (2 )h h hL T n= − π +  
1

1 1 1
ˆ ˆ1/ 2 log 1/ 2( ) ( )}hT

t ht ht ht htht t ht tF Y Y F Y Y−
= − −∑ ′| | + − −  by 

the household sampling weights 1/ Pr ( ),hw h s= ∈  using 

the same 100 samples as used for Table 2. Weighting the 

likelihood contributions by the inverse of the sample 

inclusion probabilities is an application of the pseudo 

likelihood approach that is often recommended for fitting 

single level models to cross-sectional data, see, e.g., Binder 

(1983), skinner et al. (1989) and Pfeffermann (1993). As 

revealed from this table, the use of the PWIGLS algorithm 

and weighting the likelihood eliminates the large biases 

observed in Table 2, despite the improper initialization of 

the Kalman filter with very short series. (See the discussion 

in Comment 1 at the end of section 4.) Here again, the two 

estimation methods perform quite similarly, yielding one 



62 Feder, Nathan and Pfeffermann: Multilevel modelling of complex survey longitudinal data 

 

 

Statistics Canada, Catalogue No. 12-001 

biased estimator in each case but with both biases being 

relatively very small. 

It is important to mention that the SD’s of the weighted 

estimators shown in Table 3 are always larger than the 

corresponding SD’s of the unweighted estimators displayed 

in Table 2. As pointed out by one of the referees, this 

implies that the empirical root mean square errors (RMSE’s) 

of the unweighted estimators in Table 2 are in fact larger 

than the empirical RMSE’s of the corresponding estimators 

in Table 3. This outcome, however, is due to the relatively 

small sample sizes employed in this study. For larger 

samples (larger numbers of households and individuals 

within the households) the RMSE is dominated by the bias 

which, unlike the variance, is not reduced as the sample size 

increases. Thus, it is clear that as the sample size increases 

the RMSE’s of the weighted estimators become smaller 

than the RMSE’s of the unweighted estimators. The fact that 

probability weighted estimators have larger variances than 

the corresponding unweighted estimators is well known 

from many other studies, see Pfeffermann (1993) for 

discussion and references.  
Table 3 

Means, Standard Deviations (SD) and t-statistics of  
estimators under two estimation methods. Informative  

sampling, weighted estimators  
  Method 1 Method 2 

Parameter True 

Value 

Mean SD t-statistic Mean SD t-statistic 

1γ  6.000 5.997 0.04 -0.607 5.997 0.04 -0.607 

2γ  -2.000 -2.000 0.05 -0.007 -2.000 0.05 -0.007 

1v  1.000 0.978 0.14 -1.518 0.978 0.14 -1.518 

2v  2.000 2.019 0.14 1.330 2.019 0.14 1.330 

11A  0.500 0.490 0.15 -0.695 0.477 0.14 -1.611 

22A  0.700 0.699 0.17 -0.066 0.709 0.16 0.545 
*
11∆  1.067 1.055 0.17 -0.664 1.040 0.17 -1.560 
*
22∆  0.980 1.023 0.19 2.199 1.010 0.19 1.571 

ρ  0.400 0.401 0.04 0.135 0.397 0.04 -0.813 
2
eσ  0.298 0.297 0.01 -0.486 0.294 0.01 -3.340 

 
As discussed in Comment 1 at the end of section 4, 

informative sampling distorts the cross-sectional distribution 

of the sample observations and the initialization of the 

Kalman filter, but does not affect the conditional 

distributions of the first and second level random effects 

defined by (3.4). Thus, it is interesting to test whether the 

use of the PWIGLS algorithm for estimating the cross-

sectional model parameters but without weighting the time 

series likelihood likewise controls the bias. Table 4 shows 

there results obtained for this case with the same samples as 

used for Tables 2 and 3. The estimators of the fixed vector 

coefficients ( , )t t tv′ ′ ′β = γ  are the same as in Table 3 and 

hence are not shown again. Notice that the estimators of 

11 22,∗ ∗∆ ∆  and 2

eσ  under Method 2 are also the same as the 
corresponding estimators in Table 3. 

