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Estimation in surveys using conditional inclusion probabilities:  
Complex design 

Yves Tillé 1 

Abstract 
This paper investigates a repeated sampling approach to take into account auxiliary information in order to improve the 
precision of estimators. The objective is to build an estimator with a small conditional bias by weighting the observed values 
by the inverses of the conditional inclusion probabilities. A general approximation is proposed in cases when the auxiliary 
statistic is a vector of Horvitz-Thompson estimators. This approximation is quite close to the optimal estimator discussed by 
Fuller and Isaki (1981), Montanari (1987, 1997), Deville (1992) and Rao (1994, 1997). Next, the optimal estimator is 
applied to a stratified sampling design and it is shown that the optimal estimator can be viewed as an generalised regression 
estimator for which the stratification indicator variables are also used at the estimation stage. Finally, the application field of 
this estimator is discussed in the general context of the use of auxiliary information. 
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1. Introduction  
At the estimation stage, practitioners of survey sampling 

often have auxiliary information available. This information 
can be the knowledge of a set of population means or totals. 
Sometimes, the available information is detailed, for in-
stance, when the values taken by a variable on all the units 
of the population are known. This information can be used 
to improve the precision of the estimators.  

Our aim is to dealt with the use of auxiliary information 
based on a conditional principle. Conditional inference has 
been largely studied in the survey sampling literature. 
Indeed, the optimal estimator was discussed by Fuller and 
Isaki (1981), Montanari (1987, 1997), Deville (1992) and 
Rao (1994, 1997). The conditional properties of the post-
stratified estimators has been studied by Casady and Valliant 
(1993). In an earlier paper (Tillé 1998), a general technique 
that allows to build a mean or total estimator that has a small 
conditional bias has been proposed for simple random 
sampling. This technique is based on the use of conditional 
inclusion probabilities and allows one to take into account 
auxiliary information without any reference to a super-
population model.  

In this paper the use of conditional inclusion probabilities 
is generalised to any sampling design. It is shown that this 
technique allows to construct an estimator very similar to 
the optimal estimator discussed by Montanari (1987), 
Deville (1992) and Rao (1994). This family of estimators 
provides a valid conditional inference and can also be 
viewed as the optimal linear estimator. Next, these esti-
mators are applied in the stratification case and are com-
pared to the GREG-estimator. The GREG-estimator is 
generally conditionally biased. Nevertheless, it is shown 
that, in regression, the optimal estimator is a particularly 

case of the GREG-estimator. Indeed, when the stratification 
variables are re-used as auxiliary variables in the GREG-
estimator, it is equal to the optimal estimator. Next, a set of 
simulations is given that shows the interest of the optimal 
estimator in stratification. The gain of precision can be very 
important when the stratification variables are very corre-
lated to the interest variable. Finally we discuss the general 
estimation problem in survey sampling that can be viewed 
as a third-order problem where three sets of variables 
interact: the planning variables, the calibration variables and 
the interest variables.  

The paper is organised as follows. In section 2 the 
notation is defined. In section 3, the problem of conditional 
inference is presented. In section 4, an approximation of the 
SCW-estimator is given for complex designs under tech-
nical hypotheses. These hypotheses are discussed in section 
5. In section 6 the optimal estimator and the SCW-estimator 
are compared to the generalised regression (GREG) esti-
mator in the stratification framework. It is shown that the 
optimal estimator can be viewed as a GREG-estimator for 
which the stratification indicator variables are also used 
a posteriori. Next a set of simulations is presented in section 
7 in order to compare the discussed estimators. Finally, the 
problem of interaction between the design and the auxiliary 
variables is discussed in section 8. 

 
2. Problem and notation  

Consider a finite population {1 }U k N= , ..., , ...,  and 
suppose that a random sample S  is drawn without replace-
ment from this population following a sampling design ( ).p .  
The probability of selecting the sample s  is Pr( ) ( ),S s p s= =  
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for all .s U⊂  The indicator variables kI  take the value 1 if 
unit k  is in the sample and 0 otherwise, for all .k U∈  The 
inclusion probability of unit k  is ( )k kE Iπ = ,  where 
symbol ( )E .  is the expectation with respect to the sampling 
design. The joint inclusion probability for unit k  and l  is 

( ).kl k lE I Iπ =  Let ky  denote the value of the variable y  
for the thk  unit of the population. The aim is to estimate the 
population mean of :y  

1
k

k U
y y

N ∈

= .∑  

If 0kπ > ,  for all k U∈  the Horvitz-Thompson estimator 
(1952) given by  

1ˆ k

k S k

y
y

N ∈

=
π∑  

provides an unbiased estimator of .y  
Let T  be a statistic. The objective is to estimate y  with 

a conditional bias as small as possible with respect to 
statistic .T  Define the first-order conditional inclusion 
probabilities to be ( )k T kE I T|π = |  for all k U∈  and the 
conditional joint inclusion probabilities to be 

