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Use of Statistical Matching Techniques
in Calibration Estimation

ROBBERT H. RENSSEN'

ABSTRACT

This article deals with an attempt to cross-tabulate two categorical variables, which were separately collected from two large
independent samples, and jointly collected from one small sample. It was assumed that the large samples have a large set
of common variables. The proposed estimation technigue can be considered a mix between calibration techniques and
statistical matching. Through calibration techniques, it is possible to incorporate the complex designs of the samples in the
estimation procedure, to fulfill some consistency requirements between estimates from various sources, and to obtain fairly
unbiased estimates for the two-way table. Through the statistical matching techniques, it is possible to incorporate a
relatively large set of common variables in the calibration estimation, by means of which the precision of the estimated
two-way table can be improved. The estimation technique enables us to gain insight into the bias generally obtained, in
estimating the two-way table, by sole use of the large samples. It is shown how the estimation technique can be useful to
impute values of the one large sample (donor source) into the other large sample (host source). Although the technique is
principally developed for categorical variables ¥ and Z, with a minor modification, it is also applicable for continuous
variables Y and Z.

KEY WORDS: Consistency between estimates; General regression estimator; Imputation; Multivariate auxiliary

information; Two-way table.

1. INTRODUCTION

Most statistical surveys are conducted to obtain estimates
of simple descriptive finite population parameters. The
estimates are often presented in tabular form, with cells
containing estimates of population totals or subgroup totals.
Often, data are collected on an extensive set of variables,
producing numerous results for these variables and their
relationships. In order to save resources and decrease
response burden, statistical bureaus wish to reduce sample
sizes and shorten questionnaires. They resort to adminis-
trative data sources and existing large-scale sample surveys,
or applying splitting questionnaire survey designs (see
Raghunathan and Grizzle 1995). As a consequence, meth-
ods for combining distinct data sources have become a
popular tool in the production of statistics. Combining data
sources can be done in many different ways; two well-
known techniques in survey sampling are statistical
matching and calibration estimation.

Singh, Mantel, Kinack and Rowe (1993) describe statis-
tical matching as a special case of imputation in which there
are two distinct micro-data sources containing different
information on different units. One data source serves as a
host or recipient file to which new information is imputed
for each record, using data from the other source, which is
the donor file. More specifically, they consider a host file
A, containing information on variables (X, ¥) and a donor
file B containing information on variables (X, Z). The
common variable X can be used to identify similar units in
the two files. In general, statistical matching deals with the

problem of completing the records in file A, by imputing
values for Z using the information on the (X, Z) relation-
ship in file B. These imputed Z-values suffer from a serious
limitation in that, the real relationship between Y and Z may
be completely lost in the enriched host file. This limitation
amounts to the so-called assumption of conditional inde-
pendence between Y and Z given X. In order to get rid of
this conditional independence assumption, Singh et al.
(1993) consider a third data set (file C) representing
auxiliary information about the full set (X, Y, Z). For
example, this data set could come from a small-scale
specially conducted survey. They discuss several imputa-
tion methods to complete file A, by adding Z from file B
using information from A, B, and C, on the joint relation-
ships of X, ¥, and Z. Singh et al. (1993) give many relevant
references on statistical matching techniques. We only
mention Rodgers (1984), Rubin (1986) and Paass (1986).

In Deville and Sirndal (1992), calibration estimation is
derived as a general technique to weight sample surveys,
taking into account the complex design of the sample and
auxiliary information obtained from external sources (see
also Deville, Sirndal, and Sautory 1993). The use of
auxiliary information, i.e., control variables, primarily aim
at three goals: namely, reducing sampling variance,
reducing bias due to non-response, and ensuring
consistency between estimates from various sources with
respect to the used control variables. There is an extensive
body of literature on weighting methods in sample surveys.
We refer to Bethlehem and Keller (1987), Alexander
(1987), Lemaitre and Dufour (1987), and Zieschang (1990).
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This article deals with the specific problem of how to
estimate the cross-product between Y and Z (e.g., the
two-way table between Y and Z in case these variables are
categorical or the covariance between ¥ and Z in case these
variables are continuous), using statistical matching tech-
niques as well as calibration estimation. We assume that
two data files A and B represent two large-scale sample
surveys, possibly both obtained by a complex design. In
order to weight the specially conducted small sample
(file C), auxiliary information is derived from these large
samples. It might be difficult to judge whether the large
samples should be considered as suppliers of auxiliary
information for the small sample, or vice versa. Through the
statistical matching, it is possible to incorporate a large set
of X-variables in the estimation procedure, despite the
sample size of the small sample. The use of calibration
estimation makes it possible to take account of the complex
design of all samples in the estimation procedure, and to
fulfill some consistency requirements. Most of the article is
devoted to categorical ¥ and Z, because of the specific
properties of these variables. For example, it is shown that
the marginal counts of the estimated YZ-table, always
coincide with estimates for the population totals of ¥ and Z,
when the ordinary calibration estimator is applied with the
X-variables as control variables, on the first and second
large sample respectively. Nevertheless, the proposed
method is also applicable for continuous Y and Z.
Throughout this article it will be assumed that X may
consist of several variables, which may be categorical
and/or continuous. It is argued that when the X-variables are
highly correlated with either ¥ or Z, then our estimation
method gives relatively precise estimates for the cross-
product between Y and Z, e.g., for the complete YZ-table
when Y and Z are categorical.