The interesting result revealed from Table 4 is that the 

estimators of 11A  and 22A  have now a non-negligible bias, 

unlike the corresponding estimators in Table 3. This result 

can be explained as follows. Under the informative 

sampling scheme, the expectation of the random effects 

1,1hu  corresponding to households h  in the sample is below 

zero, 1,1( ) 0,hE u h s| ∈ <  and hence the initialization of the 

Kalman filter by the population expectation 1,1( 0,hEu =  

Equation 4.4) yields biased estimators. On the other hand, 

by weighting the likelihood contributions hL  by the inverse 

of the sample selection probabilities, the proportions of 

likelihoods hL  corresponding to random effects that are 

below and above the model expectation is balanced to the 

population proportions and thus the use of the model 

expectation for the initialization process does not bias the 

estimation process. As noticed for the previous tables, the 

SD’s of the unweighted estimators in Table 4 are much 

smaller than the SD’s of the corresponding weighted 

estimators in Table 3. 

 

Table 4 

Means, Standard Deviations (SD) and t-statistics of  
estimators under two estimation methods. Informative  
sampling, weighted MLM, unweighted likelihood  

  Method 1 Method 2 

Parameter True 

Value 

Mean SD t-statistic Mean SD t-statistic 

11A  0.500 0.468 0.09 -3.477 0.453 0.10 -4.569 

22A  0.700 0.742 0.11 3.948 0.737 0.11 3.197 
*
11∆  1.067 1.060 0.11 -0.598 1.040 0.17 -1.560 
*
22∆  0.980 1.008 0.11 2.449 1.010 0.19 1.571 

ρ  0.400 0.407 0.02 3.021 0.402 0.02 0.894 
2
eσ  0.298 0.298 0.01 1.013 0.294 0.01 -3.340 

 
6. Application of the model to LFS data 

 
We fitted the model defined by (3.1) and (3.4) to an 

empirical data set extracted from data collected by the Israel 

LFS for Jerusalem during the years 1990-1994. The data 

contain complete records for 567 individuals in 475 

households, with each individual observed in four quarters 

according to the rotation pattern described before and used 

for the simulation study. Out of the 475 households, 385 

have one individual record, 88 have 2 individual records and 

only 2 households have 3 individual records. The outcome 

variable is y = number of hours worked during the week 
preceding the interview, ( 39.8, sd ( ) 14.8;y y= =  calcu-

lated over all individuals and all the quarters). The indi-

vidual level auxiliary variables are 1x = years of education, 
1 1( 13.4, sd ( ) 4.8)x x= =  and 2x = gender, (41% females). 
The household level auxiliary variables are 1 1z =  and 

2z = number of employed persons in the household 
2 2( 1.48, sd ( ) 0.56).z z= =  

We estimated the model parameters using the two 

methods described in section 4. The sampling weights 

attached to these data are very similar across households and 

individuals so that we only computed the unweighted 
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estimators. The LGLS algorithm produced negative 

variance estimates for 22

∗∆  in some of the quarters and these 

estimates have been set to zero when averaging the variance 

estimates under Method 2. The quarterly estimates of the 

fixed model coefficients have not been averaged as they 

change significantly over the five years period. 

The estimates computed by the two methods for the 

variances and autoregression coefficients are shown in 

Table 5 using the same notation as in the previous tables. 

The two sets of estimates are not very far except for the 

estimator of 22

∗∆  which, has already mentioned was found 

to be negative in some of the separate IGLS runs. Note in 

this respect that for most of the households there is only a 

single individual record (see above), and that for almost all 

of these households 2 1.=z  This complicates the estimation 

process since for such households it is impossible to 

distinguish the first (individual) level effect from the two 

household effects, which are likewise confounded. (Note 

that the sum of the latter two variances is similar under the 

two methods.) As discussed below, the estimators in Table 5 

are dominated by the observations obtained for households 

with two individual records. 