( )kl T k lE I I T|π = |  for all .k U l U k l∈ , ∈ , ≠  The simple 
conditionally weighted estimator (SCW) is defined by  

1ˆ k
T

k S k T

y
y

N|
∈ |

= .
π∑  (2.1) 

This estimator is not exactly conditionally unbiased. Indeed, 
a conditionally unbiased estimator exists if and only if 

0k T|π >  for all k U∈ .  For this reason, it is useful to 
enlarge the definition of conditional unbiasedness: an 
estimator is said to be virtually conditionally unbiased 
(VCU) if the conditional bias only depends on the units 
having null conditional inclusion probabilities. The SCW-
estimator is VCU, indeed:  

0

1ˆ ˆ( ) ( )
k T

kT T
k

B T E T y yy y
N =|

| |
|π

| = | − = − .∑  

This estimator generalises some classic results (see Tillé 
1998) like post-stratification. Moreover, it allows us to build 
an original estimator for a contingency table when the 
population marginal totals are known. Unfortunately, the 
computation of the k T|π  becomes very difficult in complex 
sampling designs. A general approximation for the SCW-
estimator will however be given when using a vector of 
Horvitz-Thompson estimators as auxiliary statistic.   

3. Use of a complex auxiliary statistic  
Suppose that the auxiliary information is represented by 

the vector 1( , , , , )k k kj kJx x x ′= ... ...x  of values taken by the 
J  auxiliary variables on the thk  unit of .U  In a first step, it 
is supposed that the kx  are known for each unit of the 

population. Later, it will be considered the more restrictive 
case where only one function of the kx  such as  

1
k

k UN ∈

= ∑x x  

is known. Consider also the Horvitz-Thompson estimator of 
x  given by  

1ˆ k

k S kNπ
∈

= .
π∑ x

x  

If 0kπ > ,  for all ,k U∈ ˆ
πx  is an unbiased estimator of x   

ˆ( ) .E π =x x  (3.2) 

The variance of ˆ
πx  is given by  

2

2

1ˆVar( ) (1 )

1 ( )

l
l l

l U l

l m
lm l m

m Ul U l m
m l

N

N

′
π

∈

∈∈
≠

= = − π
π

′
+ π − π π .

π π

∑

∑ ∑

x
x x

x x

Σ

 (3.3)
 

Suppose now that vector ˆ ˆ( )yπ π′ ′x  has a multinormal 
distribution. Under this hypothesis, it can be derived a 
conditional unbiased estimator (see for instance, Deville 
1992). First the conditional bias is computed:  

1

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( )Var ( ) Cov( ).

B y E y y

y

π π π π

−
π π π π

| = | −

= − ,

x x

x x x x
 

If an estimator of ˆ ˆ( )B yπ π|x  is available, the Horvitz-
Thompson estimator can be corrected in the following way:  

1

ˆˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆˆ( ) Var Cov( , )( )

cy y B y

y y

π π π

−
π π π ππ

= − |

= + − .

x

x x xx
 

This estimator is related to the optimal linear estimator 
discussed by Fuller and Isaki (1981), Montanari (1987) and 
Rao (1994). Indeed, Montanari showed that the best 
estimator in the sense of the smallest mean square error 
(MSE) of the form  

ˆ ˆ ˆ( )y yβ π π ′= + − βx x  (3.4) 

occurs when β  takes the value:  
1

OPT
ˆ ˆCov( , ).y−
π πβ = xΣ  

The optimal linear estimator presented by Montanari 
leads thus to a very similar result to the conditional ap-
proach, although Montanari did not start with a conditional 
point of view. In Montanari’s approach, the optimal 
estimator is found in a class of linear estimators defined by 
(3.4) without any reference to conditional properties. 
Nevertheless, Rao (1994) has pointed out that this estimator 
leads to valid conditional inference. The general problem   
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of the optimal estimator is that OPTβ  is not known and must 
thus be estimated. By estimating OPT,β  the optimal prop-
erties of the estimator are lost.  

In order to estimate OPT ,β  (or ˆ ˆ( ))B yπ π|x  two cases can 
be distinguished. In the first one, the values taken by the 
auxiliary variable on all the units of the population are 
known. In this case, Σ  is thus known and  

2

2

1ˆ ˆCov( , ) (1 )

1 ( )

1 ( )

k k
k

k U k

k l
kl k l

l Uk U k l
l k

k k
k U

yy
N

y
N

y
N

π π
∈

∈∈
≠

|
∈

= − π
π

+ π − π π
π π

= −

∑

∑∑

∑

xx

x

x x

 

can be unbiasedly estimated by  

1

( )1ˆ ˆCov ( , ) k k

k S k

y
y

N
|

π π
∈

−
=

π∑
x x

x  (3.5) 

where  

1ˆ( ) l kl k
k

l U k l k
l k

E k S
N N| π

∈
≠

π
= | ∈ = + .

