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Estimation of census adjustment factors 

C.T. Isaki, J.H. Tsay and W.A. Fuller 1 

Abstract 

A components-of-variance approach and an estimated covariance error structure were used in constructing predictors of 

adjustment factors for the 1990 Decennial Census. The Variability of the estimated covariance matrix is the suspected cause 

of certain anomalies that appeared in the regression estimation and in the estimated adjustment factors. We investigate 

alternative prediction methods and propose a procedure that is less influenced by variability in the estimated covariance 

matrix. The proposed methodology is applied to a data set composed of 336 adjustment factors from the 1990 Post 

Enumeration Survey. 
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1. Introduction 
 
While the objective of a population census is to record 

data for all individuals, it has long been recognized that this 

goal is not achieved in practice. Post enumeration studies 

associated with the U.S. Census of 1970 and 1980 suggested 

that the coverage rate was different for different 

demographic groups. See U.S. Bureau of the Census (1988).  

In 1990, a post enumeration survey (PES), using dual 

system (or capture-recapture) estimation, was used to 

produce estimates for 1,392 subdivisions of the total 

population of the United States at the time of the 1990 

Census. The PES sample contained approximately 377,000 

persons in about 5,200 sample blocks. Sample persons were 

divided into post-strata defined by geographic divisions of 

the country, tenure, size-of-place, race, sex, and age, where 

the two tenure classes are owners and renters of homes, and 

size-of-place is a measure of urbanization. The subdivisions 

were called poststrata. The ratio of the PES estimate to the 

Census total, called the adjustment factor, was produced for 

each poststratum. An adjustment factor greater than one is 

associated with an estimated undercount and a factor less 

than one is associated with an estimated overcount. 

Because relatively large sampling variances were 

anticipated for individual ratios, a smoothing technique 

based on components-of-variance and a regression model 

was used to create the final estimated adjustment factors. 

The elements of the error covariance matrix used in the 

prediction model were estimated with a jackknife algorithm, 

see Fay (1990). 

The explanatory variables in the regression model were 

chosen using a best subsets selection algorithm. Some 

explanatory variables were forced into the model. For 

example, in the Midwest region, the ten explanatory 

variables forced into the model were Black, Hispanic, 

renter, age group 0-9, age group 10-19, age group 20-29, 

age group 30-44, age group 45-64, male 10-19 and male 20-

64. Most variables were indicator variables, but some were 

proportions. For example, a variable “percent Black” was 

used when Black and Hispanic were grouped into a single 

post-stratum. Nine other variables were selected for 

inclusion in the model based on a best subsets regression 

algorithm. The variables included mail return rate, 

substitution rate, type-of-place and six race-by-age and race-

by-tenure interaction variables. The mail return rate is the 

fraction of Census questionnaires returned from the mail 

distribution, the substitution rate is the fraction of Census 

households that were entirely replaced with responding 

households. 

The smoothing technique was applied to poststrata ratios 

by regions of the country. The adjustment factors were 

designed to be applied to Census counts in the appropriate 

poststrata to create population estimates adjusted for 

undercount or overcount. Hogan (1992) contains an 

overview of the PES. Isaki, Huang and Tsay (1991) provide 

a detailed description of the results of the smoothing of the 

poststratum ratios. 

Fay (1992) in a manuscript discussing the adjustment 

factors constructed from the 1990 PES, identified some 

disturbing results. He noted that some of the estimated 

regression coefficients in the model differed considerably 

depending on the form of the estimated covariance matrix 

used to construct the estimated generalized least squares 

estimator. Fay conjectured that large differences in 

coefficients could arise because of an unstable estimator of 

the error covariance matrix. Although the estimated error 

variances were smoothed, it was felt that estimated 

variances of linear combinations might still have large 

variances. He felt that the estimated variances had large 

variances because the direct estimates for many blocks were 

zero. 

The Secretary of Commerce ultimately decided to use the 

unadjusted counts in the Decennial Census. The possible 

use of adjusted counts for other purposes, such as the 

Bureau’s postcensal estimation program, was left for 

additional study. 
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We explore alternative smoothed estimators for the 

adjustment factors, focusing on the effect of estimating the 

covariance matrix of the vector of the estimated adjustment 

factors. In the empirical part of our study, we construct 

estimates based on the 1990 Census data. 

 
2. Smoothing model 

 
The model chosen for the construction of predictors is 

the multivariate components-of-variance model. Closely 

related models that lead to smoothed estimators for a set of 

unknowns, have been studied by a number of authors. Fay 

and Herriot (1979) suggested the use of the model in a small 

area estimation procedure. Battese, Harter and Fuller (1988) 

applied the components-of-variance model to crop area 

estimation. Ericksen and Kadane (1985), Cressie (1992), 

and Ericksen, Kadane and Tukey (1989) suggested 

smoothing procedures for census adjustment. Singh, 

Gambino and Mantel (1994) discuss a range of small area 

procedures. Efron and Morris (1972) and Morris (1983) 

contain good discussions of some of the basic theory. 

Kackar and Harville (1984), Peixoto and Harville (1986), 

Fay (1987), Fuller and Harter (1987), Hulting and Harville 

(1991), Ghosh (1992), and Prasad and Rao (1990) discuss 

estimation and variance estimation for such procedures. 

Ghosh and Rao (1994) is a review article. 

Under the multivariate components-of-variance model, 

the vector of true values to be predicted is 

,= +y X wββββ  (1) 

where y  is an n -dimensional column vector, X  is an 

n k×  matrix of observable characteristics, w  is an n -

dimensional column vector of random effects and ββββ  is a k -
dimensional unknown column vector. The vector Y  is 

observed, where  

,= +Y y e  (2) 

Y  is an n -dimensional column vector and e  is the n -

dimensional column vector of estimation errors. In our 

application Y  is the vector of estimated adjustment factors. 