The proposed estimation procedure closely resembles a
method presented in Singh et al. (1993, Section 2) to
estimate a correlation coefficient between ¥ and Z. These
variables are assumed to be univariate in this article. Our
method, however, differs from theirs in that it incorporates
the complex designs of all data sources in the estimation
procedure and that it uses the large data sources more
efficiently in estimating population parameters from the
small data source. When Y and Z are categorical, and there
is no linear correlation between X and Y as well as between
X and Z, then our method corresponds to incomplete
post-stratification (Deville and Sdrndal 1992, Bethlehem
and Keller 1987). On the other hand, if ¥ is perfectly
correlated with X, then our method gives an estimated
two-way table between Y and Z which corresponds to an
estimated two-way table that would have been obtained
from file B if first the Y-values were imputed. A similar
result holds if Z and X are perfectly correlated.

Although combining distinct data sources across
common variables may be fruitful from a theoretical point
of view, in practice, complications may arise because
common variables in the strict sense are not easily found,
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mainly due to discrepancies between definitions, methods
of observation, and reference period. These complications
may be reduced if the survey processes involved, are
harmonized at an early stage. A promising application of
the use of common variables, lies in integrated survey
designs, such as the Dutch Household Survey on Living
Conditions, see van Tuinen (1995), Bakker and Winkels
(1998), Winkels and Everaers (1998), and Hofmans (1998).
The questionnaire design of this survey has a three-shell
structure. The first shell contains questions on demographic
and socioeconomic issues, and level of education. The
second shell contains a few easy to answer core questions,
on every relevant aspect of living conditions. The questions
in the third shell also concern living conditions, but they are
more exhaustive than the questions in the second shell. In
order to shorten the time it takes to answer, the third shell
questionnaire is split. Each respondent has to fill in the
complete questionnaire of the first and second shell and one
sub-questionnaire of the third shell. On account of the third
shell, the sample is split into sub- samples associated with
each sub-questionnaire. The sampling design of each
sub-sample can be described as two-phase sampling for the
general regression estimator.

The organization of this article is as follows. The
theoretical framework is developed in Section 2. For this
purpose it is convenient to discuss a calibration estimator
for the small sample, obtaining auxiliary information from
two distinct registrations instead of two distinct large
samples. One registration contains values on X and ¥ and
the other registration on X and Z. Sections 2.1 to 2.4 deal
with categorical Y- and Z-variables. In Section 2.1, the
registrations are used to obtain a first synthetic estimate of
the YZ-table by regression methods of imputation. It is
shown that this synthetic two-way table has some inter-
esting properties. In Section 2.2 we propose a set of
calibration equations to weight the small sample, based on
these properties. We briefly discuss its relationship to
complete and incomplete post-stratification. A numerical
illustration is given in Section 2.3. The linkage to statistical
matching techniques as discussed in Singh et al. (1993) is
given in Section 2.4. The treatment of categorical ¥ and Z
is unnecessary and restrictive. In Section 2.5, it is shown
that the proposed weighting technique is also applicable for
continuous Y and Z or for continuous Y and categorical Z.
In Section 3, the technique is modified, using auxiliary
information from two distinct large samples instead of two
registrations. By means of a simulation study, the modified
weighting method is compared to the traditional incomplete
two-way stratification. Finally, Section 4 contains some
concluding remarks.

2. COMBINING REGISTRATIONS ACROSS
COMMON VARIABLES

Consider a finite population Q = {1, ..., N} of N persons
and suppose there are two registrations available of these
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persons. The first registration contains of each person £, a
record with scores y, and x, of the variables ¥ and X re-
spectively, and the second registration of each person &, a
record with scores z, and x, of the variables Z and X
respectively, £ =1,..,N. Obviously, the variable X is
present in both registrations. We note that the records from
both registrations correspond to the same finite population.
The process of merging these registrations, would be like
exact matching if X is used to compare the records in the
one registration with those in the other registration, in an
effort to determine which pairs of records relate to the same
population unit (see Fellegi and Sunter 1969). In this article
we will proceed differently.

2.1 Formulating the Synthetic Population Totals

Let Y denote education with p categories and Z denote
employment with g categories. Then y, is a vector of order
p, representing p dummy variables. Each dummy variable
corresponds to a specific category; it equals 1 if person &
belongs to that category, otherwise it equals 0. Analogously
defined, z, is a vector of order g. Further, X may be the
result of a complete or incomplete crossing (stratification)
of a number of characteristics (e.g., sex, age, region, marital
status, etc.). The scores x, are vector valued, of order r. In
case X consists of a complete stratification, x, represents r
dummy variables. In the remaining of this article, » should
be considered large in comparison with p x g. The popu-
lation totals for ¥ and Z are the marginal frequency distri-
butions with respect to education and employment. Using
the common variable X, predictions for ¥ and Z can be
defined with a multiple linear regression model:

Y, =B'x,, k=1,..,N,
and
fk:A’xk, k=1,..,N,

where B and A are the ordinary least squares regression
coefficients satisfying the normal equations

ul t Y t
E X X | B= E XYk 1)
k=1 k=1

and
N N
Yoxx/|4=) x,z. )
k=1 k=1

The superscript ‘" denotes transposition. This model is
called a linear probability model, (see Maddala 1983,
chap. 2). There are more elegant models, such as probit and
logit models, to predict binary variables. However, we are
not interested in the predictions themselves, but in the
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synthetic population totals of these predictions. These totals
appear to have nice properties if the linear prediction model
is used, and for this reason the model can be justified. Note
that B is calculated from the first registration and 4 from the
second one. By means of the common variable X and the
regression coefficients B and 4, we construct a synthetic
registration, which contains a record of each person £ with
scores x,, B'x,, and 4 'x,. In fact, either y, or z, may be
added to this registration, but for our purposes this addition
appears to be superfluous (see next paragraph). If there
exists a vector a of order r of fixed numbers such that
a'x, =1 for all k, then the population totals of the new
variables B ‘x, and 4 ‘x, equal the population totals of the
corresponding original variables (see e.g., Bethlehem and
Keller 1987). This can be shown easily by first pre-
multiplying the normal equations (1) and (2) by a’ and
subsequently substituting a‘x, =1 into the resulting
equations.