π π π∑ x x
x x  (3.6) 

By using (3.5), a first asymptotically optimal estimator can 
be constructed  

 1
AOPT1

1ˆ ˆ ˆ( ) k
k

k S k

y y y
N

|−
π π

∈

−
′= + − .

π∑
x x

x x Σ  (3.7) 

In the second case, only the population mean x  is 
known, Σ  must thus be estimated and ˆ ˆCov( , )yπ πx  can 
not be estimated using (3.5). Montanari proposes to estimate 
Σ  and ˆ ˆCov( , )yπ πx  by the classic Horvitz-Thompson 
estimator:  

2 2

2

1ˆ (1 )

1

k k
k

k S k

k l kl k l

l Sk S k l kl
l k

N

N

∈

∈∈
≠

′
= − π

π

′ π − π π
+

π π π

∑

∑∑

x x

x x

Σ

 

and  

2 2 2

2

1ˆ ˆCov ( , ) (1 )

1

k k
k

k S k

k l kl k l

l Sk S k l kl
l k

y
y

N

y
N

π π
∈

∈∈
≠

= − π
π

π − π π
+ .

π π π

∑

∑∑

x
x

x
 

 
 
 

OPTβ  is thus estimated by ˆ(Σ  is supposed non singular)  
1

OPT 2
ˆ ˆ ˆ ˆCov ( , )y−

π πβ = .xΣ  

By estimating OPT,β  another asymptotically optimal 
(AOPT) estimator can be given:  

AOPT2 OPT
ˆˆ ˆ ˆ( ) .y yπ π ′= + − βx x  (3.8) 

The difference between the AOPT1 and AOPT2 esti-
mator is the way we estimate ˆ ˆCov( , )yπ πx  and .Σ  How-
ever, the AOPT1-estimator needs more complete aux-
iliary information.  

The generalised regression (GREG) estimator defined by 
Cassel, Särndal and Wretman (1976), Wright (1983), 
Särndal, Swensson and Wretman (1992, page 225) is also 
an estimator of the linear class given by expression (3.4). 
For the GREG-estimator β  is defined by  

1

GREG
k k k k

k U k Uk k

y
c c

−

∈ ∈

′⎡ ⎤
β = ⎢ ⎥

⎣ ⎦
∑ ∑

x x x
 

and can be estimated by  
1

GREG
ˆ k k k k

k S k Sk k k k

y
c c

−

∈ ∈

′⎡ ⎤
β = ,⎢ ⎥π π⎣ ⎦

∑ ∑
x x x

 

where quantities 0kc k U> , ∈ ,  are weights defined for all 
the population units. The GREG-estimator does not have 
good conditional properties. It is generally conditionally 
biased (Rao 1994).   

4. Approximation of the SCW-estimator  
Another way to construct a conditionally unbiased esti-

mator is to find an approximation of the SCW-estimator 
given in (2.1). Indeed this estimator has good unbiasedness 
properties because it is VCU. If ˆ

πx  is used as an auxiliary 
statistic, we shall seek an approximation of  

ˆ( )k T kE I| ππ = | .x  

If the random vector ˆ
πx  takes for instance the value ,z  we 

get by Bayes’s theorem that  

ˆPr ( )ˆ ˆ( ) Pr ( ) ˆPr ( )k k
k S

E I k S π
π π

π

= | ∈
| = = ∈ | = = π .

=
x z

x z x z
x z

 

In order to compute the conditional inclusion proba-
bilities, it is thus necessary to know the probability distri-
bution of ˆ

πx  unconditionally and conditionally on the 
presence of each unit in the sample. Except for some 
particular case, this probability distribution is very complex; 
for this reason an approximation will be constructed.  
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It is possible to derive the means and variances of ˆ
πx  

unconditionally and conditionally on the presence of each 
unit in the sample. Indeed ˆ( )E πx  is given in (3.2), 

ˆVar ( )πx  in (3.3), ˆ( )E k Sπ | ∈x  in (3.6), and  

2 2

2

ˆVar ( )

1 1

1

k

l l kl kl

l U kk l
l k

l m kl km
klm

l U m U k l m k
l k m l

m k

k S

N

N

π

∈
≠

∈ ∈
≠ ≠

≠

= | ∈

′ ⎛ ⎞π π
= −⎜ ⎟ππ π ⎝ ⎠

′ ⎛ ⎞π π
+ π −⎜ ⎟π π π π⎝ ⎠

∑

∑ ∑

x

x x

x x

Σ

 (4.9)

 

where klmπ  is the third-order inclusion probability. Matrixes 
Σ  and kΣ  are assumed to be non singular. 