It is assumed that 

( , ) (0,′ ′ ′w e ∼ block diag 2{ , }),eeσI ΣΣΣΣ  (3) 

where eeΣΣΣΣ  is the covariance matrix of the estimation errors, 

and 2σ  is the unknown variance of the random effects. 

A class of predictors of y  is defined by 

( ) ,′= + −y XB G Y XBɶ  (4) 

where B  is a k -dimensional vector and G  is an n n×  

matrix. Under model (1) with 

2( , ) ( , block diag{ , }),eeN′ ′ ′ σw e 0 I∼ ΣΣΣΣ  (5) 

the conditional expected value of y  given Y  is 

{ } ( ) ,zzE ′= β + −y Y X G Y Xββββ  (6) 

where 1 2

zz zz

−= σG ΣΣΣΣ  and 2

zz ee= σ +IΣ ΣΣ ΣΣ ΣΣ Σ  is the n n×  

covariance matrix of .= +z w e  Under the normal 

distribution model defined by (1), (2), and (5) and with the 

parameters 2, ,eeσ Σ βΣ βΣ βΣ β  known, the minimum mean square 
error predictor of y  is given by the right side of equation 

(6). 

Generally, some of the parameters are unknown. 

Consider first the case in which β  is unknown. Let β̂  be an 

estimator of ,β  where 

( ) 1-1 1ˆ ,
− −′ ′=β X M X X M Y  (7) 

and M  is an n n×  matrix. If M  is fixed 

( )

ˆ( ) ( ) ( )

,

− = − − − − +

= − +

y y I G X β β I G w Ge

K I w Ke

ɶ
 

where 1 1 1( ) ( ) .− − −′ ′ ′ ′= − +K I G X X M X X M G  Thus, if 

M  and G  are fixed, 

2{ } ( ) ( ) .ee
′ ′− = − − σ +V y y K I K I K Kɶ ΣΣΣΣ  (8) 

If model (1), (2), and (3) holds, and if eeΣΣΣΣ  and 2σ  are 

known, then replacing B  with 

1 1 1( )zz zz

− − −′ ′=β X X X Yɶ Σ ΣΣ ΣΣ ΣΣ Σ  (9) 

and replacing G  with 

1 2

zz zz

−= σG ΣΣΣΣ  (10) 

in (4) defines the best linear unbiased predictor of .y  See 

Henerson (1950), Harville (1976), and Robinson (1991). If 

eeΣΣΣΣ  and 2σ  are also unknown, it is natural to use estimators 

of eeΣΣΣΣ  and 2σ  to construct an estimated best linear 

unbiased predictor. Very often, an estimator of eeΣΣΣΣ  is 

associated with the procedure used to construct the 

estimator .Y  Then 2σ  is estimated from model (1), (2), and 

(5), treating the estimator of eeΣΣΣΣ  as the true .eeΣΣΣΣ  

One substitution predictor is 

2 1ˆ ˆˆˆ σ̂ ( ),zzX −= + −y β Y XβΣΣΣΣ  (11) 

where 

1ˆ ˆ ˆ( )zz zz

−′ ′= -1 -1
β X X X YΣ ΣΣ ΣΣ ΣΣ Σ  (12) 

is the estimated generalized least squares estimator of ,β  

2ˆ ˆˆ ,zzzz eeee= σ +IΣ ΣΣ ΣΣ ΣΣ Σ  (13) 

ˆ
eeΣΣΣΣ  is an estimator of ,eeΣΣΣΣ  and 2σ̂  is an estimator of 2.σ  

The estimator of 2σ  can be based on likelihood or analysis 

of variance procedures. Retaining only the terms in the 

Taylor expansion of the error in (11) that are errors in the 

basic estimators, we have 

2 2 -1

-1

ˆˆ ( )

ˆ( )

ˆ( ) ,

zz

ee ee zz

′ ′− = − + −

′+ σ − σ

′− −

y y e H z H X β β

H z

G z

ɺ

ΣΣΣΣ

Σ Σ ΣΣ Σ ΣΣ Σ ΣΣ Σ Σ  (14)
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where 1

ee zz

−′ =H Σ ΣΣ ΣΣ ΣΣ Σ  and 2 1.zz

−′ ′= − = σG I H ΣΣΣΣ  If it is 

assumed that ˆ eeΣΣΣΣ  is distributed as a multiple of a Wishart 

matrix and ed  degrees of freedom, if the covariance 

between 2σ̂  and ˆ eeΣΣΣΣ  is ignored, if expectations are 

computed as if 2σ̂  and z  are independent, and if 

expectations are computed as if z  and ˆ eeΣΣΣΣ  are independent, 

an approximation to the variance of ˆ −y y  obtained from 

(14) is 

33 44ˆ{ } ,ee ββ
′ ′− = + + +V y y G H XV X H Γ Γɺ ΣΣΣΣ  (15) 

where 

1 1 1 1

1

33

1 4 1 1 1
44

1 1 1

ˆ{ } ( ) tr{ } ,

,

[tr{ }],

( )

zz e zz ee ee

zz

e zz ee zz zz ee

zz zz

d

V

d

− − − −
ββ

−
σσ

− − − −

− − −

′ ′= = +

′=

= σ

′ ′=

V V β X X L L

Γ H H

Γ

L X X X

Σ Σ Σ ΣΣ Σ Σ ΣΣ Σ Σ ΣΣ Σ Σ Σ

ΣΣΣΣ

Σ Σ Σ Σ ΣΣ Σ Σ Σ ΣΣ Σ Σ Σ ΣΣ Σ Σ Σ Σ

Σ ΣΣ ΣΣ ΣΣ Σ

 

and 2ˆ{ }V Vσσ = σ  is the variance of 2ˆ .σ  The term ee GΣΣΣΣ  is 

the prediction covariance matrix if all parameters are 

known. The remaining three terms of (15) are the 

contributions to the variance due to estimating 2, ,σβ  and 

,eeΣΣΣΣ  respectively. The second term in ˆ{ }V β  is a crude 

approximation for the increase in the variance of β̂  due to 

using an estimator of zzΣΣΣΣ  in place of zzΣΣΣΣ  in constructing ˆ.β  

If the dimension of zzΣΣΣΣ  is large and the degrees of 

freedom, ,ed  only slightly larger than the dimension, then 

the second part of the variance of β̂  and the term 44Γ  can 

make important contributions to the variance. This is 

particularly true if 2σ  is small relative to the diagonal 

elements of .eeΣΣΣΣ  The Monte Carlo study of the next section 

demonstrates that the contribution to variance approximated 

by these terms can be important. 