From the synthetic registration, a synthetic two-way table
can be defined by Y¥ (B‘x,)(4'x,). This synthetic
two-way table can be considered as an approximation of the
(simultaneous) frequency distribution Y%, y i zkt . Using the
normal equations (1) and (2}, the following identities can be
derived:

N N
kE (B'x) A x) =) y(d'x)
=1 k=1

N
=Y (B'x)z.

k=1

Clearly, the crossings between B‘x, and 4 'x,, y, and
A 'xk, or B'x . and z,, all result in identical synthetic two-
way tables. Therefore, it suffices to consider only

V(B ‘x,)(4'x,), and delete either y, or z, in the
synthetic registration. The difference between the real
frequency distribution between Y and Z and its synthetic
“approximation”, can be obtained from the following
decomposition

N X
E YeZe = E (B'x) A x) +
= P

N

3
) (y,-B'x)(z,-4'x,)". )
k=1

Note the strong resemblance with the ordinary variance
decomposition in regression analysis (see e.g., Searle 1971).
If either B'x, =y, or 4 'x, =z, for all k, then the two-way
table derived from the synthetic registration, equals the real
simultaneous frequency distribution between Y and Z.

Let / be a vector of appropriate order consisting of ones,
and note that /'y, =1 and [z, = 1 for all £. If there exists
a constant a such that a ’xk =1 for all £, then we also have
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N

N _1
I'p,=1'B'x, =l’( Eykxk')(kz; xkxk'] x, =

k=1
N N -1
t t
a'll Yoxexl || Xomx| xo=ax =1
k=1 k=1

for all &, and similarly /'Z, =1'A4 'x, = 1 for all £. It follows
that

N N N .
'Y, B'x)Ad'x) =Y A'x) =Y 7 @)
k=1 k=1 k=1

and

N

N N
Y (B'x)A'x, )r1=; (B'x,) =kEyk. 5)
-1 =1

k=1

So, the row and column totals of the synthetic two-way
table, equal the corresponding marginal population counts
with respect to Y and Z.

‘What remains to consider, is the condition a ’xk =1 for
all &, for some constant a. This condition is satisfied if X
represents a categorical variable. More generally, the
condition is always satisfied if the vector X can be parti-
tioned into two sub-vectors, one of which represents a
categorical variable.

2.2 Formulating the Constraints in Calibration
Estimation

Suppose a probability sample s of size n is drawn from
the finite population ©Q = {1, ..., N} according to a sampling
design p(s) such that the first and second order inclusion
probabilities Pr(k€s) =, and Pr(k, [€ s) =, are strictly
positive. For each kes the vector of scores (s Vg 2,) 18
observed. Two distinct registrations are available to provide
auxiliary information. The first registration contains for
each ke Q, records with scores on x, and y,, the second
registration contains for each k€€, scores on x, and z,.
The objective is to estimate the YZ- table from the sample s,
using auxiliary information from both registrations. There
exists a wide range of weighting type estimators in the
presence of multivariate auxiliary information. In Sarndal,
Swensson and Wretman (1992), the general regression
estimator is extensively discussed. It implicitly defines
sample weights, which reproduce the known population
totals of the auxiliary variables, used as control variables in
the estimator. Such a consistency property is attractive if the
auxiliary information is used both for publication and for
weighting. As a generalization of the general regression
estimator, the calibration estimator is developed (Deville
and Sirndal 1992 and Deville et al. 1993).
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To be specific, let G be a real valued function as defined
in Deville et al. (1993) and consider the following
weighting type estimator for our YZ-table:

n

T= Z Wk(ykzkt)’ (6)

k=1

where w, is a scalar, representing a weight assigned to
person k€s. Denote d, = m,'. A calibration estimator for
the YZ-table uses weights which are obtained by mini-
mizing Y, d,G(w,/d,) with respect to w, subject to a set
of constraints on w, for any particular sample s. We first
consider the following set of constraints:

n N n N
E WiV = E ¥, and Z Wiz = E 2y D
k=1 =1 =1 =1

This (first) set of constraints only uses the (marginal) counts
with respect to ¥ and Z. No use is made of the common
variable X. One of the p + ¢ equations is redundant, so to
solve the minimization problem, one equation can be
deleted. For G(w,/d,) = (w,/d, - 1)2, the resulting calibra-
tion estimator corresponds to incomplete two-way strati-
fication as defined in Bethlehem and Keller (1987). By
taking G(w,/d,) =1 + w,/d, (log(w,/d,) - 1), the classical
raking ratio estimator is obtained (see e.g., Oh and
Scheuren 1987). Copeland, Peitzmeier and Hoy (1987)
have compared these methods, based on data of the Current
Population Survey. They conclude that the estimates
produced by the two methods are very similar. In Deville
et al. (1993), two other distance functions are discussed,
which are especially interesting in view of the problem of
extreme weights. Estimating two-way tables with con-
straints on the marginal counts, is frequently performed in
sample surveys. Often, the constraints on the marginal
counts are required for two reasons. The first reason is to
reduce sampling error and sampling bias, and the second
reason is to meet consistency requirements with published
population counts.