As the probability distribution of ˆ
πx  is generally 

unknown, the following three assumptions will be used to 
construct an approximation of conditional inclusion 
probabilities.   

(i) If the sample size n  is large, ˆ
πx  has a multivariate 

normal distribution unconditionally and conditionally on 
the presence of each unit in the sample. 

 
(ii) 1 1 1( )k J JO n− − −

×− =R R  for all k U∈  where =R  
1 2 1 2 1 2 1 2, ,k k
− / − / − / − /=V V R V V VΣ ∑  denotes a J J×  

diagonal matrix having the elements of the diagonal of 
Σ  on its diagonal and ( )J JO n−α

×  denotes a matrix of 
quantities that when multiplied by nα  remains bounded 
as n →∞.  

 
(iii) 1 2 1 2( ) ( )k k JO n− / − /

|γ = − =V x x  where ( )JO n−α  
denotes a vector of quantities that when multiplied by 
nα  remains bounded as n →∞.   

These three hypotheses are made on the sample size. It is 
thus supposed that when n  increases, N  increases at least 
as quickly as .n  Nevertheless, no hypothesis are made on 
f n N= / .  Assuming that the hypotheses given in section 3 

are verified, the following result gives an approximation of 
the SCW-estimator: 
 

Result 1: Assuming (i), (ii) and (iii), and if the auxiliary 
statistic used is ˆ ,πx  then  

1

1
AOPT1

1ˆ ˆ ˆ( )

ˆ( )

k
T k

k S k

p

y y y
N

O n y

|−
| π π

∈

−

−
′= + −

π

+ ≈ .

∑
x x

x x Σ
 

(4.10)

 

where 1( )pn O n−×  is a quantity bounded in probability. 
Proof of Result 1 is given in the appendix.  
 
 

 

5. Discussion about the hypotheses  
These three hypotheses are verified for simple random 

sampling without replacement when only one auxiliary 
variable is available. Indeed, in this case, we have 1,J =  

,k kx=x ,x=x k kx| |=x ˆ ˆ .xπ π=x  We get  

1 1 2and
1 1 2k kl klm

n n n n n n
N N N N N N

− − −
π = , π = π = .

− − −
 

By (3.6), (3.3), (4.9),  

1
k

k
x xN nx x

N n|
−−

= + ,
−

 (5.11) 

2
ˆVar ( )

1
xN nx

N nπ
σ−

= ,
−

 (5.12) 

2
2

2

( )( ) ( 1)ˆVar ( )
1( 2)( 1)

k
x

x xN N n nx k S
NN N nπ

⎧ ⎫−− − ⎪ ⎪| ∈ = σ −⎨ ⎬
−− − ⎪ ⎪⎩ ⎭

 (5.13) 

where  

22 1 ( )x k
k U

x x
N ∈

σ = − .∑  

Now, consider the three hypotheses for this particular 
case.  
 

– Hypothesis (i) was proved by Madow (1948) under 
some conditions.  

– Hypothesis (ii) becomes  

              1
ˆVar ( )

1 ( )ˆVar ( )
x k S

O n
x

−π

π

| ∈
− = .  

By (5.12) and (5.13), we get  

          

2

2

2

2

ˆVar ( )
ˆVar ( )

( )( 1) 1
( 2) ( 1)

( )1 2 ( 1)1
( 2) ( 2) ( 1)

11

k

x

k

x

x k S
x

x xN n
N n N

x xN n N n
n N N N

O
n

π

π

| ∈

⎧ ⎫−− ⎪ ⎪= −⎨ ⎬
− − σ⎪ ⎪⎩ ⎭

⎧ ⎫−− −⎪ ⎪= − +⎨ ⎬− − − σ⎪ ⎪⎩ ⎭

⎛ ⎞= + .⎜ ⎟
⎝ ⎠

 

– Hypothesis (iii) becomes  

1 2( )
ˆVar ( )

kx x
O n

x
| − /

π

−
= .  
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By (5.11) (5.12), we get  

1
1ˆVar ( )

k k
k

x

x x x xN n O
N n nx

|

π

− −− ⎛ ⎞
γ = = = .⎜ ⎟− σ ⎝ ⎠

 

In simple random sampling, these hypotheses can better 
be interpreted. Hypothesis (i) is the classic assumption of 
normality that was also needed for the construction of the 
optimal estimator. In simple random sampling, it is easy to 
verify that Hypothesis (iii) implies hypothesis (ii) both 
technical hypotheses simply imply that a particular unit 
cannot take a kx x| − |  value much more important than the 
other ones.  

The three hypotheses are thus valid under simple random 
sampling when only one variable is available. This result 
can also be extended to stratified sampling when the number 
of strata is fixed and the sample size within each stratum is 
large. In cluster sampling, when the number of clusters is 
large and the clusters are selected with a simple random 
sampling design, these hypotheses are still applicable. 
Hypothesis (i) was also partially showed by Rosén (1972) 
for sampling with unequal probabilities. Actually, the proof 
of Rosén is restricted to a rejective sampling design.  

