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Abstract 

In a sample survey, in the absence of external information, the total of a variable is estimated using the Horvitz-Thompson 

estimator. Its variance is in turn estimated by calculating a fairly complex quadratic form, generally recursively. In this 

paper, this problem is assumed to be solved on the basis of a software capable of carrying out the calculation automatically.  

In the case of complex estimators (i.e., of the calibration type), and in that of non-linear statistics (substitution estimators), it 

is shown that the same tool may always be used provided an appropriate artificial variable is chosen. In all cases, this 

artificial variable provides an estimation of the variance that is approximately unbiased and constructed using the influence 

function technique as well as some asymptotic postulates.  Many examples are provided for the use of this technique: 

complex but explicit functions of totals (correlation coefficient), implicit functions of totals, calibrated estimators, fractiles 

and rank statistics, statistics derived from factorial methods. 
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1. Introduction 
 

The formulation of results in the form of confidence 

intervals is the goal (rarely reached) of all sample surveys. 

The most common procedure consists in estimating the 

variance of the statistics involved for the probability distri-

bution induced by the sampling scheme (and sometimes, for 

the sake of simplicity, following fairly drastic assumptions 

called models). Then, following the assumption, rarely con-

tradicted by the facts when the samples are large enough, 

that the statistic follows a normal distribution, a confidence 

interval symmetric about the point estimation is derived 

according to simple, standard procedures. 

There is abundant literature dealing with this problem, 

before and after the benchmark work found in the book by 

Wolter (1985). 

The goal of this paper is to show how simple tools can be 

used to effectively carry out a variance estimation in com-

plex cases by means of a unique technique, i.e., lineariza-

tion. We will first describe the state of the art concerning the 

estimation of the variance of the Horvitz-Thompson esti-

mator for a total. After providing a definition of “lineariz-

able statistic” and a description of the concept of influence 

function analogous to that used in non-parametric statistics, 

we will introduce the class of functional substitution 

estimators shown to be linearizable under fairly general 

assumptions. We will show how the usual rules of differen-

tial calculus can be extended to linearized variables, and 

how, using step-by-step procedures, they can be used to 

calculate fairly easily the linearized variables of fairly com-

plex statistics. Special attention will be given to statistics 

using quantiles as well as those linked to the most current 

multivariate analysis. 

This procedure is the chief component of the POULPE 

software used at INSEE: 

– Having a tool to estimate the variance of a total using 

a simple expansion estimator. 

– Reverting to this case, using specially constructed 

variables, when using a complex estimator and/or 

when estimating a complex statistic. 

 
2. General framework: Simple 

      expansion estimator  
Let us consider a population U  of units , , ...,k l  for 

which a sample design is defined, i.e., a probability 

distribution p  that associates with any part s  of U – the 

sample – a probability ( )p s  of being selected. Using the 

latter, probabilities of inclusion ( ( ))s kk k p s∋∑π π =  are 
defined, as are probabilities of inclusion of order 2, klπ  for 
elements of .s  It is then possible to use the Horvitz-

Thompson estimator, ˆ /k s k kY y∈∑= π  of the total Y  of a 

variable of interest .y  It offers the advantage of being 

(almost) always available and unbiased, and its variance is 

easily calculated: 
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where the second sum extends to all pairs ( , )k l  of 

population .U  

A useful estimator of the variance of Ŷ  is given by: 
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In practice, for large samples, this variance estimator is 

calculated recursively since the double sum which appears 

has a prohibitive number of terms. Moreover, the proba-

bilities of inclusion klπ  can be calculated easily only in 

some rare simple cases. 

In fact, all known sample designs boil down to a few 

simple schemes: Bernoulli or Poisson sampling, simple ran-

dom sampling, systematic sampling and sampling with un-

equal probabilities of fixed size. For the first of these, there 

are some closed formulas providing a variance estimate 

based on the sum of squares. The same applies to systematic 

sampling given a few assumptions that are easily verified 

for selection order. Finally, the variance of sampling with 

unequal probabilities of fixed size, for many selection 

methods, can be approximated in an extremely fine and 

general manner using the following formula, applied in 

POULPE (Deville 1993): 
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These simple schemes can be combined to provide 

arbitrarily complex designs by means of two operations, i.e., 

stratification and multi-stage sampling (or sub-sampling). 

In terms of stratification, a variance estimate of the grand 

total can be obtained by adding the variances of the esti-

mators of stratum totals. 

Multi-stage sampling can be obtained when the popu-

lation is divided into sub-populations iU  called “primary 

units”. A sample 1s  of the latter is selected on the basis of a 

sample design 1p  applied to the population of primary 

units. Then, for each 1( ),iU i s∈  a sample is selected using 
a design 1/ .ip s  Conditionally on 1,s  these designs are inde-

pendent. From them are derived the probabilities of inclu-

sion and the following variance formula: 
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where iY  is the total of y  for ,i iU π  its probability of 
inclusion, ˆiY  the estimator of iY  for design 

1/ .i sp  Finally, if 

1( ; )iV Y i s∈  is the variance estimator of 
1

/s i iY∑ π  and 

iV  a variance estimator of ˆiY  conditionally on 1,s  then 
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is a variance estimator of Ŷ   (Durbin 1953). 

Naturally, for each stratum h  or each primary unit ,i  the 

sample survey hp  or 1/ip s  can itself be stratified or 

become a multi-stage sampling. However, in all cases, the 

repetitive and recursive use of the abovementioned rules 

makes it possible to calculate a variance estimator using 

simple elements based on the sum of squares. For surveys 

carried out among people, it is customary for a sample 

design to comprise three to five selection stages. 

This means that the quadratic form (2.2) can be calcu-

lated mechanically, without however any explicit computa-

tion of the terms involved in the double sum found in the 

formula. 

To complete this overview, it should be noted that a 

sample is frequently selected in several stages, normally two 

or three. This means that a sample s is selected and used as a 

reference population for the selection of a second sample ,r  

using a sample design ( / ).q r s  If it is controlled by the 

statistician, this design is generally a stratified design with 

simple random sampling for each stratum. Otherwise, the 

design is described using a response model that makes it 

possible to formalize a reweighting procedure for non-

response. In all cases, there are second-stage probabilities of 

inclusion kP  and klP  describing the inclusion in r  of the 

unit k  or of the pair ( , ).k l  The expansion estimator is 

expŶ = / .r k k ky P∑ π   
Its variance can be calculated fairly easily, and is 

estimated using the expression: 
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(2.6)

 

with kk kπ = π  and .kk kP P=  

In spite of a few difficulties, this variance estimator can 

be calculated mechanically while avoiding the prohibitive 

double sums. The same applies to three-stage designs which 

occur when a non-response stage is added to a second stage 

controlled by the statisticians. Such procedures are used in 

POULPE. 