Suppose that x, is categorical with  categories. Since
population information about the crossings between ¥ and
X, and the crossings between Z and X are available, we may
also consider the following set of constraints:

E wk(ykxk') = E ykxk' and
k=1 k=1

n

N
E wk(kakt) = ; kakt-

k=1

The number of non-redundant constraints in this set equals
r(p +q-1). For large r, this set may be not feasible
because it contains too many constraints in comparison with
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the sample size. Only if » is small, the set may be of
practical interest. In the remaining of this article, this set of
constraints will be disregarded.

In view of incorporating a large set of common variables
in the weighting procedure, we consider a set of constraints,
which exploits the bivariate population information that we
have in the synthetic table:

n N
Y w,Bx)Ad'x) =Y B'x)A'x,). )
k=1 k=1

This (second) set of constraints is a straightforward
application of the theory of calibration estimators.
Population totals of the crossing between B ‘x, and 4 'x,
are known, so these crossings are taken as auxiliary
variables to formulate the set of constraints. Evidently, for
large r, the number of non-redundant constraints remains
bounded by px ¢g. A major disadvantage of the resulting
calibration weights is that, they do not necessarily
reproduce the (marginal) population counts with respect to
Y and Z, when applying these weights to y, and z,
respectively. In other words, the resulting calibration
weights do not necessarily satisfy the first set of constraints.
Especially, if this set of constraints is formulated in view of
consistency requirements, this is a serious drawback.

Therefore, as an alternative, we consider a third set of
constraints:

n

) wk(ykzkl - (¥

- B'x)(z- 4'%,))=
k=1

N
Y (B'x)A'x) (IID)
k=1

Assuming that there exists a constant a, such that a ’xk =1
for all k, this set of constraints meets the consistency
objective. Let / denote a vector of ones of appropriate order
and recall that l y,=1'B'x, =1' G = 1'4' K= 1 for all %,
B'YY. 1% = o 1V and 4 i 1% = o 12;- By pre-
multiplying the third set of equations on both sides with /*,

we obtain the first set of constraints with respect to Z, and
post-multiplying the third set on both sides with / gives the
first set of constraints with respect to Y. The resulting
calibration estimator can be expressed as

n N
T= Z Wk(ykzkt) = E (B'x ) 'x) +
k=1 =

N
kz; w, (¥, - B'x)(z, - A'x,).

Clearly, this estimator obeys the decomposition given by
(3). It equals the synthetically defined two-way table plus an
adjustment term. This adjustment term is a calibration
estimate for the difference between the real frequency
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distribution between Y and Z and the synthetically defined
two-way table. Similarly to the second set of constraints, the
number of non-redundant constraints in the third set is
bounded by px g.

An important special case is G(w,/d,) = (w,/d, - 1)*.
Then each estimated cell is a general regression estimate
with (y, z,), vec(B ’xkx,:A ), and vec (y, z, - (y,~ B'x)
(z,~4'x,)) as control variables in case of the first,
second, and third set of constraints respectively. Analytical
formulas for the design variance of the general regression
estimator, are given in e.g., Sarndal et al. (1992, chap. 6).
In fact, these formulas are approximations for large sample
sizes. In Deville and Sirndal (1992), sufficient conditions
are given under which these approximations are valid for
calibration estimators in general.

In Deville et al. (1993), complete post-stratification is
described as a calibration method for which all population
counts with respect to the cross-classifications, are used in
the set of constraints. An elaboration of complete post-
stratification, results in the ordinary post-stratification
estimator, regardless of the distance function G. As an
alternative, incomplete post-stratification is described as a
calibration method, in which less detailed than a complete
knowledge of all cell counts, is used in the constraint set.
The calibration estimator defined under the first set of
constraints, is a commonly used example of incomplete
post-stratification. Several cases are discussed, in which
incomplete post-stratification is preferable to complete
post-stratification. Two of them are, lack of population
information and, some zero or extremely small cell counts
(see also Oh and Scheuren 1987). The calibration estimator
defined under the second and third set of constraints,
corresponds to complete post-stratification in the sense that,
all crossings are used as auxiliary information. Except when
a perfect linear relationship exists either between Y and X,
or between Z and X, the method differs from complete
post-stratification in using synthetic population totals
instead of real population counts. Complete post-stratifi-
cation gives unstable results, if some sample cells have only
few observations. In such situations, incomplete post-strati-
fication is of practical interest. Similarly, the calibration
estimator under the second and third set of constraints may
be unstable. Analogously to incomplete post-stratification,
one might consider using an incomplete crossing in the
constraints instead.

2.3 A Numerical Illustration

We illustrate the calibration estimator under the three
different sets of constraints by means of a hypothetical
example. The example is based on real data from a sample
on behalf of the Dutch National Travel Survey (1994). The
sampling design is roughly a self-weighted cluster sample
of addresses. All persons living in a selected address, are
included in the sample. The net sample size is approx-
imately 80,000 persons within 34,000 addresses. From this
sample, two hypothetical registrations of approximately
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N = 80,000 persons are constructed. In the one registration,
age is registered (in six categories), and in the other
registration, car ownership (in two categories). The
common variable between the registrations is a key number
for addresses, resulting in » = 34,000 categories for the
X-variable. For this particular example the synthetic
two-way table simplifies to

N r

D Bx)dx) =3 Ny z,
k=1 J=1

where N, denotes the size of the j-th address, y; the mean
of the six age categories of the j-th address, and z , the mean
of the two car ownership categories of the j-th address.