 
Table 5 

Estimates of variances and autoregression coefficients  
under two estimation methods. LFS data  

Parameter 11A  22A  
*
11∆  *

22∆  ρ  2
eσ  

Method 1 0.915 -0.606 73.88 2.541 0.242 102.306 
Method 2 0.976 -0.548 56.88 14.753 0.448 101.001 

 
Under the Israel LFS sampling design, each individual 

record consists of 4 observations taken in quarters 1, 2, 5 

and 6, with quarter 1 defining the first calendar quarter t  

that the individual is in the sample. In order to assess the 

prediction power of the model, we computed for every 

individual record ( , )h j  the empirical innovations when 

predicting the adjusted values ˆ ˆ( )hjq hjq hjq q hq qr y x z v′ ′= − γ −  

using the household data observed for the preceding 

quarters that the individual has been in the sample. Note that 

by subtracting the fixed effects from the original obser-

vations, the distribution of the adjusted values no longer 

depends on the calendar quarters. The innovation for quarter 

q  is the corresponding prediction error which, by (3.1) is 

computed as ˆ ˆ( )hjq hjq hq hq q m hjq q m hjqd r z u e r| − | −
′= − − = −  

ˆ( ,1) , 2, 5, 6hq q q mz q| −
′ ′α =  where ˆ q q m| −α  is the predictor of 

the state vector ( , )q hq hjqu e′ ′α =  using the data observed 

until quarter ,q m−  with 1m q= −  for 2, 6q =  and 

3m =  for 5.q =  The predictor ˆ q q m| −α  is obtained by 

application of the Kalman filter with the corresponding 

estimated parameters (see section 2.3 and Equations 3.5 and 

4.3). 

Table 6 shows the roots of the means of the square in-

novations (RMSI) by quarter and the number of household 

(HH) records, as obtained under the two estimation  

methods (using the parameter values displayed in Table 5). 

For comparison, we also show the RMSI’s of the 

innovations obtained by predicting the adjusted value for 

quarter q  by the adjusted value in the preceding quarter. 

The “naive” predictor ,ĥjq hj q mr r −=  can be interpreted as 

being the optimal predictor under the simple random walk 

model ,hjq hj q mr r −= +  error. The means of the innovations 
,( )hjq hj q mr r −=  for q = (2, 5, 6) are (0.68, 0.24, 0.301) for 

households with one record, (1.24, -1.20, 0.60) for 

households with two records and (4.02, -5.82, 7.68) for 

households with 3 records but recall that the latter means are 

based on only 2 households. The corresponding means of 

the empirical innovations computed under the model are 

smaller in absolute value in all the cases. 

 
Table 6 

Root mean square of innovations by number of household 
records and quarter under two estimation methods 

and naive prediction. LFS data  
HH 

Records 
1 2 3 

Quarter 2 5 6 2 5 6 2 5 6 

Method 1 11.54 11.16 11.62 12.26 11.71 10.88 9.61 9.98 8.94 

Method 2 11.71 11.16 11.49 12.10 11.48 10.91 9.30 9.78 7.90 

Naive Pred. 14.00 11.92 13.60 14.71 15.12 13.47 7.50 13.32 11.29 

 
The data analyzed in this section behave much more 

erratically than the data used for the simulation study 

generated under the model and we cannot claim that the 

model employed yields the best possible fit (see also 

below). Nonetheless, the values displayed in Table 6 

illustrate some important features of the model. We mention 

first the generally much better performance of the model 

predictors compared to the naive predictor ,ˆ ,hjq hj q mr r −=  

with the two estimation methods yielding similar RMSI’s. 

The superiority of the model is explained by the fact that 

whereas the first order autocorrelations of the two random 

household effects used for the model predictions are high in 

absolute value (very high for the first component), the 

autocorrelations of the adjusted values (the “total” errors) 

are only of moderate size. The first order autocorrelations of 

the random components are the corresponding autoregres-

sion coefficients, see Table 5. The empirical autocorrela-

tions of the adjusted values, ,ˆ ˆCorr ( , ),hjq hj q mr r − 2,q =  5, 6; 

1m =  for 2,q =  6; 3m =  for 5q =  are correspond-

dingly (0.46, 0.59, 0.51) for one record households, (0.48, 

0.36, 0.45) for two record households and (0.92, 0.43, 0.63) 

for three record households (based on 6 individual records). 