A predictor that reduces the effect of the estimation error 

in ˆ eeΣΣΣΣ  uses only diagonal elements of eeΣΣΣΣ  in the shrinkage 

component. Let 

2 1ˆ ˆˆˆ σ̂ ( ),d d zz d

−= + −y Xβ D Y Xβ  (16) 

where 

1 1 1

2

ˆ ˆ ˆ( ) ,

ˆ ˆ ˆdiag ( ),

d zz zz

zz ee

Y
− − −′ ′=

= + σ

β X D X X D

D IΣΣΣΣ
 

2σ̂  is an estimator of 2σ  and diag ( )A  is the diagonal 

matrix composed of the diagonal elements of .A  Retaining 

only the leading terms in the Taylor expansion of the error 

in (16) gives 

2 2 1 1

ˆˆ ( ) ( )

ˆˆ( ) ( ) ,

d d d d

d zz d ee ee zz

− −

′ ′− = − − + −

′ ′+ σ − σ − −

y y w G z H X β β

H D z G D D D z

ɺ

 (17)
 

where diag{ },zz zz=D ΣΣΣΣ 1 2,d zz

−= σG D ,d d= −H I G  and 

diag{ }.ee ee=D ΣΣΣΣ  If w  and e  are normally distributed, 

and if 2σ̂  and ˆ zzD  are quadratic estimators, then 2σ̂  and 

ˆ
zzD  are uncorrelated with .z  The thi  element of 

2 1

zz

−− σw D z  is uncorrelated with the thi  element of ,z  but 

is not necessarily uncorrelated with the vector .z  If this 

possible correlation is ignored, if it is assumed that ˆ eeΣΣΣΣ  is a 

Wishart matrix with ed  degrees of freedom, and if the 

correlation between 2σ̂  and ˆ eeΣΣΣΣ  is ignored, an approxi-

mation to the variance of ˆ d −y y  obtained from (17) is 

{ } 2

33 44

ˆ

,

d d d d ee d

d d dd ddββ

′ ′− = σ +

′ ′+ + +

V y y H H G G

H XV X H Γ Γ

ΣΣΣΣ
 
(18)

 

where 1 2, ,d zz d d

−= σ = −G D H I G  

1 1 1 1 1 1( ) ( ) ,zz zz zz zz zz
− − − − − −

ββ
′ ′ ′=V X D X X D D X X D XΣΣΣΣ  (19) 

1 1

33 ,dd d zz zz zz d V− −
σσ

′=Γ H D D HΣΣΣΣ  (20) 

1

44dd e d dd − ′ ′=Γ G ΩG  

and the thij  element of Ω  is 

2 1 12 .ij eeij zzii zzjj zzij
− −ω = σ σ σ σ  

The term in 44ddΓ  is an estimator of the contribution to the 

variance due to using ˆ eeΣΣΣΣ  to estimate the covariance matrix. 

Expression (19) assumes that the contribution of the error in 
ˆ

zzD  to the variance of β̂  can be ignored for large .ed  The 

difference between (15) and (18) is that the multipliers in 

(19) and (20) do not depend on the dimension of .zzΣΣΣΣ  

Therefore, the error in estimating zzΣΣΣΣ  makes a smaller 

contribution to the variance. On the other hand, the variance 

of ,d
′−w G z  the order one term of (17), will be larger than 

the corresponding term of the error in (14), unless zzΣΣΣΣ  is 

diagonal. The first two terms on the right of (18) are the 

variance of d .′−w G z  

 
3. Monte Carlo study 

 
To examine the variability in the predictors associated 

with variability in the estimation of eeΣΣΣΣ  we conducted a 

small Monte Carlo study. The model for the study is 

µ , 1, 2, ...,j j j r= + + =Y J w e  (21) 

 

2~ ( , ),

~ ind ( , ),j ee

σw 0 I

e 0 ΣΣΣΣ
 

where J  is the k -dimensional column vector of ones, 

(1, 1, ..., 1) ,′=J w  is the k -dimensional vector of random 

small area effects, je  is a vector of errors, and w  and je  

are independent. The model is a simplified version of the 

model defined in (1), (2), and (3). The mean is the constant 

function and, hence, we use µ  in place of .β  To create a 
vector of correlated variables, we define, for 8,k =  
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0.9 1.6
,

1.6 0.6

1.0 1.6

1.0
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j j

j j j

j j j

j j j

j j j

j j j
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e u

e u u

e u u

e u u

e u u

e u u

e u

e u

   
   

+   
   +
   
   +
   =

+   
   +   
   
   
      

 

where iju  are independent random variables. The 

,iw 1, 2, ..., 8,i =  are NI(0, 0.36)  random variables, 

where 2NI( , )µ σ  denotes normal independent random 

variables with mean µ  and variance 2.σ  This configuration 

gives a range of error variances and a range of correlations 

between estimates. 