In order to calculate the synthetic two-way table, both
registrations are combined as follows. Firstly, they are
sorted according to the key number for addresses. Secondly,
the address counts of the six age categories and the two car
ownership categories are calculated. Thirdly, each address
count of age, is linked with its corresponding address count
of car ownership. By means of this synthetic registration of
r = 34,000 addresses, the synthetic two-way table can be
calculated. The result is shown in Table 1. This table can be
considered as a first approximation of the real frequency
distribution between age and car ownership. A sufficient
condition for a close approximation, is homogeneity with
respect to either age or car ownership within all addresses,
i.e., all persons at the same address should either be in the
same age category or in the same car ownership category.
For most (multiple) person addresses, this seems to be an
unlikely proposition. It follows from equations (4) and (5)
that the row and column totals in table 1 coincide with the
real (marginal) population counts of age and car ownership
respectively.

By means of a simple random sample of n = 1000 per-
sons, the population cell counts are estimated using a
general regression estimator. Three sets of auxiliary
variables are used, in accordance with the three sets of
constraints mentioned in the previous section. The estimated
tables are given below (for convenience we have taken the
quadratic distance measure: G (w,/d,) = (w,/d, - 1)*). The
corresponding estimated standard deviations are within
parenthesis. These estimates are based on the usual variance
formulas of the general regression estimator, see Sdrndal
et al. (1992, chap. 6).

Table 1
Synthetic Population Totals for Crossings Between Age
and Car Ownership

1 2 3 4 5 6 total
yes 3461 1659 5739 10770 6536 3334 31499
no 9827 4692 7902 17102 6424 5389 51336
total 13288 6351 13641 27872 12960 8723 82835
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Table 2
Estimated Population Totals for Crossings Between Age and
Car Ownership, Satisfying the First Set of Constraints

1 2 3 4 5 6 total

yes Oy
no 13288 o, 6351 4 8673 (3 12458 545y 5422 45y 5124 395, 51336
27872 12960 8723 82835

0 4968 iy 15814 (g5 7518 usp 3599 55 31499

total 13288 6351 13641

Table 3
Estimated Population Totals for Crossings Between Age and
Car Ownership, Satisfying the Second Set of Constraints

1 2 3 4 5 6 total

yes 0w O 4791y 13826, 6887 yuy 3421 any 28923 yoos,
no 143850y, 7012455 8118 ) 12893 ooy

total 1438555, 7012555, 12908 (g5, 26718 g55, 12739 1, 9074 1y, 82835

5853 usy 5654 aos 53912 oos,

Table 4
Estimated Population Totals for Crossings Between Age and
Car Ownership, Satisfying the Third Set of Constraints

1 2 3 4 5 6 total

5501 ) 6898 177, 3453 45 31499
no 13288 8139 o) 6062 415, 5270 oy, 51336
total 13288 6351 13641 27872 12960 8723 82835

yes 0 0 15647 (27

6351 g, 12224

In Table 2 the population counts are estimated according
to the ordinary incomplete two-way stratification
(Bethlehem and Keller 1987). There are no young people
(age category 1 and 2) owning a car, observed in the
sample, which is likely to be representative for the popu-
lation, so these cells are estimated by zero. Due to the
consistency requirements, i.e., the first set of constraints, it
follows that the estimated cell counts of young people
without a car equal the corresponding marginal cell counts.
An attempt to improve Table 2, is to use the common
variable address in the weighting procedure. In Table 3, the
cell estimates are given according to the second set of
constraints. As already mentioned in the previous section,
the estimated row and column totals may differ from the
real population counts. A comparison between Table 2 and
Table 3 shows that these differences can be considerable. In
addition, almost all estimated cell counts in Table 2 have
smaller estimated standard deviations than the correspon-
ding estimated cell counts in Table 3. So, the second set of
constraints gives quite unsatisfactory results. The third set
of constraints covers the first set of constraints. This implies
1) consistency of the estimated marginal cell counts with
respect to the corresponding known population cell counts,
and 2) smaller asymptotic variances of all estimated cell
counts. The results are shown in Table 4. Indeed, the
estimated marginal cell counts are consistent, and the
estimated standard deviations are at most half of the
corresponding standard estimates given in Table 2.
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2.4 Imputing Values of the one Registration into the
Other Registration

Until now, we have developed a weighting method to
estimate a two-way table between two variables, which are
registered in two distinct registrations. Often, one is in-
terested not only in estimated two-way tables, or more
generally, estimated linear relations, but in complete
registrations in which both variables are simultaneously
registered. Users of statistics find such complete data-bases
easy to analyze. The creation of such enriched registrations
can be seen as a special case of imputation. One registration
serves as a host or recipient source, and the other as a donor
source. Assuming the second registration to be the donor
source, the problem is imputing Z-values from the second
registration, into the first registration using the estimated
two-way table discussed in Section 2.2, as auxiliary
information. Statistical matching problems using data from
a third data source, have already been considered by Rubin
(1986) and Paass (1986). Singh et al. (1993) gives a review
of their methods. In addition, they propose some modifica-
tions to Rubin’s (1986) and Paass’s (1986) methods. Our
imputation method is based on the regression method
suggested by Rubin (1986) and Singh ef al. (1993).