As already noted, the fact that most households have  

only one individual record introduces identifiability 

problems since for such households it is impossible to 

distinguish between the three random effects. Computation 

of the correlations ,ˆ ˆCorr ( , ),hjq hj q mr r −  under the model 

using the parameter estimates in Table 5 shows a good fit to 

the correlations computed for two record households. This 

in turn illustrates that the estimators in Table 5 are 
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dominated by these observations and we conclude that the 

model fits best the observations obtained for the households 

with two records. Note, however, that the RMSI’s obtained 

for the other household sizes are not higher than the RMSI’s 

computed for the two record households (see also below). It 

is important to mention in this regard that if the data had 

been aggregated over all the individuals observed in a given 

calendar quarter, it would have been impossible to account 

for the random household effects, resulting in inferior 

predictions of the individual observations. See the discus-

sion in the introduction. (Modelling the aggregate data is 

rather complicated in this case since the sample in each 

calendar quarter consists of 4 different panels as defined by 

the number of times that individuals are in the sample. This 

implies that the models holding for these panels are 

different, depending on the number of observations avail-

able for each panel.) 

Other interesting results noted in table 6 are that the 

RMSI’s under the model are generally lower for 6q =  

than for 2,q =  as explained by the use of more observed 

data for the same individual in the prediction process (more 

observed data for estimating the random effects in the 

preceding quarter). Also, for 6q =  the RMSI’s decrease as 

the number of household records increases, as explained by 

the use of data observed for other household members. 

Finally, the RMSI’s for households with 3 records are much 

lower by use of the model than the RMSI’s obtained for 

households with 1 and 2 records but we mention again that 

there are only 2 households with three records. The 

unexpected results in Table 6 are that for households with 

one record the RMSI’s are somewhat larger for 6q =  than 

for 5q =  (note the relatively high and unexplained 

correlation of 0.59 between the adjusted values 3 quarters 

apart computed for these households), and that for 2q =  

and 5q =  the RMSI’s for households with 2 records are 

larger than the corresponding RMSI’s for households with 1 

record. With empirical data of relatively small size such 

anomalies are not unusual and they show up even more 

prominently with the naive predictor. (The fact that for a 

given number of household records the RMSI’s by use of 

the model for 5q =  are of similar magnitude to the other 

RMSI’s is reassuring given that the predictions in this case 

are 3 quarters ahead.) 

 
7. Conclusions and model extensions  

The results of this paper illustrate that it is possible to fit 

time series models to longitudinal series of very short length 

and with missing observations. The model used in the 

present study is an extension of the standard two level linear 

model by which both the first and second level random 

effects evolve stochastically over time. This kind of model 

is suitable for modelling longitudinal measurements that are 

taken for hierarchical populations. Application of the 

PWIGLS algorithm combined with standard probability 

weighting of the time series likelihood is shown to protect 

against the effects of informative sampling. 

Multilevel models are often fitted to discrete data, in 

which case the models contain nonlinear components. In 

principle, the two-stage estimation method proposed in this 

paper can be applied in this case as well, although with very 

short longitudinal series the range of models that can be 

fitted is obviously limited. Moreover, a common procedure 

for estimating the unknown model parameters in the discrete 

case consists of linearizing the nonlinear components on 

each iteration of the IGLS around estimates obtained on the 

previous iteration, and then applying the standard IGLS for 

computing the revised estimates. See Goldstein (1995) for 

details. Thus, it seems feasible to extend the PWIGLS 

algorithm to the discrete case without major difficulties. 

In this paper we have not considered variance estimation. 

This is no problem under the standard IGLS and 

Pfeffermann et al. (1988) propose simple variance esti-

mators for the PWIGLS procedure. However, estimation of 

the variances of estimators obtained from maximization of 

the time series likelihood is more problematic because of 

two reasons. First, the possibly short length of the 

longitudinal series may no longer justify the use of the 

information matrix or permit stable estimation thereof, even 

with large number of second level units. Second, the MLM 

estimators are held fixed when maximizing the likelihood, 

implying that the MLE abstract from the sampling errors in 

the estimation of the MLM parameters. A possible solution 

to this problem is the use of re-sampling methods that allow 

to account for all sources of variation in the estimation 

process. 

Finally, we mention an important application of the 

proposed model for the imputation of missing data. In a 

recent article, Pfeffermann and Nathan (forthcoming) 

illustrate the large reductions in the imputation variance that 

can be achieved under the model compared to the use of 

more standard imputation methods that ignore the common 

household effects. 
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