Thus, the Horvitz-Thompson estimator (or its extension, 

the expansion estimator) has a variance that takes on the 

quadratic form ( ; ).kQ y k U∈  The latter can be estimated 

without bias (or eventually with negligible bias) using the 

recursive calculation of a quadratic form ˆ ( ; )kQ y k s∈  
(where s  now represents the final sample, no matter how 

many stages were needed to obtain it). In the following, we 

will assume the availability of an “automatic” method of 

calculating this quadratic form. 

 
3. Complex statistics and asymptotic postulates 
 

We will show that it can also be applied when we use a 

more refined estimator than HT (involving external 
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auxiliary information), e.g., for complex statistics (means, 

quantile ratios, complex indexes such as GINI, the 

coefficient of an econometric model, a principal component 

analysis factor). 

The results we will provide are “asymptotic” approxi-

mations. As in Isaki and Fuller (1982) or in Deville and 

Särndal (1992), we postulate the following scheme: in a 

series of sampling problems indexed by an integer v  

(which we will suppress so as not to overload the notation), 

the size N  of the population tends towards infinity as does 

the size n  (or the size expectation) of the sample. For each 

,v  we thus also have a sample design, the associated HT 

estimator, a vector of invariable fixed size for variables kx  

of X  estimated using ˆ.X  

The three following propositions are postulated: 

 

– 1N X−  has a limit. (3.1)  
– 1 ˆ( )N X X− −  converges in terms of  

probability towards zero. (3.2)  
– 1/ 2 1 ˆ( )n N X X− − −  has as a limit a  

multidimensional normal distribution. (3.3) 
 

The first postulate formalizes the concept of a series of 

populations of increasing size extracted from a parent 

continuous distribution. This can also be interpreted as if the 

population were an i.i.d. sample of a certain infinite 

superpopulation. The other two postulates relate to the 

convergence of the HT estimator and to the fact that it leads 

to a central limit theorem. In practical terms, these postu-

lates are satisfied in many cases, given certain technical 

assumptions: simple random sampling (Hájek 1964), 

Poisson sampling and randomized systematic sampling -

(Rosen 1972), stratified design with the number of strata 

tending towards infinity (immediate application of 

Lindeberg conditions). 

In reality, however, we can never tell whether, for 

example, the design used involves a number of strata 

tending towards infinity! What the asymptotic postulates 

mean is simply that certain magnitudes (technically those 

which are 1/ 2( ))pO n−  are considered “small” and that the 

product of the two “small” quantities is a “negligible” (and 

therefore neglected!) quantity. 

On the basis of these postulates, we will show how 

certain estimators and certain non-linear statistics can be 

approximated using HT statistics having the form /s k kz∑ π  

for well-chosen variables .kz  

 
4. Substitution estimators and functionals 

 
Let us now consider a fairly general class of non-linear 

statistics of the finite population based on the concept of a 

measurement functional, as well as their substitution 

estimators. 

With each unit k  of the population U  there is associated 

a point kx  of p
R  for the p  problem variables of interest to 

us. The population U  is thus represented by the measure 

M  having a unit mass in each of the points .kx  

This measure is positive, discrete and finite, and its total 

mass has a value of .N  We assume that all the kx  are 
separate, without loss of generality (we can always add a 

dimension which is the “rank” of k  in arbitrary numbering). 

For any variable ( ),k ky y x=  we thus have y dM∫ =  
.U ky∑  

From an asymptotic point of view, the series of 

populations is a series of measures on .pR  According to the 

first asymptotic postulate, this series behaves as if we were 

dealing with i.i.d. selections for a fixed probability 

distribution on .pR  

A functional ( )T M  associates with any measure of a 

class containing at least the point measurements, a real 

number or a vector. We also assume that all the 

functionals of interest are homogeneous, i.e., there is a 

positive real number α  dependent on T  such that 

( ) ( )T tM t T Mα=  for any positive real number .t  A 

total is a homogeneous functional of level 1, a mean of 

level 0, a sum having a double index of level 2. Being 

limited to homogeneous functionals is not too 

cumbersome in practical terms. 

Now let M̂  (estimator of )M  denote the measure 

allocating a weight kw  to any point kx  for k  in s  and zero 
to any other point, regardless of the origin of the weights 

(Horvitz-Thompson or calibration).  
Definition: The substitution estimator of a functional 

( )T M  is ˆ( ).T M  

In the case of a total, this definition should not be 

surprising since ˆ ˆ( ) ( ) .s k kT M xdM x x w∑∫= =  For 

“ordinary” complex statistics (ratios, means or indexes, for 

example), this represents the common practices of survey 

operations. The same applies to statistics of rank, with finer 

points having more to do with the estimation of the 

distribution function than the estimation of the fractiles (see 

for example Chambers, Dorfmann and Hall 1992).  

A fairly general class of parameters linked to the finite 

population can be obtained using implicit equations which 

define them. Such is the case, for example, for the adjust-

ment of a parametric model at the population level leading 

to an “estimating equation” derived from a broad adjustment 

principle (maximizing likelihood, minimizing chi-2 or 

“moment” methods or “generalized moment” methods). 

This form of writing introduces the (eventually multidi-

mensional) model parameter as a functional of .M  Its 

estimator (in the sense of sampling) is the same functional 

for ˆ .M  Thus, the estimation of the least squares in the linear 

model is written as follows: 

2
arg  Min ( ) .k k k

U

B q y x B′= −∑  

The estimation (sampling) of B  is ˆ arg  Min s k kB w q∑=  
2( ) .k ky x B′−  The use of B̂  (rather than an estimator for a 

model conditional upon the sample) is much more robust, 

and correctly accounts for the fluctuations of sampling on 
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the result (on this point, see Binder 1983, Binder and Patak 

1994, or Binder and Kovačević 1997). 