After having defined predictors for the Z-variables by
means of the regression model

2, =A'x, k=1,...N,

where A4 is given by (2), we define new predictions for these
variables by means of the enlarged regression model

- ! t _
Z, =03, 0y, k=1, N,

with

Using well-known results about partial regression
coefficients in the general linear model (see e.g., Seber
1977), a, and a, can be expressed as

a, =4 - Ba,

and

-1

a, = X

N
E (yk -B txk)(yk_ B lxk)l
k=1

N
E (yk -B txk)(zk -4 ka)t]’
k=1
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where B and A are given by (1) and (2) respectively. They
can be calculated from the first and second registration. The
partial regression coefficients should be estimated from the
third source. We suggest

Q, =4 - Ba,

and
-1

a, = X

N
E (yk -B ’xk)(yk -B txk)l
k=1

’

[1; W, (¥~ B'x)(z,-A'x,)

where w, are calibration weights which are discussed in
Section 2.2. Based on these estimates we define new
predictions for the Z-values:

A

z, =00x,+0yy, =4 "x, +8(y,-B'x), k=1,..,N. ()

These new predictions equal the old predictions (see
Section 2.1) plus an adjustment term. This adjustment term
depends on the difference between the Y-value and its (old)
prediction. It can be viewed as an attempt to improve the
prediction for Z, however, and more important, it is a means
to reconstruct the weighting type estimator under the third
set of constraints (Section 2.2). Indeed, the following
equality holds:

N X
Y nzi =), Bx)A'x) +
k=1 k=1

n

;; w (¥, - B'x)(z, - 4'x,).
This is just the weighting type estimator under the third set
of constraints, if the corresponding calibration weights are
used to estimate a,. It is easy to show that

y 2t i t il t
PIERIEDIERIEDIER
k=1 k=1 k=1

So, also the XZ-table can be reconstructed. At the beginning
of this section, we assumed the second registration to be the
donor source. This choice was arbitrary. If the Y-values
were imputed instead of the Z-values, we would have
obtained an identical estimate for the YZ-table. In addition,
the XY-table could have been reconstructed.

The new predictions for the Z-values can be used for
imputation. Singh et al. (1993) give algorithms for impu-
tation using regression models. These Z-values can be
imputed in the first registration in two steps. In the first
step, the predictions given by (7) are calculated for each
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(x> yk) in the first registration. We have shown that the
crossings between the Y-values and these predicted
Z-values, can be considered as weighting type estimators.
However, the calculated predictions have in general no
realistic values, and therefore the first step is followed by a
second step. In the second step, each predicted Z-value in
the first registration is replaced by a live Z-value from the
second registration, which is nearest under some Euclidean
distance in (X, Z).

2.5 Estimating Cross-Products for Continuous
Y- and Z-Variables

The consistency property of the third set of constraints
(Section 2.2) also hold with respect to continuous Y- and
Z-variables, provided that there exist constants a_ and a_ of
proper order, such that ay'yk =1 and a;zk =] forall &. To
see this, we slightly extend the results of Section 2.1. First
note that

N N -1
tyt. 1 t ! _
a,B'x, = ay; VX kX; xx, | x,=

N N -1
t t
a'y x| Y oxx/| x,=a'x, =1
k=1 k=1

(it is still assumed that there exists a constant a such that
a'x, =1 forall k). Similarly, it holds that a4 ‘x, = 1. The
equivalent equations of (4) and (5) for the continuous case
are readily obtained. Consequently, pre—multlplymg both
sides of (III) with ay gives Y, ,w,z =Y~ 2z, and
post-multiplying both sides of (III) with a, yields
YW, Vi = YoV, So, the third set of constraints meets
the consistency objective, i.e., the calibration equation of
the first set of constraints, for quite general Y- and Z-
variables. We will give two examples.

In the first example we take y,=(1,y,) and
z, = (I,ZZk)’ where both y, and z, are assumed to be
contlnuous By taking a,=a,=(l, 0) we see that
a y a, 'z = 1 for all k. The cross-product between Y and Z
equals

N
N ’ N ; 2ok
;ykzk = ) ,

N
E Yok E YorZox
k=1 k=1

from which the covariance between y,, and z,, is easily
derived. This cross-product can be estimated using the third
set of constraints. An elaboration of this set gives the
following four constraints for this particular example:

n n N n N
E W, =N, Z kazk:E Yo E szzkzz 2y
k=1 k=1 k-1 k=1 k=1
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and
E Wil Vo Zye = (Vg ~ Bthk) (g~ Aztxk)) =
=1
i t t
E (B, x;) (4, x),
=1

where the regression coefficients are given by

N
32 =(; xkx,:]

-1 N

E X Vor
k=1

and
N 1w
t
4, = kE XXk ; Xy Zox
=1 =

If one is specially interested in the correlation coefficient
between y, and z,, then following constraints may be
considered in addition:

n N n N
E Wk)’22k = Z )’22k and E szzzk = E 222k'
x=1 k=1 k=1 k=1

In the second example, we suppose that y, = (1,y,,),
where y,, may be continuous, and z, is categorical with g
categories. By taking a,=(1, 0) and a, l where lis a
vector of ones of proper order we see that a y,c a, zk 1
for all £. The cross-product between Y and Z is

N N2 . e Nq

E Yok E Yok E Yok ’

keC, keC, kqu

Eykzk

where C, denotes the set of population elements belonging
to the h-th category of Z, and N, the size of C,. It is
ensured that the calibration weights according to the third
set of constraints, satisfy the ‘marginal’ calibration equa-
tions YWz, = Yz, = &V, ... N,) and Zk WYk =
Zk 1Vor» Which both may be of ‘interest in view of
consistency requirements.