The estimator of 2σ  used in the Monte Carlo study is 

( ) 12

1

(0) (0) 0

ˆ max{ 1

ˆˆ ˆ[( ) ( ) tr{ }], 0}ee

k

r

−

−

σ = −

′× − µ − µ −y J y J AΣΣΣΣ
 
(22)

 

where tr{ }A  is the trace of the matrix ,A  

1

0

1

1

ˆ ( 1) ( ) ( ) ,
r

ee j j
j

k

r

−

−

=

′= −

′= − − −∑

A I JJ

Y y Y yΣΣΣΣ  (23)
 

and 

1

0
ˆ .k− ′µ = J y  (24) 

The estimator 2σ̂  is a quadratic estimator closely related to 

the analysis of variance estimator. 

Two predictors were compared in the Monte Carlo study. 

Both are of the form 

( )ˆˆ ˆ ,′= − − µy y H y J  (25) 

where 

1

1

.
r

j
j

r Y
−

=

= ∑y  

They differ in the construction of Ĥ  and ˆ.µ  The first 
predictor is of the form (11) and uses the full estimated ˆ eeΣΣΣΣ  

in Ĥ  and in the estimator of .µ  The predictor is called the 
general predictor as an abbreviation for estimated gener-

alized least squares predictor. The general predictor is 

g
ˆˆ ˆ( ),g g
′= − − µy y H y J  (26) 

where 

1 1ˆ ˆ ˆ ,g ee zzr− −′ =H Σ ΣΣ ΣΣ ΣΣ Σ  

1 1 1ˆˆ ( ) ,g zz zz
− −′ ′µ = J J J yΣ ΣΣ ΣΣ ΣΣ Σ  (27) 

1 2ˆ ˆ ˆ ,zz eer−= + σIΣ ΣΣ ΣΣ ΣΣ Σ  (28) 

and ˆ gµ  is the estimated generalized least squares estimator 

of .µ  
The second predictor is 

ˆˆ ˆ( ),d d d
′= − − µy y H y J  (29) 

where 

1 1ˆ ˆ ,d ee zzr− −′ =H M D  

ee =M diag ˆˆ ,ee zz =DΣΣΣΣ diag ˆ ,zzΣΣΣΣ  and the estimated µ  is 

1 1 1ˆ ˆˆ [ ] .d zz zz

− − −′ ′µ = J D J J D y  

This predictor might be called the diagonal predictor 

because only the diagonal elements of ˆ eeΣΣΣΣ  are used in the 

construction. 

The entries in Table 1 are for 14.r =  Each sample is 

composed of a random selection of w  and a random 

sample of 14 e-vectors. Results are given for errors 

NI (0, 2)ijµ ∼  and errors that are centered one-degree-of-

freedom chi-square random variables. Thus, in both cases 

the errors have zero means and variances equal to two. The 

mean µ  was set equal to zero. The second column of Table 
1 contains the variance of the sample mean as an estimator 

of the .iw  Column three of Table 1 contains the ratio of the 

Monte Carlo variance of an element of ˆ ,gy  where ˆ gy  is 

defined by (28), to the Monte Carlo variance of the 

corresponding element of y  for normal errors. The ratios 

for elements one through four and element 7 are greater than 

one. The last two elements of jY  are uncorrelated with 

other elements. Element seven has a small variance and 

element eight has a large variance. There is a large loss for 

the predictor relative to the simple mean for element seven 

and a large gain for element eight. 

The fourth column of Table 1 contains the ratios of the 

variance of the predictor of (29) to the variance of the mean 

for normal errors. In all cases the diagonal predictor is 

superior to the general predictor defined in (28). The 

difference is relatively constant at about 30%. The diagonal 

predictor is not always superior to the simple mean but the 

loss is small for elements one, three, and seven. On the other 

hand, the gains relative to the simple mean are large for 

elements six and eight. The Monte Carlo variances for both 

predictors are larger than the approximations associated 

with equations (15) and (18) except for element 8. 

It is somewhat surprising that the diagonal procedure did 

better relative to the simple mean for chi-square errors than 

for normal errors. With the chi-square error, the estimated 

mean and estimated variance are correlated. Hence, on the 

average, the large positive mean deviations are pulled toward 

the mean by a larger amount than the smaller negative 

deviation. The Associate Editor conjectured, and we   

concur, that this is one reason for the superior performance 

of the diagonal predictor. On the other hand, the general 
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prediction procedure is poorer relative to the simple mean for 

chi-square errors than for normal errors. As the last column 

of Table 1 demonstrates, the diagonal predictor procedure 

uniformly dominates both the mean and the general 

prediction procedure for this parametric configuration with 

chi-square errors. 
 

Table 1 
Monte Carlo variance ratios for alternative 

small area predictors (10,000 samples, 14)r =  
 

  Normal Errors Chi-square Errors 

i  { }i iV y w−  
ˆ ˆ{ }

ˆ{ }

gi i

i i

V y w

V y w

−

−
 
ˆ ˆ{ }
ˆ{ }

di i

i i

V y w

V y w

−
−

 
ˆ ˆ{ }

ˆ{ }

gi i

i i

V y w

V y w

−

−
 
ˆ ˆ{ }
ˆ{ }

di i

i i

V y w

V y w

−
−

 

1 0.2414 1.277 1.025 1.430 0.899 

2 0.3445 1.252 0.875 1.371 0.768 

3 0.2268 1.351 1.019 1.480 0.954 

4 0.4771 1.003 0.735 1.099 0.686 

5 0.4113 0.926 0.876 1.016 0.699 

6 0.5121 0.913 0.677 0.975 0.618 

7 0.1449 1.366 1.006 2.261 0.896 

8 1.1214 0.520 0.384 0.725 0.371 

 

The Monte Carlo variances of 0ˆ ˆ, ,gµ µ  and ˆ dµ  as 

estimators of µ  are 0.150, 0.273, and 0.146, respectively. If 
eeΣΣΣΣ  and 2σ  are known, the variances of 0ˆ ˆ, ,gµ µ  and ˆ dµ  

are 0.149, 0.122, and 0.140, respectively. The use of an 

estimated covariance matrix for ˆ gµ  produced an estimator 

with larger variance than that of the simple mean. 