The proposed hypotheses are generally less restrictive 
than a superpopulation model. Indeed, a superpopulation 
model is a set of hypotheses on the interest variables while 
the three hypotheses presented only affect the auxiliary 
variables. In a superpopulation model, the relation between 
the interest variable and the auxiliary variables are the most 
extensive contribution of the model. In the conditional 
approach, no hypothesis is made on the interest variable. If 
the hypotheses presented are debatable, it is thus clear that a 
superpopulation model is a set of hypotheses much more 
restrictive than those used in the conditional approach.   

6. Application to stratified sampling  
6.1 The problem  

In stratification, auxiliary information is used it a priori 
to improve the estimation. In this case, three sets of 
variables interact: the stratification variables, the auxiliary 
variables used a posteriori and the interest variable. 
Suppose that the population is partitioned into H  strata 

1 ,hU h H, = , ...,  of size 1 .hN h H, = , ...,  The population 
means of the strata are denoted 1

hk Uh kh N yy −
∈∑=  and 

1 .
hk Uh h kN −

∈∑=x x  A simple random sample hS  of fixed 
size hn 1( )H

h hn n=∑ =  is selected without replacement 
independently in each stratum. From the general theory of 
stratification (see for instance Särndal, Swensson and 
Wretman 1992, page 100), we get  

1 1

1 1ˆ ˆˆ ˆ and
H H

h h hh
h h

N Ny y
N Nππ

= =

= =∑ ∑x x  

 
 

where  

1 1ˆ ˆand
h h

h k h k
k S k Sh h

y y
n n∈ ∈

= = .∑ ∑x x  

Moreover, we have that  

2
2

1

ˆ ˆCov( )

11 1 ( ) ( )
1

h

H
h

h k h k h
h k Uh h

y

f
N y y

n NN

π π

= ∈

, =

− ′− −
−∑ ∑

x

x x
 

and 

2
2

1

1

1 1 ( ) ( )
1

h

H

h
h

h
k h k h

k Uh h

N
N

f
n N

=

∈

=

− ′− −
−

∑

∑ x x x x

Σ

 

where 1h h hf n N h H= / , = , ..., .   
6.2 AOPT1-estimator  

If ,k Uα∈  by extending expression (3.6) to stratified 
sampling, we get  

2 1ˆ( ) ( )
( 1)k k

N f
E k S

N N n
α α

| π α
α α

−
= | ∈ = + −

−
x x x x x  

and  

3

2
1

( )1

11 1 ( )
1

h

k k

k S k

H
h h

k h k
h k Sh h h

y
N

N f
y

N n nN

|

∈

= ∈

−
=

π

−
− .

−

∑

∑ ∑

x x

x x

 

From (3.7) the AOPT1-estimator of can be derived as  

AOPT1

1
2

1

3

1

ˆ ˆˆ ( )

1 1 ( ) ( )
1

1 1 ( )
1

h

h

H
h

h k h k h
h k Uh h

H
h h

k h k
h k Sh h h

y y

f
N

n N

N f
y

N n n

ππ

−

= ∈

= ∈

′= + −

⎧ ⎫−⎪ ⎪′− −⎨ ⎬
−⎪ ⎪⎩ ⎭

−
× − .

−

∑ ∑

∑ ∑

x x

x x x x

x x

 

The use of this estimator requires the knowledge of very 
substantial auxiliary information. The population means hx  
of the auxiliary variables must be known for each stratum as 
well as the stratum sizes .hN  Moreover, the values taken by 
the auxiliary variables must be known for each unit of .U  
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However AOPT1ŷ  has in stratification an important 
drawback: it is not calibrated on the strata size hN  i.e., 
when the objective consists in estimating the strata sizes 

hN ,  generally AOPT1
ˆ

hN N≠ .  This drawback can easily be 
overcome by centring the interest variable. We thus get:  

AOPT1

1
2

1

3

1

ˆ

1 1ˆ ˆ( ) ( ) ( )
1

1 1 ˆ( ) ( )
1

h

h

C

H
h

h k h k h
h k Uh h

H
h h

k h k h
h k Sh h h

y

f
y N

n N

N f
y y

N n n

−

π π
= ∈

= ∈

=

⎧ ⎫−⎪ ⎪′ ′+ − − −⎨ ⎬−⎪ ⎪⎩ ⎭

−
× − − .