3. COMBINING INDEPENDENT SAMPLES
ACROSS COMMON VARIABLES

In the previous section, we have presented a method for
combining two registrations across common variables,
using auxiliary information from a small sample. In this
section, the method is adjusted by combining two inde-
pendent samples. We consider a complete registration of
persons, two large-scale sample surveys, and a small-scale
sample survey. The registration contains a limited set of
variables such as sex, age, region, and marital status. These
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variables are denoted by X. In the one large sample, the
variables Y, U, and X are observed, and in the other large
sample, the variables Z, U, and X. In the small sample all
variables, i.e., Y, Z, U, and X, are observed. The small
sample could come from a specially conducted small-scale
survey, or from sample overlap of the large-scale surveys.
In Figure 1, the data sources are schematically given. For
convenience, it is assumed that all samples correspond to
different units, i.e., it is assumed that there is no sample
overlap.

registration

A4
xXur first large sample
X
L 1 smatt sample
XUz second large sample
v
Figure 1. Overview of the Several Data Sources

The common variables X and U are partitioned into
C = (X U), where X denotes the set of common variables
with known population totals, and U denotes the set of
common variables with unknown population totals. All
samples may be drawn by some complex sampling design.
Both Y and Z are assumed to be categorical, however, as in
Section 2.5, the suggested weighting methods are also
applicable for continuous Y and Z. The purpose is to
estimate the two-way table between Y and Z. We consider
two estimators. One estimator is based on incomplete
two-way stratification (analogous to the first set of
constraints of Section 2.2), and the other estimator is based
on a mix between statistical matching and calibration
(analogous to the third set of constraints of Section 2.2).

3.1 Incomplete Two-Way Stratification

First the population totals of ¥ and Z are estimated by
means of the first and second (large) sample respectively.
These population totals are estimated in two phases. In the
first phase, both (large) samples are weighted using X as a
set of control variables. This implies that both (large)
samples are weighted such that they reproduce the known
population totals of X, which are denoted by ¢ . Based on
these weights, a pooled estimate for the population totals of
Uis

~

L, = 7‘2 wythy +(1- X)E Worlys

ken, ken,

where w,, and w,, denote the (first phase) calibration
weights of the first and second sample, and A€[0, 1]. In
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the second phase, both samples are reweighted using
simultaneously X and U as control variables. Let v,, and
v,, denote these second phase calibration weights. The
resulting estimators for the population totals of Y and Z can
be considered as calibration estimators in two phases (see
Renssen and Nieuwenbroek 1997, Section 6). These
estimators are denoted by fy and f respectively:

t; =Y v, and EDIREN

ken, ken,

We note that both estimators are based on a similar set of
control variables. If the common set of variables is large,
one may consider using a smaller subset to weight both
samples. In general, the subset to weight the first sample
may differ from the subset to weight the second sample.
However, we shall assume in the sequel that both (large)
samples are weighted according to the same set of control
variables.

The two-way table between Y and Z can be estimated by
weighting the (small) third sample, using simultaneously ¥
and Z as control variables, i.e.,

T= Z W3k(ykzkt)’

ken,

where the calibration weights w,, satisfy the constraints

-~

E w3kyk:t; and E Wy, =1,

ken, ken,

This is incomplete two-way stratification, where the
unknown population totals of ¥ and Z are replaced by their
estimates. These sets of constraints ensure precisely
estimated marginal counts of the YZ-table if the common
variables C are highly correlated with Y and Z.

3.2 Synthetic Two-Way Stratification

In this section, we consider an alternative estimator for
the YZ-table, which also uses the (large) samples as a source
of auxiliary information. However, instead of using
estimated marginal counts as auxiliary information, esti-
mated synthetic cell counts are used. Let B denote the
population regression coefficient between Y and C, which
is estimated by the first (large) sample:

R -1
B =( E vlkckckt) ( E vlkckykt)'

ken, ken,

Similarly, let 4 denote the population regression
coefficient between Z and C, which is estimated by the
second (large) sample:

R -1
4 :( E v2kckckt) ( E v2kckzkt)'

ken, ken,
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Note that these estimated regression coefficients are based
on the second phase calibration weights instead of the
inclusion weights. If there exists a constant a, such that
a'c, =1 for all k, then we still have 1'B 'ck = l’/f'ck =1
for all £. Now, inspired by the decomposition given by (3),
ie.,

N t N t
E V2 =B 'Z (cpe )4 +
k=1 k=1
N
f‘_jl (y,-Ble)z,-4'c.),

we suggest estimating the two-way table in two steps. In the
first step the first term on the right-hand side is estimated by
substituting the population regression coefficients B and 4
by their estlmates B and A. Furthermore, we suggest to
estimate ) _ =YV .c .C; by the pooled estimate:

Y va,k(ckck) 1-1Y v, (e,

ken, ken,

where v,, and v, denote the (second phase) weights of the
first and second sample and Y€ [0, 1]. Eventually, the first
term is estimated by B 2 A. Until now, no use of the
third (small) sample has been made. If desired, estimates for
B, 4, and ) can be improved slightly by also using the
small sample.

In the second step, the complete two-way table between
Y and Z is estimated by weighting the third (small) sample
according to the calibration estimator subject to the third set
of constraints (see Section 2 2) where B, A4, and Z are
replaced by their estimates B, A, and 26. The resulting
estimator equals

®)

The first term on the right-hand side is an estimate for
the synthetic two-way table. This estimate is approximately
unbiased for the YZ-table, if the conditional independence
assumption holds. We note that, this type of estimator is
essentially obtained by applying the constrained statistical
matching method (see e.g., Barr and Turner 1980,
Rodgers 1984, or Rubin 1986). The second term is an
adjustment term to obtain an approximately unbiased
estimate for the YZ-table, without this assumption. If there
exists a constant a such that a‘c, =1 for all sampled
elements, then we obtain by pre-multiplying both sides of
(8) with /7, the following estimator for the population total
of Z:
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E w3ka’ (Yz chk +(1- Y)E Vo€ J

ken, ken, ken,

ken,

1Y & g Y 7 _ ot
E Vule | A =a E VuCiCr | 4 =1,
ken,

Similarly, we have by post-multiplying both sides with /, an
estimator for the population total of Y-

E Wbk = (YZ Vi (1= Y)E v2kck) =

ken, ken, ken,

ken, ken,

It follows that the marginal cell counts of the estimated
two-way table, are the two-phase calibration estimators for
the population totals of ¥ and Z as defined Section 3.1.