Generally speaking, an “estimating equation” at the 

population level will be written as ( , ) 0T M λ =  where T  

is a functional of dimension p  parametered by vector λ  

lso of dimension .p  This equation will be assumed to have 

a unique solution for fixed .M  The substitution estimator of 

λ  is the solution of the (estimating) equation ˆˆ( , ) 0.T M λ =  

 
5. Linearizable statistic 

 
Let us consider some statistics S  dependent on the 

observations ( ; )kx k s∈  (in fact a series of statistics 

defined in each of the sampling problems within the 

asymptotic framework). S  is said to have a probability 

of order ( )f n  (where f  is some positive function of ),n  

and we write ( ( ))pS O f n=  if for any 0ε >  there is a 
constant C  such that  

Pr .
( )

S
C

f n

 || ||
≥ ≤ ε 

 
 

In other words, the survivorship functions of variables 

/ ( )S f n|| ||  are uniformly overestimated by the survivorship 

function represented as ( ( ), ).C ε ε  

The third asymptotic axiom (central limit axiom!) can 

therefore be written as 1 1 2ˆ( ) ( ),pN X X O n− −− =  and the 
second as 1 ˆ (1).pN X O− =  In the rest of this paper, we 
will use more or less implicitly the following well-known 

result (see for example Billingsley 1969):  
Result: If a statistic S  converges towards a certain distri-

bution, and if ( ) ( ( ))pS T O f n− =  with ( ) 0,f n →  then 

T  converges towards the same distribution. Specifically, S  

and T  have the same limit variance. 

The statistic S  is said to be of degree α  if N S−α  tends 
towards a limit. Clearly, for example, a HT estimator is of 

degree 1, a ratio of HT estimators is of degree 0 (or 

homogeneous). The third asymptotic postulate states that 
2ˆ( )nE X X−  is of degree 2. The substitution estimator of a 

homogeneous functional of degree α  is a statistic of 

degree .α  

The following definition can now be formulated: 
 
Definition: A statistic S  of degree α  is linearizable if there 

is a synthetic variable kz  (known as the linearized variable 

of )S  such that the variance of Ẑ  is equivalent to that of  

S  in the sense that 1 2 1 ˆ( ) ( ( ))pn N S N Z O f n−α −− =  with 
( ) 0.f n →  In general, we will almost always have 

1 2( ) .f n n−=  

In practice, this means that the variance, and therefore a 

confidence interval, will be estimated for S  on the basis of 

the variance of Ẑ  (whether or not it is a HT estimator). 

Note, on the other hand, that the definition does not 

imply the uniqueness of the variable linearizing a statistic. 

Specifically, the approximation contained in the definition 

can be more or less fine at two levels: that of the conver-

gence speed ( ),f n  and, for an equal speed, that of the 

increment ( ).C ε  

Generally speaking, however, the linearized variable kz  
cannot be computed explicitly by means of data from the 

sample. We are then led to replace kz  by an approximation 

kzɶ  using certain statistics estimated on the basis of the 

sample. This occurs in the most elementary cases. The 

matter of the legitimacy of this approximation must be dealt 

with, and this can only be done within an asymptotic 

framework. 
 
Result: If quantities kzɶ  depend regularly on a fixed, finite 
number of estimated parameters, then the variance esti-

mators ˆ ( ; )kQ z k s∈  and ˆ ( ; )kQ z k s∈ɶ  are equivalent, 
i.e., their difference as normalized by factor 2/n N  is an 

asymptotically negligible quantity. 
 
Proof: By “regularly” is meant that ˆ( )k k kz z ′= + ξ Γ − Γ +ɶ  

ˆ( ),pO 2|| Γ − Γ ||  where Γ  is the p  vector of the 

parameters, Γ̂  is its vector of estimators and kξ  is a 

p − variable. The asymptotic postulates tell us that 
2/ ( )kn N Q z  converge towards a finite quantity just as 
2

,/ ( , ) k lk k kl k ln N Q z z∑ξ = ∆ ξ  if the quadratic form is 

made explicit, and that 2/ ( ).kn N Q ξ  We then have: 

ˆ ˆ( ) ( ) 2 ( , ) ( ) ( ).k k k k pQ z Q z Q z O 2′= + ξ Γ − Γ + || Γ − Γ ||ɶ  

As 1 2ˆ ( ),pO n−|| Γ − Γ || =  we obtain the result. 
When the number of estimated parameters tends towards 

infinity, the situation is not perfectly clear. In practical 

terms, obviously, what is meant by the number of estimated 

parameters tending towards infinity? Theoretically, more-

over, there are some difficulties as can be seen from the 

following two contradictory examples: 
 
Example: Poststratification. We assume the poststrata 

defined on the basis of a numerical variable, and we 

construct m  adjacent poststrata, each of which comprises 

about /n m  surveyed units. Here vector Γ  is that of the m  

means of poststrata , 1hY h =  at .m  If m  increases with n, 

each estimated parameter ˆ
hY  is such that ˆ

hY Y− =  
1/2(( / ) ).pO n m −  Then ˆ|| Γ − Γ ||  is of the order of 3/ 2 1/ 2.m n−  

Taking m nα=  with α < 1/3, the previous result and its 
proof remain valid. 
 
Counter-example: For the estimation of inequality indexes, 

we are led to use statistics such as ˆ ( )s k kS y F y∑=  where 
F̂  is an estimation of the distribution function of variable y. 

If kR  denotes the rank of ky  in the population, we could 
imagine that 1 /k k kz N y R=  is a linearized statistic for .S  

This is completely false (Deville 1997). 

The difference with respect to the previous example rests 

in the fact that S uses an estimated parameter per sampled 

unit, in which case anything can happen! The general 

procedure for dealing with such statistics will be described 

below in section 12. 
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6. Influence function of a functional  

      and asymptotic variance of the  

      substitution estimator 
 

Definition: The influence function (if it exists) of a 

functional T  is: 

0

1
( ; ) lim ( ( ) ( ))x

t
IT M x T M t T M

t→
= + δ −  

where xδ  denotes the unit mass assumed at point .x   
Comment: This definition is slightly different from that 

used in the field of robust statistics (Hampel, Ronchetti, 

Rousseeuw, and Stahel 1985). It is made necessary by the 

fact that the total mass of M  is variable, and often unknown 

in a statistical problem. It is nothing more than the differ-

ential as viewed by Gateaux for a Dirac mass assumed at a 

point .x  

The essential point of this paper can now be formulated:  
Result: Under broad assumptions, the substitution esti-

mation of a functional ( )T M  is linearizable. A linearized 

variable is ( ; )k kz IT M x=  where IT  is the influence 

function of T  in .M   
Comment: The influence function can thus be used to 

estimate the variance of ˆ( ).T M  This being said, very often 
the influence function includes in its definition certain 

functionals of M  (e.g., a ratio or a mean). We are thus led 

to choose an estimation of the influence function itself in 

order to compute the variance estimation. This choice is not 

necessarily unique.  
Proof of the result: Let us provide the space of 

measurements on q
R  with a metric d  accounting for the 

convergence: 1 2( , ) 0d M M →  if and only if 
1

1 2(   ) 0N y dM y dM−
∫ ∫− →  for any variable of interest 

.y  The asymptotic postulates mean that ˆ( / , / )d M N M N  
tends towards zero. We can visibly ensure that 

ˆ( / , / )d M N M N  is (1 / )pO n  according to the third 
postulate. Now, let us assume that T  can be derived in 

accordance with Fréchet, i.e., for any direction of the 

increase, in the space of “useful” measures provided with 

the abovementioned metric. Thus we have: 

ˆ1ˆ( ( ) ( )) ( 1) , .k k
U

M M
N T M T M z w o d

N M N

−α
  

− = − +      
∑  

The result is that: 

ˆ( ( ( ))) ( 1) (1).k k p

U

n
nN T M T M z w o

N

−α − = − +∑  

Thus, according to the third postulate, the variance of the 

second member tends towards a limit, that of 2 ˆ/ Var( ),n N Z  
and the result is obtained. 