−

∑ ∑

∑ ∑

x x x x x x
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6.3 AOPT2-estimator  

The AOPT2-estimator can also be used in stratification. 
In this case, from (3.8) we get  

AOPT2

1
2

1

2
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1 1ˆ ˆ ˆ ˆ( ) ( ) ( )
1
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h k h k h
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h k h k h
h k Sh h
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f
y N

n n

f
N y y

n n

−

π π
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= ∈

=

⎧ ⎫−⎪ ⎪′ ′+ − − −⎨ ⎬
−⎪ ⎪⎩ ⎭

−
× − − .
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∑ ∑

∑ ∑

x x x x x x
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The AOPT2-estimator only needs the knowledge of the 
population mean vector x  and of the stratum sizes .hN  It 
has however a drawback, the hx  are estimated and thus 
J H×  degrees of freedom are lost. If the number of strata 
is large, this loss of degrees of freedom could increase the 
instability of this estimator when J H×  is large.   
6.4 GREG-estimator  

The GREG-estimator does not take into account the joint 
inclusion probabilities. It is given by  

GREG

1

1 1

ˆ

ˆ ˆ( )
h h

H H
h k k h k k

h k S h k Sh k h k

y

N N y
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n c n c

−

π π
= ∈ = ∈

=

⎧ ⎫′⎪ ⎪′+ − .⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ ∑ ∑x x x

x x
 

Although this estimator is more stable, it is conditionally 
biased. Moreover, if we want to estimate the stratum sizes 

hN  by the GREG-estimator, we do not find exactly .hN  
Indeed, if 1ky =  when hk U∈  and 0ky =  when ,hk U∉  
then  

GREG GREG

1

1

1

ˆ ˆ
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h

H
h k k

h
h k Sh k
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h k k

h k Sh k
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N
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∑ ∑
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x x
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Since, in stratified sampling, ˆ ,h hN Nπ =  we get  
1

GREG
1

1

ˆ ˆ( )
h

h

H
h k k

h
h k Sh k

H
h k

h k Sh k

N
N N N

n c

N
n c

−

π
= ∈

= ∈

⎧ ⎫′⎪ ⎪′= + − ⎨ ⎬
⎪ ⎪⎩ ⎭

× .

∑ ∑

∑ ∑

x x
x x

x
 (6.14)

 

Expression (6.14) shows that generally GREG
ˆ .hN N≠  

Thus, the GREG-estimator destroys the stratification effect 
because it does not take the stratification into account. 
Indeed, the stratification is represented by the joint inclusion 
probabilities. In the GREG-estimator, only the first-order 
inclusion probabilities are used. On the other hand, it is easy 
to verify that the AOPT1 and AOPT2-estimator of hN  are 
exactly equal to .hN  The AOPT-estimators is thus 
calibrated on the .hN  

We propose to use the GREG-estimator in the following 
cases: when the sample size is small or if the number of 
strata is large and when the stratification gives poor 
auxiliary information on the interest variable. Indeed, in this 
case, the loss of precision due to the loss of degrees of 
freedom, will be more important than the precision benefit 
due to the optimality of the estimator. An interesting 
analysis of the benefit due to the optimal estimator is also 
given in Montanari (1998).   
6.5 GREG-estimator with use of the stratification 

variables  
A variant of use of the GREG-estimator consists in re-

using the stratification variables at the estimation stage. 
Consider the column vector  

1 ( )( , ..., , ..., )k k kh k H kz z z ′ ′=w x  

where 1khz =  if hk U∈  and 0  if not. This vector is thus 
composed of the values taken by the indicator variables of 
the presence of unit k  in the H  strata and of the values 
taken by the x -auxiliary variables.  

Now if w  denotes the population mean of vectors kw  
and ˆ

πw  its Horvitz-Thompson estimator, the GREG-
estimator using the auxiliary information πw  is given by  
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GREG

1

1 1
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The presentation of expression (6.15) can be simplified. 
Indeed, the following result was proved by Tillé (1994) and 
generalised by Särndal (1996):   
Result 2: When the stratification variables are re-used at the 
estimation stage, and if the kc  are equal into the strata 
( )k h hc c k U= , ∈  the GREG-estimator can be written  

GREG

1

1

1

ˆ
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x x x x x x
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A proof of Result 2 is given in the Appendix. Note that 
expression (6.16) is equal to the AOPT2-estimator when  

1 1
1

h h
h

h h

n n
c C

N f
− /

= ,
−

 

for 1 ..., ,h H= ,  where 0C >  is a constant. When the hf  
are small and the hn  are large and proportional to the hN  
both estimators are equivalent. This result shows that with 
the conditional approach, the fact that the sampling design is 
stratified is automatically taken into account in the esti-
mation method. The GREG-estimator does not take into 
account the stratification effect and thus it is necessary to 
reintroduce the stratification variables at the estimation stage 
so as not to lose the stratification effect.   