The predictors are unbiased under the model when the 

errors are normally distributed. The predictors are biased 

with chi-square errors because the sample mean is 

correlated with the sample variance. Table 2 contains the 

Monte Carlo bias divided by the Monte Carlo standard error 

of the mean. The bias of the general procedure is 20% to 

50% larger than that of the diagonal procedure. In both 

cases, the squared bias added to the variance produces a 

mean square error for the procedure that is about 4% to 10% 

larger than the variance. 

This small study demonstrates that use of an estimated 

covariance matrix with large variability can lead to 

predictors that are less efficient than the simple mean. 
 

Table 2 

Monte Carlo relative bias of  

alternative small area predictors  

(10,000 samples, 14,r=  chi-square errors) 
 

i  
1/2

ˆAve. ( )

ˆ[ { }]

gi i

i i

y w

V y w

−

−
 1/ 2

ˆAve.{ )

ˆ[ { }]

di i

i i

y w

V y w

−

−
 

1 -0.28 -0.19 

2 -0.27 -0.18 

3 -0.30 -0.17 

4 -0.27 -0.18 

5 -0.26 -0.21 

6 -0.29 -0.20 

7 -0.24 -0.20 

8 -0.24 -0.21 

4. Application to PES data for  

       postcensal estimation 

 
4.1 Postcensal estimation 
 
The U.S. Bureau of the Census provides annual estimates 

of the population of small areas based on the decennial 

censuses and on other sources of information. To consider 

the possible use of adjusted 1990 Census counts in the 

postcensal estimation process, the Bureau examined the 

PES data and defined a new set of 357 poststrata. 

The 357 poststrata are composed of 51 poststratum 

groups, each of which is subdivided into 7 age-sex 

categories. The seven age-sex categories were (1) both 

sexes 0-17, (2) males 18-29, (3) males 30-49, (4) females 

18-29, (5) females 30-49, (6) males 50+ and (7) females 

50+. The factors that define the 51 poststratum groups are 

race/ethnicity (Non-Hispanic White, Black, Non-Black 

Hispanic, Asian, American Indian); tenure (owner, renter); 

type of area (urbanized area of population greater than 

250,000, other urbanized area, non-urbanized area) and 

region (west, South, Midwest, Northeast). Due to sample 

size limitations, American Indians comprised a single 

poststratum group and Asians were dichotomized into two 

poststratum groups - owners and renters. Of the remaining 

48 poststratum groups, the first 24 groups reflect a full cross 

classification of categories for Non-Hispanic White. The 

next 12 groups are for Black and provide a full cross 

classification of tenure by region for urbanized areas of 

population greater than 250,000 but otherwise do not 

provide regional detail. The same 12 poststratum groups 

were used for Non-Black Hispanics as were used for 

Blacks. 

A 357× 357 covariance matrix was obtained with the 
same jackknife algorithm used for the 1,392 poststrata of the 

1990 PES. We denote this raw covariance matrix by ˆ .eeΣΣΣΣ  

Hogan (1993) provides a detailed description of the 357 

poststrata and gives the motivation for their construction. 
 
4.2 Regression model  
We eliminated Asian and American Indian data from the 

smoothing process. Hence, minority refers to the 

combination of Black and Non-Black Hispanic. The data set 

of interest contains 336 adjustment factors and their 

estimated raw covariances. The minority by age-sex 

interaction was included in the regression model after 

examination of the 1990 data indicated that the net 

undercount differential between Black and non-Black varied 

by sex and age-group. The regression model (1) contains 21 

explanatory variables. They are: 
 
1. 0X = intercept 
2. jX = indicator variable for age-sex categories: 

1, 2, ..., 6j =  in the order; ages 0-17, male 18-29, 

male 30-49, etc. (female 50+ is the class with no 

variable) 
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3. 7X = indicator variable for renter 
 

4. 8X = indicator variable for Black 
 

5. 9X = indicator variable for Non-Black Hispanic 
 

6. jX = indicator variable for type of place: 

10, 11j =  for urbanized area 250,000+ and other 

urban, respectively 
 

7. jX = indicator variable for region: 12, 13, 14j =  

for Northeast, South and West, respectively 
 

8. jX = indicator variable for minority by age-sex 
interaction: 15, ..., 20j =  for minority 0-17, 

minority male (18-29), etc. 
 
The variables 12 13,X X  and 14X  were the 1990 census 

proportions of persons in the poststratum group in the 

particular region for the Black and Non-Black Hispanic 

poststratum groups that were combined over regions. 

A refinement was made in model (3) for the empirical 

application. On the basis of preliminary analysis, the 

specified error structure of ,w  the model error, was 

changed from 2

ww = σ IΣΣΣΣ  to 

2 2

1 1 2 2,ww = σ + σK KΣΣΣΣ  (30) 

where 1K  is an n n×  diagonal matrix with ones for 

minority poststrata and zeros elsewhere and 2K  is an 

n n×  diagonal matrix with ones for nonminority poststrata 

and zeros elsewhere. The estimated variances are 
2

1σ̂ = 0.000506 (0.000140) and 2

2σ̂ = 0.000112 (0.000030), 
where the numbers in parentheses are standard errors. The 

standard error of the difference is (0.000141). Hence there is 

evidence that the variances are different for the two groups. 