 

7. Examples and computing rules  

      for influence functions  
Example 1: If T  is the total ( )T x dM x∫=  of a variable, 
the influence function of T  is this variable itself: 

( , ) .IT M x x=  Specifically, if 1,x T N= =  the popula-

tion size. The influence function is then constant, and its 

value is 1. 

The rules of composition for influence functions are 

copied from those of differential calculus: 
 
Rule 1: If f  is a derivable function defined on the space of 

values for T  a vector function, we have: 

( ( )) ( ) I f T Df T IT=  

(where Df  represents the matrixes of the partial derivatives 

of ).f  

The proof is immediate. 
 
Example 2: ( ) 1 /f T T=  and ,T x dM∫=  scalar total. 

The influence function is 2/ .x T−  
 
Rule 2: If S  and T  are two functionals, we have: 

( )I S T IS IT+ = +      and     ( )   .I ST S IT T IS= +  

If T  and S  have vector values, and if H  is a matrix, we 

have, when the products are defined: 

( )  I HT H IT=    and   ( ) ( )  .I S HT IS HT S H IT′ ′ ′= +  

 
Example 3:  /  /R y dM x dM Y X∫ ∫= =  a ratio of two 
totals. The influence function is: 

2

1
( ).

y Yx
y Rx

X XX
− = −  

For a mean / ,Y y dM dM∫ ∫=  the influence function is 
therefore: 1/ ( ),N y Y−  which is the usual definition, or 
just about, given in the robustness theory (Lecoûtre and 

Tassi 1987). 
 
Rule 3: Let ( 1, ..., )iS i q=  denote scalar functionals and 

1 .q
i iS S=∏=  We have: 

1

.
q

i

i i

IS
IS S

S=

 
=  

 
∑  

Proof: (Log ) .
IS

I S
S

=  

Now let ( ) ( , )T T Mλ = λ  denote a family of functionals 

depending regularly on a parameter λ  that varies in a 

domain of ,q
R  with Λ  a measure on this domain. This 

leads to:  
Rule 4: ( ( ) ( )) ( ) ( ).I T d IT d∫ ∫λ Λ λ = λ Λ λ  This is 

elementary.  
Note: The persistency conditions include the possibility of 

reaching the limit under the integration sign. 

If, moreover, ϕ  is a function of q
R  in the domain of T  

measurable for all measures M  of interest, we proceed as 

follows: 
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Rule 5: ( ( ( )) ( ); ) ( ( )) ( , ( ); )I T x dM x T IT M x∫ ∫ϕ ξ = ϕ ξ + ϕ ξ  

( ).dM x  
 
Proof: (provided as an example): Let ( )S M = ( ,T M∫  

( )) ( ).x dM xϕ  We have: 

 

1
[ ( ) ( )]

1
[ ( , ( )) ( , ( ))] ( )

( ) ( ( ), ( )).

s M t S M
t

T M t x T M x dM x
t

T T M t x

ξ

ξ

ξ ξ

+ δ − =

+ δ ϕ − ϕ

+ δ + δ ϕ

∫  

The second term tends towards ( , ( ))T M ϕ ξ  whenever t  

tends towards zero. The former can be written as follows: 

, ( );( , ( ); ) ( ) ( )M xIT M x R t dM xϕ ξ
 ϕ ξ + ∫  

where R  is a quantity that tends towards zero (it may be 

assumed that the convergence is consistent at ).x  The result 

is derived immediately. 

Let us now assume that ( )T λ  is a functional with values 
in ,q
R  regular at .λ  Specifically, then, matrix /T∂ ∂λ  is 

reversible for any ,M  and, for fixed ,M  application 

( )Tλ → λ  is one-one and allows for a partial reciprocal 
function. Equation 0( )T Tλ =  therefore has a unique 
solution for any ,M  defining a functional ( ).Mλ  
 
Rule 6: The influence function of ( )Mλ  is: 

1( ; ) ( , )  ( , ; ).
T

I M M IT M−∂
λ ξ = − λ λ ξ

∂λ
 

Proof: ( , ( ) ( , )) 0,T M t M t T Mξ ξ+ δ λ + δ − λ =  hence: 

( , ; ) ( ; ) 0.
T

IT M I M
∂

λ ξ + λ ξ =
∂λ

 

This rule may also be needed: 
 
Rule 7: Let S  denote a functional in ,q

R  and let Tλ  denote 
a family of functionals regularly indexed by .qλ ∈ R  We 

have: 

/( ) .s s

s

T
I T IT ISλ λ=

λ=

∂ = +  ∂λ 
 

Proof: Writing everything, we have ( ) ( ( ), ).SI T IT S M M=  
The rest is obvious. 

Note, finally, the interesting link between the influence 

function and the functional from which it is derived: 
 
Result: If T  is homogeneous of degree α  we have: 

( ; ) ( ) ( ; ) ( ).k

U

IT M x dM x IT M x T M= = α∑∫  

The specific case 0α =  shows that any homogeneous 

functional has a zero-sum influence. 
 
Proof: We have: 

((1 ) ) ( ) ((1 ) 1)
( )

T h M T M h
T M

h h

α+ − + −
=  

from the definition of homogeneity. The result follows from 

the linearity of the derivation as interpreted by Gateaux and 

the definition of influence function. 

 
8. Applications: Functions of totals  

We have already seen that, for linear functionals, 
( )T M = ,U ky ydM∑ ∫=  the influence function is ky  

itself. The application of the notion of influence function 
becomes redundant. It will be noted, however, that it is in no 
way asymptotic. 
 