7. Simulations  
A set of simulations was carried out in order to compare 

the four following estimators: ˆ ,yπ AOPT1
ˆ ,Cy AOPT2

ˆ ,y GREG
ˆ .y  

The population is made up of 4 strata of 250 units (N = 
1,000). A stratified sampling design is applied with propor-
tional allocation. For each simulation, 10,000 samples of size 

100n =  are selected and the following ratios has been 
estimated:  

1

2 GREG

3 AOPT1

4 AOPT2

ˆ ˆMSE ( ) MSE ( ) 1,

ˆ ˆMSE ( ) MSE ( ),

ˆ ˆMSE ( ) MSE ( ),

ˆ ˆMSE ( ) MSE ( ).

C

M y y

M y y

M y y

M y y

π π

π

π

π

= / =

= /

= /

= /

 

 

The populations are generated by means of the following 
models: 1 , , ,k k k kx a y e k U: = = ∈P  (total independence), 

2 , 3 , ,k k k k kx a y x e k U: = = + ∈P  (dependence between x  
and 3), , 2 ( ) , ,k k k k ky x a y x h k e k U: = = + + ∈P  (dependence 
between ,x y  and the strata), 4 , exp(10k k kx a y: = = +P  
2 10 ( ) ), ,k kx h k e k U+ + ∈  (non-linearity and dependence 
between ,x y  and the strata), 5 , exp(k k k kx a y e: = = +P  
3 ) 3 ( ), ,kx h k k U+ ∈  (non-linearity and dependence between 

,x y  and the strata), 6 , 3 ( ) , ,k k k kx a y h k e k U: = = + ∈P  
(strong dependence between y  and the strata), 7 kx: =P  

, 50 ( ) , ,k k ka y h k e k U= + ∈  (very strong dependence between 
y  and the strata), where ka  and ke  are independent normal 

variable with mean equal to 0 and variance equal to 1, and 
( )h k  is the number of the stratum of unit .k  Results of the 

simulations is given in Table 1.  
Table 1 

Results of 10,000 simulations 
 

 1P  2P  3P  4P  5P  6P  7P  

1M  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2M  1.0070 0.0906 0.5180 0.9261 0.9263 1.1047 38.5104 

3M  1.0069 0.0906 0.4835 0.9277 0.9269 1.0015 1.0123 

4M  1.0060 0.0936 0.4850 0.9257 0.9239 1.0006 1.0111  
Table 1 shows that the GREG-estimator provides a good 

estimation when the stratification variables are not 
correlated to the interest variable. Nevertheless, the more is 
the dependence between the stratification variable and the 
interest variable, the more is the gain of precision of 

AOPT1
ˆ

Cy  and AOPT2
ˆ .y  The loss of degrees of freedom of the 

optimal estimator does not seem to affect the precision for 
this sample size. Moreover, the gain obtained by the 
knowledge of the population stratum is not significant for 
this sample size. For all these cases, the optimal estimator is 
thus clearly preferable to the GREG-estimator.   

8. A third-order problem  
The complexity of determining the conditional weights is 

not a specific problem of the SCW-estimator. It is due to the 
general problem of estimation with auxiliary information 
used a posteriori when an auxiliary variable is already used 
a priori in the sampling design. This problem can be 
presented as a third-order interaction problem among   

– the interest variables;  
– the sampling design and thus the auxiliary variables 

used a priori;  
– the auxiliary variables used a posteriori.      
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Indeed, the use of auxiliary information at the estimation 
stage leads to the following problem: how do these auxiliary 
variables used a posteriori interact with the interest variable 
through a given sampling design? The problem being 
complex, we have to take into account the relationships 
between each set of variables above as well as the third-
order interactions among these three sets of variables.  

It is very difficult to find a really operational estimator 
which uses the three second-order interactions and the third-
order interaction. For this reason, one can attempt to 
simplify the problem. The neutralisation of one of the 
aspects of this problem significantly simplifies the research 
of an estimator. Most of the possible simplifications have 
already been studied. We can cite some of these:   

– If no auxiliary information is used a posteriori (except 
the population size )N  we can only construct the 
Horvitz-Thompson estimator or Hájek’s ratio (1971).  

– Searching general solutions using auxiliary informa-
tion for simple random sampling does not pose major 
problems. In this case, no auxiliary information is 
used a priori.  

– Using a superpopulation model allows one to fix a 
relation existing between the interest variable and the 
auxiliary variables used a posteriori. In this case, it is 
possible to determine the optimal estimator (under the 
model).  

– For the GREG-estimator and also for the calibration 
methods (see Deville and Särndal 1992), in the 
design-based inference framework, only the first-
order probabilities are retained from the sampling 
design. A simple random sampling is thus treated in 
the same way as a stratified design for which the first-
order inclusion probabilities are all equal. For this 
reason, a regression estimator applied to a stratified 
design generally destroys the calibration on the 
stratum frequencies given by the a priori strati-
fication. In this case, the simplification arises because 
all the contributions of the auxiliary variables used 
a priori to the sampling design can be described only 
by the first-order probabilities.  