In our discussion of predictors, we considered two 

predictors, the substitution predictor of (11) and the 

diagonal predictor of (16). It is natural to consider a 

compromise predictor of the form 

ˆ ˆ ˆˆ ( )

ˆˆ ( ),

ϕ ϕ ϕ ϕ

ϕ ϕ

′= + −

′= − −

y X G Y X

Y H Y X

β ββ ββ ββ β

ββββ  (31)

 

where 0 1,≤ ϕ ≤  

1

1

1

ˆ ˆ ˆ ,

ˆˆ ˆˆ ˆ[ (1 ) ],

ˆˆ ˆ ˆ(1 ) ,

ˆ ˆdiag{ },

ˆ ˆ ˆ( ) ,

ww

ee ee

ww ee ee

ee ee

−
ϕ ϕϕ

−
ϕ ϕ ϕϕ

ϕϕ

−
ϕ ϕϕ ϕϕ

′ =

′ ′= − = ϕ + − ϕ

= + ϕ + − ϕ

=

′ ′= -1 -1

G

H I G D

D

D

β X X X Y

Σ ΣΣ ΣΣ ΣΣ Σ

Σ ΣΣ ΣΣ ΣΣ Σ

Σ Σ ΣΣ Σ ΣΣ Σ ΣΣ Σ Σ

ΣΣΣΣ

Σ ΣΣ ΣΣ ΣΣ Σ

 

 

and 

2 2

1 1 2 2
ˆ ˆ ˆ .ww = σ + σK KΣΣΣΣ  

The predictor (31) with 0ϕ =  is the substitution 

predictor and the predictor (31) with 1=ϕ  is the diagonal 

predictor. There should be some , 0 1,ϕ < ϕ <  that gives a 

predictor with smaller prediction variance than either of the 

extremes. 

The PES direct estimate of the total number of persons is 

the weighted sum of the adjustment factors, where the 

weights are the census counts in the post strata. The 

standard error of the direct estimator of the total is relatively 

small and the direct estimator is judged to be the preferred 

estimator of the total. Therefore, the model predictors are 

constructed subject to the constraint that the weighted sum 

of the predictors is equal to the direct estimate of the total. 

Thus, the restriction is 

336 336

1 1

ˆ ,T i i i i

i i

Y a y a y
= =

= =∑ ∑ ɶ  

where ˆTY  is PES direct estimator of the total, ia  is the 

census count in the thi  post stratum, and iyɶ  is the final 

predictor. In the actual computations the ia  were 

normalized to sum to one. Battese, Harter and Fuller (1988) 

made an adjustment in the predictions to create estimators to 

meet the restriction. Ghosh and Rao (1994) discuss such 

adjustments. We use a procedure that permits direct 

estimation of the variance of the restricted predictions. 

We imposed the restriction on the initial predictors by a 

procedure that, approximately, constructed the best 

predictors of 335 quantities that are estimated to be 

uncorrelated with ˆ .TY  Let ˆ zzΣΣΣΣ  be the estimated covariance 

matrix of 1 2 336( , , ..., )Y Y Y ′=Y  and define 

2 2 336 336
ˆ ˆ ˆ( , , ..., ) ,T T TY Y b Y Y b Y ′= − −CY  

where 

335

1 2 336

335 335

1

335

335

,

,

( , , ..., ),

1
,

ˆ ,zz zz

a a a

−

=

 
=  
 

=

′ 
=  − 

′′  ′ ′=  
 

C BT

a
T

0 I

a

0
B

b I

0
b a (a a )

I
Σ ΣΣ ΣΣ ΣΣ Σ

 



Survey Methodology, June 2000 37 
 

 

Statistics Canada, Catalogue No. 12-001 

kI  is the k k×  identity matrix, and 0 is a column vector 

containing all zeros. The elements of CY  are uncorrelated 

with ˆ .TY  

If we let ŷ  be the model predictor of ,y  then the model 

predictor of Cy  is ˆ.Cy  If we use the model predictor for 

the last 335 elements of Cy  and use ˆTY  as the estimator 

for the first element of ,Cy  the predictor of y  is  

1 ˆˆ ( ),
−

ϕ ϕ
′= − −y Y C ACH Y Xɶ ββββ  (32) 

where  

335

0
.

′ 
=  
 

0
A

0 I
 

The estimated variance of yɶ  is 

1 1
ββ 33 44

ˆ { }

ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ ˆ[ ] ,

ee wwϕ ϕ ϕ ϕ

− −
ϕ ϕ

−

′ ′ ′ ′= − − +

′ ′ ′+ + + ′

V y y

I H I H H H

C AC H XV XH Γ Γ CAC

ɶ

ɺɺ ɺɺ ɺɺ ɺɺΣ ΣΣ ΣΣ ΣΣ Σ

 (33)

 

where 1 ˆ ,−
ϕ ϕ
′ ′=H C ACHɺɺ  and 33

ˆ ˆ,ββV Γ  and 44Γ̂  are 

defined in Appendix B. The sum of the first two terms on 

the right of (33) is an estimator of the variance treating ϕHɺɺ  

as a fixed matrix. The final term on the right of (33) 

estimates the increase in variance due to estimating the 

variance. 

 
4.3 Smoothed factors 
 
For the vector of 336 observations, we produced 

smoothed factors using the generalized predictor (32) for 

several values of .ϕ  Note that 0ϕ =  corresponds to the 

substitution predictor and 1ϕ =  corresponds to the 

diagonal predictor. 

The estimated standard errors of the predictors were 

calculated using the crude variance approximation of 

Appendix B. The average of the ratios of the standard error 

of yϕɶ  to 0.6yɶ  for some selected values of ϕ  are given in 
Table 3. The ordering of the ratios is approximately the 

same for the 48 stratum groups as for the original 336 

poststrata. A poststratum group is formed by combining the 

seven age-sex cells within a given race-by-tenure-by-

urbanity-by-region classification. On the basis of these 

calculations, a ϕ  of 0.5 or 0.6 is the preferred estimator, 
although the estimated differences in efficiencies are not 

large. Any member of the ϕ -class is much superior to the 
original Y -estimator. The average estimated variance 

efficiency is about 400% for the ϕ -predictors, relative to 
the original poststratum estimators. 