Function of totals: If X  is a vector of totals, the influence 

function of X  is, naturally, the vector kx  of the variables 

making up .X  As a result, if ( ) ( ) ( ),T M f X f xdM∫= =  

the influence function of T  is: 

( ; ) ( ) . ( ) ( ) .k kIT M x f X IT xdM f X x∫′ ′= =  

where ( )f X′  is the row vector of the partial derivatives of 

f  with respect to the coordinates of X  taken at point .X  

We are led naturally to the classical result of Woodruff 

(1971). 

In line with the above, the substitution estimator of 

( )f X  is ˆ( ).f X  Its approximate variance is that of 

( ) . ,kf X x′  and it is numerically approximated by 
ˆ( ) . kf X x′  in compliance with common practices. 

 

Example: The ratio ( , ) /R f X Y Y X= =  of two scalar 

totals is estimated using ˆ ˆ ˆ/ .R Y X=  This statistic (of degree 

0) allows as a linearized variable 1/ ( ).k k kz X y Rx= −  To 

numerically compute the variance estimation of ˆ,R  we use 

the approximation ˆ ˆ1/ ( ),k k kz X y Rx= −ɶ  an expression 

which depends on Ŷ  and X̂  and therefore on ; ks zɶ  is 

therefore not a linearized variable as understood in the 

definition. 
 

Example: Ratio estimator. 
 

It is rat
ˆ ˆ ˆ( / ) .Y X X Y=  If we refer to the previous 

example, the linearized variable of ratŶ  is ,k ky Rx−  
approximated by ˆ .k ky Rx−  And yet it could also be said 
that the estimated variance of ratŶ  must be equal to 2X  
times the estimated variance of ˆ,R  which leads to the 
approximation ˆ ˆ/ ( )k kX X y Rx−  which has many times 
been deemed more interesting than the previous one. This 
example shows that the choice of linearized variable is not 
necessarily unique once external information is used. 

Nevertheless, one of the advantages of the influence 
function approach is to provide computations fairly easily in 
apparently complex cases. 
 

Example: The correlation coefficient between x  and y  is 

written as follows: 

( ) ( )2 22 2

1

1 1

.

k k k k
U U U

k k k k
U U

XY

XX YY

x y x y
N

x x y y
N N

V

V V

−
ρ =

− −

=

∑ ∑ ∑

∑ ∑ ∑ ∑  



Survey Methodology, December 1999 199 
 

 

Statistics Canada, Catalogue No. 12-001 

Using the logarithmic derivatives (rule 3), we obtain: 

( ) ( ) ( ) ( )1 1
.

2 2

k XY k XX k YY k

XY XX YY

I I V I V I V

V V V

ρ
= − −

ρ
 

The influence of 1/ U UXY k kA N x y∑ ∑=  is obtained in 

the same way using: 

1
( ) k k

XY k XY k k

x y
I A A Y x X y XY

X Y N

 
= + − = + − 

 
 

hence: ( ) ( ) ( ) ( ).XY k k k XY k k kI V x y I A x X y Y= − = − −  

Then 2( ) ( ) ,XX k kI V x X= −  and 2( ) ( )YY k kI V y Y= −  and 

so, with 

2 XX
x

V
S

N
=  and 2 :YY

Y

V

N
≅ =  

2 2

2 2

( ) ( ) ( ) ( )1
( ) .

2

k k k k
k

X Y X Y

x X y Y x X y Y
N I

S S S S

 − − − −
ρ = − ρ + 

 
 

And the work is done. 

 
9. Application: Implicit parameter 

 
Let us assume that ,B  a parameter with q  components, 

is a solution to an equation of the type: 

( ) ( ) 0k

U

H B l B= =∑  (9.1) 

where the kl  are regular functions of q
R  in .qR  This 

situation frequently occurs when B  is the parameter of a 

model assumed to be valid in the population .U  Under the 

usual assumptions of independence, equation (9.1) can 

result from the application of the maximum likelihood 

estimation principle. It is then the equation of the score. In 

the case of a linear model with Gauss residuals, this leads to 

the normal equations that can also be derived from the least 

squares principle: 

2

1
( ) ( )k k k k

k

l B x y x B′= −
σ

 

with obvious notations. 

If the functional family ( )H B  regularly depends on ,B  we 

have: 

0

1

0 0( ) ( )k k
B B

H
I B IT B

B

−

=

∂ = −  
∂ 

 

i.e.,: 
1

0 0( ) ( ).k
k k

U

l
I B l B

B

−
∂ 

= −  ∂ 
∑  

In the case of regression, we have: 

1

1

2 2 2

1 1
( ) k k

k k k k k
U k k k

x x
I B x e T x e

−
−′ 

= − = − σ σ σ 
∑  

with the regression residual .ke  Thus we simply have the 

linearized variable of the vector of regression coefficients. 

To numerically compute the variance estimator, we use the 

approximation 

1

2

1ˆ
k s k k

k

z T x e
−=
σ

ɶɶ  where 
2

ˆ k k
s

S k k

x x
T

′
=

σ π
∑  

and ˆ .k k ke y Bx= −ɶ  This expression therefore depends on 

s   through  ˆsT   and 

2
ˆ .k k

s k k

x y
A =

σ π
∑  

Example: Regression estimator. 

When the constant (or the variable 2 )kσ  is part of the 

regressors, i.e., when there is a vector λ  such that 1kx′ λ =  

(or 2 )kσ  for any ,x  the regression estimator takes on the 

simple form reg
ˆ ˆY X B′=  where X  is the known vector of 

the total of the .kx  

Regression estimation theory (Cochran 1977, Särndal, 

Swensson, Wretman 1992) tells us that the residuals ke  are 

the linearized variable of this estimator, and that they can be 

approximated using the estimated empirical residuals keɶ  

(note that these only depend on a finite number of 

parameters). 

However, the above leads us to think that we should 

have: 

� �
Reg
ˆ ˆVar( ) Var( )Y X B X′=  

and that a natural “linearized” variable for RegŶ  should be 
1 2ˆ 1/ .s k k kX T x e−′ σ ɶ  If ˆ

sT  is replaced by its expectation ,T  

we notice that 1X T −′ ′= λ  and that 21 ,k kx′ = σ  and we 

fall back on the previous approximation. Note, finally, that 

the quantities 1ˆ
sX T −′  are exactly the weight corrections (or 

g −weights) used in the regression estimator, the use of 
which is often recommended within the framework of 

variance estimation. 

It is quite clear that the two linearized variables lead 

asymptotically to the same result. The choice should 

therefore be based on other criteria. In a few specific cases, 

the concept of conditional estimation justifies the use of 

these g −weights, notably for the poststratified estimator in 
the case of simple random sampling. The general case 

remains fairly mysterious. 