– Finally, for the optimal linear estimator, it is implicitly 
supposed that the dependence between Horvitz-
Thompson estimators of the variables x  and y  is 
linear. Obviously, these estimators neglect the non-
linear dependence between the estimators. Never-
theless, it takes into account the joint inclusion 
probabilities. When the sampling design is stratified, 
the estimator remains calibrated on the population 
stratum frequencies.   

The CW-estimator takes into account this third-order 
interaction. Moreover, in this case, auxiliary information 
does not necessarily intervene in a linear way. The weights 
depend on both the sampling design and the auxiliary 
statistic. These weights applied to the values taken by the 

interest variable take into account all the interactions 
between the three variable groups.  

The methods using conditional inclusion probabilities are 
interesting for different reasons: they give a general frame 
allowing to search and conceive estimators using auxiliary 
information without reference to a superpopulation model 
and lead to valid conditional inference. They bring into 
prominence all the complexity of the estimation problem 
with auxiliary information. According to the known 
auxiliary information, we can find either known results (as 
for example post-stratification) or very complex and not 
really operational estimators. However, a first approxi-
mation leads to a known result, i.e. the optimal linear 
estimator.   
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Appendix  
Proof of Result 1 and 2   

Lemma 1 will be used in the proof of Result 1.   
Lemma 1: If 1 1 1( ),k J JO n− − −

×− =R R  then 1
k

−| | | | =R R  
11 ( )O n−+ ,  where R  and kR  are defined as in hypothesis 

(ii).   
Proof  

1 1 1[ ] ( )k J JO n− − −
×− =R R R R  

and thus  
1 1 1

1 1

( ) [1 ( )]

( ) 1 ( )

J
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where I  is a J J×  identity matrix. Thus,  

1
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| | +
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Note that lemma 1 is a consequence of hypothesis (ii).   
Proof of Result 1  
If we define  

, for allk
k

nd k U
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π

 

by hypothesis (i), we get:  
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where f  (resp. )kf  is the density function of a multivariate 
normal variable with mean x  (resp. )k|x  and variance-
covariance matrix Σ  (resp. ).kΣ  Thus,  

1

1 1 ˆ ˆexp ( ) ( )
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2
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If we also note  
1 2 1 2

1 2 1 2

1 2

1 2

,

,

ˆ ˆ( )

( ),

k k

c

k k

− / − /

− / − /

− /
π π

− /
|

=

=

= − ,

γ = −

R V V

R V V

x V x x

V x x

Σ

Σ
 

and  
1 2

1 1
1 2

1 ˆ ˆexp ( ) ,
2

c ck
k k kc d

/
′ − −
π π/

| |
= −

| |
R

x R R x
R

 (8.18) 

we get  
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By using a Taylor development for the vector kγ  of (8.19), 
we get  

1 (0)ˆ ˆ( ) (1 ) ( )c
k k k k ka c R−

π π= − γ + γ .x R x  (8.20) 

where  
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and (0)
kγ  is a vector whose elements are included between 

the correspondent elements of kγ  and 0.  By hypothesis 
(iii), we directly get  

(0) 1( ) ( ).k pR O n−γ =  

On the other hand, we have by hypothesis (ii), lemma 1 and 
(8.18) that  
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By (8.20) and (8.21), we get  
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Finally, we get  
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Proof of Result 2  

In Särndal (1980), we see that the GREG-estimator 
presented in (6.15) can also be written:  

1 1
GREG

1 1 1 1 1
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N N S S Sw

S S S S S S S S

Ny y − −
π
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1 W 1 W

W C W W C y

Π

Π Π
 

where N1  (resp. )S1  is a column vector composed of N  
(resp. )n  ones, ΠΝ  (resp. )SΠ  is a diagonal matrix having 
the inclusion probabilities of the population (resp. sample) 
units on its diagonal, SC  is a diagonal matrix having the kc  
of the sample units on its diagonal, Sy  is a column vector 
composed of the values taken by the interest variable y  in 
the sample,  

11 1 1
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N NH N

z z

z z
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′...
=

′...

x
W

x
 

and SW  is a ( )n H J× +  matrix composed of the n  rows 
of NW  corresponding to the units selected in the sample.  

The matrix to invert can be partitioned into four parts:  

1 1( )S S S S
− − ⎡ ⎤′ = ⎢ ⎥′⎣ ⎦

A D
W C W

D B
Π  
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where A  is an H H×  matrix having , 1, ..., ,h hN c h H/ =  
on its diagonal,  
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By using the technique of matrix inversion by partition, we 
get  
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where H0  is a column vector composed of H  zeros, we get  
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where ( )J J×I  is a J J×  identity matrix. Since  
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we get Result 2 by multiplication of (8.22) and (8.23).   
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