 

 

 

Table 3 
Average of ratio of standard error of yϕɶ   

and of Y  to standard error 0.6yɶ   
 

336 48 
Predictor Poststrata Poststratum groups 

ϕ = 0 1.014 1.045 

ϕ = 0.5 0.995 1.001 

ϕ = 0.6 1.000 1.000 

ϕ = 0.7 1.006 1.001 

ϕ = 0.8 1.014 1.005 

ϕ = 1.0 1.046 1.037 

Original Y  2.235 2.294 

 
Table 4 presents the raw PES estimates, ,Y  and the 0.6yɶ  

estimates of net undercount for each of 48 poststratum 

groups. The net undercount is the difference between the 

estimated total population in the poststratum and the census 

count divided by the census count. 

We chose ϕ = 0.6 as the preferred estimator on the basis 
of the crude standard error ratios of Table 3. The predictions 

and standard errors are very similar for ϕ = 0.5, 0.6 and 0.7. 
A ϕ  greater than zero has advantages over a ϕ  of zero. The 
accuracy of the numerical calculations should be better with 

ϕ  greater than zero because ˆ ϕϕΣΣΣΣ  has larger eigenvalues 

with 0ϕ >  than with 0.ϕ =  One could make a case for 

using 1.0ϕ =  because of the simplicity of the calculations 

and of the good estimated relative efficiency. 

The estimated standard errors of the predictors are 

considerably smaller than those of the raw estimates. In 

addition, the set of predictors contains fewer extreme 

estimates. For example, for poststratum groups 34, 39 and 

48, the 0.6yɶ  estimates of the percent net undercount are 

6.04, 0.17 and 7.51 while the raw estimates are 11.06, -4.14 

and 18.76, respectively. Most smoothed estimates differ 

from the direct estimate by less than one direct estimated 

standard error. The three largest standardized differences are 

for Black Owner-Large Urban in the West, Black Renter-

Larger Urban in the Northeast, and Non-Black Hispanic 

Owner-Large Urban in the Midwest. In the three cases, the 

difference between the direct estimate and the smoothed 

estimate divided by the direct standard error is about 1.8. 
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Table 4 

Estimated percent net undercount by poststratum group 
 

Poststratum Group Y  s.e. ( )Y  0.6yɶ  0.6s.e. ( )yɶ  

Non-Hispanic White Owner Large Urban     
1. N.E. -2.08 1.04 -0.63 0.60 
2. South 0.69 0.72 0.38 0.44 
3. Midwest -0.26 0.39 -0.13 0.31 
4. West -0.34 0.64 -0.02 0.44 

Non-Hispanic White Owner Other Urban     
5. N.E. -1.07 0.48 -0.73 0.35 
6. South 0.52 0.43 0.53 0.33 
7. Midwest -0.10 0.40 0.01 0.31 
8. West 0.63 0.58 0.30 0.40 

Non-Hispanic White Owner Non-Urban     
9. N.E. -0.53 0.69 -0.28 0.47 
10. South 0.18 0.69 0.58 0.45 
11 Midwest -0.70 1.16 0.16 0.64 
12. West 0.29 0.69 0.38 0.46 

Non-Hispanic White Renter Large Urban     
13. N.E. 1.17 1.43 2.07 0.61 
14. South 2.62 1.56 3.53 0.64 
15. Midwest 2.39 1.70 2.53 0.60 
16. West 3.28 1.72 3.10 0.58 

Non-Hispanic White Renter Other Urban     
17. N.E. 3.53 1.62 2.29 0.61 
18. South 3.30 1.86 3.67 0.67 
19. Midwest 1.24 1.13 2.39 0.53 
20. West 4.70 1.47 3.20 0.57 

Non-Hispanic White Renter Non-Urban     
21. N.E. 6.97 4.67 3.54 0.92 
22. South 6.65 1.93 3.60 0.66 
23. Midwest 2.93 1.60 2.36 0.66 
24. West 6.48 2.06 3.48 0.67 

Black Owner Large Urban     
25. N.E. 1.65 1.96 0.97 0.91 
26. South 2.20 0.94 2.30 0.70 
27. Midwest 0.82 0.88 1.13 0.67 
28. West 6.49 2.16 2.54 0.96 

Black Owner Other Urban     
29. U.S. 1.36 1.01 2.05 0.72 

Black Owner Non-Urban     
30. U.S. 3.64 2.03 2.85 0.98 

Black Renter Large Urban     
31. N.E. 9.13 1.93 5.57 0.96 
32. South 6.69 2.17 6.42 1.10 
33. Midwest 6.38 1.91 5.43 1.03 
34. West 11.06 3.35 6.04 1.12 

Black Renter Other Urban     
35. U.S. 4.33 1.28 4.99 0.82 

Black Renter Non-Urban     
36. U.S. 4.84 5.95 5.90 1.24 

Non-Black Hispanic Owner Large Urban     
37. N.E. 0.68 4.44 3.00 1.18 
38. South 2.59 0.95 2.52 0.72 
39. Midwest -4.14 2.38 0.17 0.97 
40. West 2.98 0.92 2.89 0.68 

Non-Black Hispanic Owner Other Urban     
41. U.S. 0.95 1.70 2.32 0.87 

Non-Black Hispanic Owner Non-Urban     
42. U.S. 2.80 2.83 2.88 1.16 

Non-Black Hispanic Renter Large Urban     
43. N.E. 7.21 4.04 5.85 1.27 
44. South 10.30 3.11 7.35 1.15 
45. Midwest 7.11 3.74 5.71 1.21 
46. West 6.29 2.09 6.45 0.98 

Non-Black Hispanic Renter Other Urban     
47. U.S. 7.07 3.10 6.26 1.09 

Non-Black Hispanic Renter Non-Urban     
48. U.S. 18.76 7.24 7.51 1.38 
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Appendix A 

 