In the case of a logistic regression adjustment, the 

dependent variable ky  has a value of 0 or 1, and the 

equations of the score are written as follows: 

( ) ( ( ))k k k

U

H B x y f x B′= −∑  with ( ) exp /(1 exp ).f u u u= +  
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We therefore have: 

( ) 1
( ) ( ) (1 ( )) ( ( )).k k k k k k k k

U

I B x x f x B f x B x y f x B
−

′ ′ ′ ′≡ − −∑  

Using this variable makes it possible to compute correctly 

the precision of a logistic regression, i.e., taking into 

consideration the sampling scheme. 

 
10. The residual technique for complex estimators 
 

Many complex estimators commonly used nowadays can 

be  incorporated into the general framework of external data 

calibration (Deville, Särndal 1992; Deville, Särndal, Sautory 

1993). A vector X  of totals of auxiliary variables kx  is 
known, and we look for new weights kw  confirming the 

calibration equations s k kw x X∑ =  any sample .s  If we 

look for such weights as close as possible to the HT 

weights, they are found to be necessarily of the type 

1/ ( )k k k kw F x′= π λ  where λ  is a vector of the same 

dimension as X  solving the calibration equations. The 

functions kF  depend on the chosen distance and allow 

limited development in the form 2( ) 1 ( ).k kF u q u O u= + +  
The most frequent form is ( ) ( ),k kF u F q u F=  a unique 
function. Often, also, the kq  are all equal to 1. Thus we find 
in this family the ratio estimator (arbitrary F  and kq =  
1/ ),kx  the poststratified estimator (with kx  a stratum 

indicating vector), the raking ratio estimator (with kx  a 

margin indicating vector and F  an exponential function), 

and the regression estimator ( ( ) 1 ).F u u= +  

The asymptotic variance of these estimators can be obtained 

naturally by applying the rules of linearization. The 

calibration equations define λ  using: 

1ˆ ˆ( , ) ( ) ( ) ( ) .k k k k k k
s k

T M x F x dM k x F x X′ ′λ = λ = λ =
π

∑∫  

Since we have ( , 0) ,T M X=  the application of rule 6 

yields:  

1( , ) kI M x T x−λ = −  

with 

(0) ( ) .k k k k k k

U

T x x F dM k q x x′ ′= = ∑∫  

Moreover, the calibrated estimator appears to be the 

substitution estimator of the functional ( , )S M λ =  
( ) ( ),k k ky F x dM k∫ ′λ  which, according to rule 7, allows for 

the linearized variable 1 ( )k k i i i ky x T q y x dM i y−
∫′− = −  

kx B′  by introducing the vector B  of the least squares 

regression parameters into the population for the weights .q  

Thus the variance of the calibrated estimator is obtained 

by replacing, in formula (2.1), the ky  by the residuals 

k k ke y x B′= −  of the regression of y  on x  with the 

weights .q  For the variance estimation, we use in formula 

(2.2) either ˆ ,k k ke y x B′= −ɶ  or, as in the case of the 
regression estimator, ˆ( ) .k kF x e′λ ɶ  

If we now turn to a parameter ( )T M  estimated  by 

substitution using the weights kw  obtained  by calibration, 

we have the following important result: 
 
Result: If ( )T M  allows for a linearized variable ,kz  and if 

ˆ( )wT M  is the estimator of ( )T M  using the weights kw  

derived from calibration on a vector ,U kX x∑=  then ,ke  

a residual of the regression kz  on kx  is a linearized variable 

for ˆ( ).wT M  
 
Proof: The variance of ˆ( )wT M  is equivalent to that of 
ˆ
w k kZ w z∑=  according to the previous demonstration. 

However, the variance of ˆ
wZ  is equivalent to that of 

1/ .s k ke∑ π  
 
Comment: Very often, e.g., in the case of an explicit 

function of totals, kz  is a linear form 1 .ip
i i kA y=∑  We then 

have: 

1

ˆVar Var .
p

i

k k i w
s i

w z Α Y
=

=∑ ∑  

This suggests the following procedure:  
– compute the residuals i

kε  of the regressions of i

ky  
on the .kx  

– form the synthetic variable i
i i kA∑ ε  

– compute the variance of this variable.  
It is quite clear that this corresponds to the direct compu-

tation of the residuals of ,kz  which is definitely more 

simple. 
 
Comment: While it may be trivial, this result is perhaps the 

most useful one in this paper, and this comment simply 

ensures that it will not go unnoticed. 

 
11. Application: Fractiles 

 
The distribution function ( ) 1/ Card( ; )kF x N k x x= ≤  

is a functional family 1/ 1( ) ( ).N x dM∫ ξ ≤ ξ  The value of 
influence ( )kIF x  is therefore 

1
( ( ) ( )).kx x F x

N
≤ −1  (11.1) 

For ]0,1[,α ∈  the fractile tα  is defined by ( )F tα = α  if 

we are ruthless, and by :  ( 0) ( )t F t F tα α α− < α ≤  if we 
take into consideration the staircase-shape of .F  If we are 

ruthless, the ad hoc linearized variable is therefore: 

1

( ) ( )

1 1
( ( ) ).

( )

k k

k

F
I t x t IF t

x

x t
F t N

−

α α

α
α

 ∂ 
= − = α ∂ 

= − ⋅ ≤ − α
′

1  (11.2)

 

The problem arises from the fact that ( )F x′  idealizes a 

density of the variable at point x  which does not exist 

because of the stairs. 
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The difficulty can be overcome by using the following 

construction: 

By definition, a regulating core is a positive function 

( , ),K x t  confirming, for any , ( , ) 1,x K x t dt∫ =  which is 

regular (e.g., sufficiently derivable). For any , ( , .)x K x  is a 

“bell” function about ,x  e.g., a normalized indicatrix of an 

interval surrounding .x  More generally, the support of 

( , .)K x  will be an interval containing .x  We note 

( , )G x t = ( , )
t
K x u du∫  and ( , ) 1 ( , ).G x t G x t= −  

( ; .)G x  is a distribution function. From an asymptotic point 

of view, the core K  depends on the size N  of the 

population; the “band width”, i.e., the “mean” width of the 

support of ( , .),K x  decreases with .N  

We now replace the distribution function by its 

smoothing ( ) ( ) ( , ) .KF x F t K x t dt∫=  For a reasonable 
choice of ,K KF  is strictly increasing wherever its value is 

not 0 or 1, and very close to F  so that all the fractiles Kt α  
are defined univocally and close to tα  no matter how they 
are defined. Following integration by parts, note that we 

also have: 

1
( ) ( , ) ( ) ( , ).K k

U

F x G x t d F t G x x
N

= = ∑∫  

We therefore have: 

1
( ( ), ) ( ( , ) ( ))K KI F x G x F x

N
ξ = ξ −  (11.3) 

which is entirely analogous to (11.1). 

Since KF  is derivable (G  being so), we have: 

1 1
( ) ( ( , ) ).

( )
K K

K K

It x G t x
F t N

α α
α

= − − α
′

 (11.4) 

This formula is entirely analogous to (11. 2) save that 

( )K KF t α′  is perfectly defined. The linearization of Kt α  does 
not therefore cause any particular problem, and may be used 

approximately for the linearization of tα  itself. A combined 

strategy consists in using the linearized variable 

1
( ( ) )

( )
k k

K

z x t
F t

α
α

= − ≤ − α
′

1  

with 

1
( , ) ( )K x t a t b

b a
= ≤ <

−
1  

(where [ , ]a b  is an interval containing x, more or less 

arbitrary). A practically correct linearized variable would 

be: 

( ( ) ).
( ) ( )

k k

b a
z x t

F b F a
α

−
= − ≤ − α

−
1  

The interval [ , ]a b  will have to be large enough so that in 

ˆ( ( ) )
ˆ ˆ( ) ( )

k k

b a
z x t

F b F a
α

−
= − ≤ − α

−
1ɶ  

the first factor will be sufficiently insensitive to sampling 

fluctuations. 

12. Indexes of concentration and other  

      functionals linked to ranks 
 
Let us consider a few examples. 

(a) GINI index. 

With ( ) ( ),xT x dM∫= ξ < ξ1  the Gini index can be 

defined as: 

( )
GINI .

xxT dM x

NX
= ∫  

Applying rule 5, we find for the influence of the numerator 

( ) ( ).xxT x dM∫+ ξ ≤ ξ ξ1  And yet ( ) ( )x dM∫ ξ ≤ ξ ξ =1  

( ) ( ) xX x dM X T x<∫− ξ ξ ≤ ξ = −1  where x<  is the mean 

of the kx  lower than .x  Since X  is a constant, the numer-

ator linearized variable is therefore ( ).xT x x<−  A lin-

earized variable for GINI is therefore: 

kIGINI ( ) GINI .k k
k

x x x
F x

X X

<−
= −  

(b) Population below the poverty threshold. 

It is defined as the proportion (of revenues) lower than 

half the distribution median. For the proper weight, let α  

and β  denote two numbers between 0 and 1, and let us 

consider the indicator ( ).J F tαβ α= β  The usual indicator 

corresponds to 1 / 2.α = β =  

The linearization is obvious using the rules under section 

6 and the convention for writing the distribution function 

derivative: 

( ) ( ) ( ) ( )

( )1 1
( ( ) ( )) (1( ) )

( )

( )1
( ) 1( ) ( ( )) .

( )

q tIJ x IF x F t I x

F t
x t F t x t

N N F t

F t
x t x t F t

N F t

α ααβ β α

α
α α α

α

α
α α α

α

′= + β β

′ β
= ≤β − β − ≤ −α

′

′ β 
= ≤β − ≤ + α− β ′ 

1

1

 

For 1β =  we are able to find 1 0.IJα =  

The variance of the indicator is therefore computed 

simply by using the artificial variable having a value of 1 if 
ˆ ,kx tα≤ β  

ˆ( )
1

ˆ( )

F t

F t

α

α

′ β
−

′
 

if ˆ ˆ
kt x tα αβ < ≤  and 0 if ˆ .kx tα>  

 
(c) Kendall’s coefficient of rank correlation. 

Two numerical variables kx  and ky  are linked to 

individual .k  The ranks of kx  and ky  respectively can be 

written as ( , )
k

X
k x x

R dM x y≤∫=  and ( , ).
k

Y
k y y

R dM x y≤∫=  

The coefficient of rank correlation is the correlation 

coefficient between X

kR  and ,Y

kR  i.e., following some 

elementary simplifications: 

3

1 1
12 ( , ) .

2

X Yr R R dM
N

ξ η
 = ξ η − 
 ∫  
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This expression can be linearized by applying the rules 

related to influence functions. For: ( , ),X YT R R dM nξ η∫= ξ  

we have: 

( , ) ( ) ( , )

( ) ( , )

X Y Y

x y

X

X Y

x y x y

IT x y R R x R dM

R y dM

R R A B

η

ξ

= + ≤ ξ ξ η

+ ≤ η ξ η

= + +

∫ 1
1  

where we have assumed 

: k

Y

x K
k U x x

A R
∈ ≤

= ∑  

and 

:

,
k

X

y k
k sU y x

B R
∈ ≤

= ∑  

so that finally: 

2 2

12 1 1
( , ) .

4 2

x yX Y

x y

A B
Ir x y F F r

N N N

  = + + − +  
  

 

The variance is computed as follows: 
 

– The linearized variable is ( , ).k k kz Ir x y=  

– ˆ
k

X
xF  and ˆ

k

Y
yF  are the estimators of the distribution 

functions of x  and y  respectively. 

– xA  is estimated using 

         
:

ˆ

k

x k
k s x x

A w
∈ ≥

= ∑  

 and yB  likewise. 

– In the calculation, we use the approximation of 

2 2

12 1 1ˆ ˆ ˆ,
ˆ ˆ ˆ 4 2

k k

k k

x yX Y

k k x y

A B
z z F F r

N N N

  = + + − +  
  

ɶ  

and we calculate the variance of the total of this variable 

estimated using the HT estimator (formula 2.2). 

 
13. Factorial methods 

 
The principal components of the vectorial  variable kx  

are the eigenvectors u  of the matrix of covariances 

.U k kC x x X X∑ ′ ′= −  They therefore confirm: 

1

Cu u

u u

= λ

′ =
 with λ  the eigenvalue. 