Estimation of wwΣΣΣΣ  

 
The estimators of 2

1σ  and 2

2σ  of wwΣΣΣΣ  are patterned after 

analysis of variance estimators. The estimation process 

contains several steps using improved estimators from one 

step in the next step. We partition the regression problem as 

1 1 1 1

2 2 2 2

,
      

= +      
      

Y X 0 z

Y 0 X z

ββββ

ββββ
 

where 1 1( , )Y X  contains the observations for minorities and 

2 2( , )Y X  contains the remaining observations. Let 1Y  be 

an 1n -dimensional column vector and 2Y  be an 2n -

dimensional column vector observations. An initial esti-

mator of 1 2( , )′ ′ ′β β  is 

( )
( )

11

1 11 11 1 11 1

21
2 2 22 22 22 2
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ee ee

eeee
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ɶ
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is partitioned to conform to the partition of .Y  

Initial estimators of 2

1σ  and 2

2σ  are 

2 1 1

1 2
ˆmax{[ ( ) ( ) ] , 0},i i i i eeii i i i i ig g− −′σ = − − −Y X β Y X βɶ ɶɶ ΣΣΣΣ  

for 1, 2,i =  where 
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and niI  is the i in n×  identity matrix. 

The final estimators are 

2 1 1

1 2max{[( ) ( ) ] , 0},i i i i zzii i i i i ig g− −′σ = − − −Y X β Y X βɺɺ ɺɺɶɺɺ ɺɺ ɺɺΣΣΣΣ  
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Estimators of the variance are 
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for 1, 2.i =  The estimated covariance is  
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See Searle (1971, Chapter 2 and page 435). 

 
Appendix B 

 

Approximations for the variance of predictors 
 
Our model is 

,= + +Y Xβ w e  (B.1) 

where Y  is an n -dimensional column vector, X  is an 

n k×  fixed matrix, 

~ , ,
ww

ee

N
     
     

      

0w 0

0e 0

ΣΣΣΣ

ΣΣΣΣ
 (B.2) 

and wwΣΣΣΣ  is defined in (30) of the text. 

For purpose of variance estimation, we assume ˆ eeΣΣΣΣ  is an 

unbiased estimator of eeΣΣΣΣ  distributed as a multiple of a 

Wishart matrix with ed  degrees of freedom independent of 

( , ).w e  We let y  be the unknown true vector to be 

predicted and write  

= +y Xβ w  and .= +z w e  

By a Taylor expansion 

1

ˆˆˆ ( )
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40 Isaki, Tsay and Fuller:  Estimation of census adjustment factors 

 

 

Statistics Canada, Catalogue No. 12-001 

where 

1 [ (1 ) ]ee ee
−

ϕ ϕϕ= ϕ + − ϕH DΣ ΣΣ ΣΣ ΣΣ Σ  

and ˆ ˆ
ϕ=H H  is defined in (31). The error in ˆϕββββ  is 

( ) 11 1ˆ ˆ ˆ
−− −

ϕ ϕϕ ϕϕ
′ ′− = X X X zβ β Σ Σβ β Σ Σβ β Σ Σβ β Σ Σ  (B.4) 

Now ˆ eeΣΣΣΣ  is independent of z  and −Y Xβɶ  is uncorrelated 

with −β βɶ  if the true zzΣΣΣΣ  is used in place of ˆ .ϕϕΣΣΣΣ  

Therefore 
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where 0Ĥ  is constructed using −Y Xβɶ  in the estimators 
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where .ϕ ϕ= −G I H  The contribution of ˆ ee ee−D D  to the 

variance of ˆ ϕH  is small relative to the contribution of 
ˆ .ee ee−Σ ΣΣ ΣΣ ΣΣ Σ  Therefore, we omit ˆ ee ee−D D  in our variance 

approximation. Then the expectation 
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where 1 1,zz
− −
ϕϕ ϕϕ=Λ Σ Σ ΣΛ Σ Σ ΣΛ Σ Σ ΣΛ Σ Σ Σ  because z  is independent of ˆ .eeΣΣΣΣ  

We also omit the term 1 1 1
e ee zz eed − − −

ϕ ϕϕ ϕϕ ϕ
′G GΣ Σ Σ Σ ΣΣ Σ Σ Σ ΣΣ Σ Σ Σ ΣΣ Σ Σ Σ Σ  in our 

variance approximation. 

The expectation for the term containing ˆ( )ww ww−Σ ΣΣ ΣΣ ΣΣ Σ  is 
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Approximating the expectation by treating z  as 

independent of ˆ ,wwwwΣΣΣΣ  we obtain 
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The Taylor expansion of ˆ −β ββ ββ ββ β  is 
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Using a similar approximation 
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On the basis of this result, we use the approximation 
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We assume ˆ eeΣΣΣΣ  is a multiple of a Wishart matrix with 

ed -degrees of freedom and approximate ˆ ϕϕ ϕϕ−Σ ΣΣ ΣΣ ΣΣ Σ  with 
ˆ(1 ) ( ).ee ee− ϕ −Σ ΣΣ ΣΣ ΣΣ Σ  We have 
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The dominant term is that associated with the trace and we 

retain only that term in our approximation. Thus, an 

approximation to the variance of β̂βββ  is 
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Combining results (B.6), (B.7), and (B.9), a crude 

estimator of the variance of the predictor (31) is 
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2ˆ ˆ{ }, 1, 2,jV jσ =  is the estimated variance of 2ˆ ,jσ  and 
2 2

1 2
ˆ ˆ{ , }C σ σ  is the estimated covariance between 2

1σ̂  and 

2

1
ˆ .σ  See Appendix A. The estimator of the variance of β̂βββ  
contains an adjustment for the fact that 1 1ˆ( )zz

− −′X XΣΣΣΣ  is a 

biased estimator of 1 1( ) .zz

− −′X XΣΣΣΣ  
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