The variance of λ  and that of the components of the u  

can be obtained fairly simply. The influence of C  is 

( ) ( ) ( ) .IC x x X x X ′= − −  The influence of Cu u− λ  is 

0.ICu CIu I u Iu+ − λ − λ =  (13.1) 

However ( ) 0,Iu u′ =  and also 0u CIu′ =  because C  is a 

symmetric matrix. By multiplying (13.1) on the left by u′  
we have: 

2( ( )) .u ICu I u x X′ ′= λ = −  

And yet ( )u x X′ −  is equal to 2λξ  where ξ  is the 
principal  component associated with ( , ).uλ  From this is 

derived the calculation of the variance of ˆ ,λ  the solution to 
ˆ ˆˆ ˆ 0.Cu u− λ =  

The variance of the components of u  is obtained 

analogously. Let ( , )v vλ  denote another eigenvalue, 

eigenvector pair of .C  We multiply equation (13.1) on the 

left by .v  We have: 

( ) ( ) 0vv ICu v Iu v Iu′ ′ ′+ λ − λ =  

hence: 

1/2
( )

( ) v v

v

v Iu
λλ ξξ

′ =
λ − λ

 

and therefore: 

1/2
( )

.v v

v u v

Iu v
≠

λλ ξξ
=

λ − λ
∑  

Correspondence analysis or multiple correspondence 

analysis is subject to analogous treatment. 

In the case of multiple correspondence analysis (the more 

general case), each individual is characterized by the vector 

kx  which “stacks” the indicatrixes of membership in the 

modalities of p  qualitative variables (2 in the case of 

correspondence analysis). If 1 denotes the vector all of 

whose components have a value of 1, we have 1kx p′ =  for 

any .k  We then look for vectors u  normed by 

1/ 1,p N u Du′ =  with diag diagU Uk kD x x∑ ∑= =  such 

that the variance of 1/k kpx u′ξ =  is stationary. This yields a 

solution to the problem of eigenvalues: 0Cu p Du− λ =  

where .U k kC x x∑ ′=  

The search for a linearized variable for λ  and u  follows 

the same procedure as before. We have the relationship 

between influences: 

( ) ( ) 0.IC pI D p ID u C p D Iu− λ − λ − − λ =  

As , diag ,IC xx ID x′= =  and 0,u DIu′ =  we obtain 

through premultiplication by :u′  

2
1

( )
x x

I x u uOu
N p p

 ′ ′ λ = − λ     
 

where uOv  denotes the Hadamard product (i.e., component 

by component) of u  and .v  We know that 1u =  is a 

eigenvector associated with the eigenvalue 1, also the 

largest. We check that for 1u =  we have 0!Iλ =  

In the same manner, we obtain the components of Iu  

on the other proper vectors :v  

1
.

x x x
v DIu u v uOv

N p p p

′ ′ ′    ′ = ⋅ ⋅ − λ ⋅    
    
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The analysis may be continued by calculating the 

variability of a projection onto a factorial design. If A  is a 

subpopulation of size ,AN  the coordinates of its 

representative point on the factorial designs are 

.
1

k
A

u A

A

x

u X u

′
 
  ′α = ⋅ = ⋅ 
 
 

∑

∑
 

We linearize uα  by using the relationship uIα =  
( )A AIX u X Iu′ ′+  and the rest is simple. 

 
14. Conclusion 

 
The linearization of complex statistics has long been 

considered the most flexible and comprehensive method of 

obtaining an estimation of the variance. Specifically, this 

method is applicable to any sample design and to any type 

of estimator. The popularity of methods based on sample 

replications is due largely to the fact that certain statistics 

are considered too complex to be linearized. However, for 

the large class of substitution estimators, the use of 

influence functions and of algebraic rules governing their 

construction makes it possible to obtain fairly simply 

linearized variables by means of which variance estimation 

boils down to the estimation of a total estimated using the 

Horvitz-Thompson estimator. 

 
Acknowledgements 

 
I wish to thank Olivier Sautory and Yves Tillé for kindly 

providing critical comments concerning various drafts of 

this paper. The latter provided the demonstration at the 

beginning of section 7. I also wish to thank the two referees 

of Survey Methodology, whose comments did much to 

make the paper more readable, as well as the editorial board 

for its understanding. 

 
References 

 
Billingsley, P. (1969). Convergence of Probability Measures. New 

York: John Wiley & Sons, Inc. 
 
Binder, D.A. (1983). On the variances of asymptotically normal 

estimators from complex surveys. International Statistical Review, 
51, 279-292. 

 
Binder, D.A., and Kovačević, M.S. (1997). Variance estimation for 

measures of income inequality and polarization: The estimating 
equations approach. Journal of Official Statistics, 13, 41-58. 

 

Binder, D.A., and Patak, Z. (1994). Use of estimating functions for 
interval estimation from complex surveys. Journal of the 
American Statistical Association, 89, 1035-1043. 

 
Chambers, R.L., Dorfman, A.H. and Hall, P. (1992). Properties of 

estimators of the finite population distribution function. 
Biometrika, 79, 577-582. 

 
Cochran, W. (1977). Sampling Techniques, 3rd Edition. New York: 

John Wiley & Sons, Inc. 
 
Deville, J.-C. (1993). Une formule universelle d’estimation de 

variance. Internal document, INSEE-UMS. 
 
Deville, J.-C. (1997). Estimation de la variance du coefficient de Gini 

mesuré par sondage. In Actes des Journées de Méthodologie 
Statistiques, INSEE METHODES, 69-70-71.  

 
Deville, J.-C., and Särndal, C.-E. (1992). Calibration estimators in 

survey sampling. Journal of the American Statistical Association, 
87, 376-382. 

 
Deville, J.-C., Särndal, C.-E. and Sautory, O. (1993). Generalized 

raking procedures in survey sampling. Journal of the American 
Statistical Association, 88, 1013-1020. 

 
Durbin, J. (1953). Some results in sampling theory when units are 

selected with unequal probabilities. Journal of the Royal 
Statistical Society B, 15, 262-269. 

 
Hájek, J. (1960). Limiting distributions in simple random sampling 

from a finite population. Publications of the Mathematical 
Institute of the Hungarian Academy of Sciences, 5, 361-374. 

 
Hampel, F.R., Ronchetti, E., Rousseeuw, P.J. and Stahel, W. (1985). 

Robust Statistics: The Approach Based on the Influence Function. 
New York: John Wiley & Sons, Inc. 

 
Isaki, C.T., and Fuller, W.A. (1982). Survey design under the 

regression superpopulation model. Journal of the American 
Statistical Association, 77, 89-96. 

 
Lecoûtre, J.P., and Tassi, PH. (1987). Statistique non-paramétrique et 

robustesse. Economica. 
 
Rosen, B. (1972). Asymptotic theory for successive sampling I and II. 

Annals of Mathematical Statistics, 43, 373-397 and 748-776. 
 
Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted 

Survey Sampling. New York: Springer-Verlag.  
 
Wolter, K.M. (1985). Introduction to Variance Estimation. New 

York: Springer. 
 
Woodruff, R.S. (1971). A simple method for approximating the 

variance of a complicated estimate. Journal of the American 
Statistical Association, 66, 411-414. 

 

 