3.3 A Simulation Study; Integration of Household
Surveys

In this subsection, we wish to compare the weighting
techniques incomplete two-way stratification as discussed
in subsection 3.1, and synthetic two-way stratification as
discussed in subsection 3.2, by means of a simulation study.
To that purpose, we use a data set, which stems from a pilot
study of the Dutch Household Survey on Living Conditions,
(see van Tuinen 1995). The data set consists of 1,085
records of which the following variables are observed: age
(six categories: 15-24, 25-34, 35-44, 45-54, 55-64, 65+),
sex (two categories: male or female), ownership of house
(two categories: yes or no), occupation (five categories:
work, housekeeping, education, voluntary, other), and
health (two categories: yes or no). On behalf of the simu-
lation study, this data set is considered as a finite
population. The population totals of age and sex are
assumed to be known.

In order to simulate the weighting techniques, we have
carried out a Monte Carlo algorithm. Namely, we have
drawn 500 samples, independently of each other, according
to a two-phase sampling design. In the first phase, a simple
random sample of size 20,500 is drawn with replacement.
In this sample, age, sex, and ownership of house, are
observed. In the second phase, the (first phase) sample is
randomly divided into two large sub-samples of sizes
10,000 and one small sub-sample of size 500; in the one
large sub-sample, occupation is observed (denoted by Y), in
the other large sub-sample, health (denoted by Z), and in the
small sub-sample, both occupation and health are observed.
At each run, we have estimated the two-way table between
Y and Z, according to four weighting methods which are
discussed next.
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The first phase sample is weighted with a crossing
between sex and age as control variables. This is just
post-stratification with twelve post-strata. Based on these
weights, population totals can be estimated for all observed
variables in the first phase sample, and for crossings
between them. In particular, we may reproduce the popu-
lation totals for the crossing between age and sex, and
obtain estimated population totals for the crossings between
age, sex, and ownership of house. Now, we distinguish two
sets of common variables to weight the large sub-samples,
as well as to obtain an estimate for the synthetic two-way
table between Y and Z. The first set is a crossing between
age and sex (12 categories) and the second set is a crossing
between age, sex, and ownership (24 categories). For each
simulation, this gives two different estimates for the
marginal counts, ie. two different estimates for the
population totals of ¥ and Z — note that both estimates are
based on post-stratification — and two different estimates for
the synthetic two-way table. In order to weight the small
sub-sample, we distinguish between the weighting method
based on incomplete two-way stratification, and the
weighting method based on synthetic two-way strati-
fication. Since two different sets of common variables are
used to weight the large sub-samples, as well as for
statistical matching, we obtain four sets of calibration
weights for each simulation run with respect to the small
sub-sample, which in turn gives for each simulation run,
four different estimated two-way tables between Y and Z.
For the ease of computation, we have used the quadratic
distance measure in the calibration estimation, implying that
each estimated cell corresponds to a general regression
estimate. Finally, we have taken the averages and variances
of these two-way tables over the 500 simulations. The
results are shown in tables 5 to 8.

The averages over the 500 simulations are almost
identical for the four types of estimators, as can be seen
from these tables. Note that the given cell counts are
rounded off. We have also calculated the real YZ-table from
the finite population. The real counts equal exactly the
averages, which are given in Table 5 (or 6). For this
particular simulation study, we conclude that all estimators
have a very small bias.

The variances over these 500 simulations are given
within the brackets. The variances of the estimated marginal
counts of Tables 5 and 7 coincide, because these estimates
are based on the same estimator. For the same reason it
holds that the variances of the estimated marginal counts in
tables 6 and 8 coincide. Note that the variances of the
estimated marginal counts in tables 6 and 8 are slightly
smaller than the variances of the estimated marginal counts
in Tables 5 and 7, due to the larger set of common
variables. However, for most estimated marginal counts this
variance reduction can be considered negligible.

Tables 5 and 6 give identical variances with respect to all
estimated cell counts. The variances for most estimated cell
counts in Table 7, are plainly smaller than those in tables 5
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and 6. In Table 8, this variance reduction is even greater.
For this particular example, we conclude that the use of the
larger set of common variables, in combination with the
first weighting method, slightly reduces the variances of the
estimated marginal counts, but leaves the variances of the
estimated cell counts unaffected. Naturally, using the larger
set of common variables in combination with the second
weighting method, also slightly reduces the variances of the
marginal cell counts. Finally, given a set of common vari-
ables, the weighting method based on synthetic matching,
results in smaller variances for the estimated cell counts,
than the weighting method based on incomplete two-way
stratification.

Table 5
Incomplete Two-way Stratification Combined with the First Set of
Common Variables

1 2 3 4 5 total
yes Mo 232, 892s) 250y 599 85247
no 6159, 104, 11, 1 4645 2335
total 508y, 3364 1004 36, 105, 1085
Table 6

Incomplete Two-way Stratification Combined with the Second Set
of Common Variables

1 2 3 4 5 total
yes 44750 2324, 895, 254, 59es, 8527,
no 614, 1044, 11, 11, 464 233,y
total 5084, 3364, 1004 36 105 1085
Table 7

Synthetic Two-way Stratification Combined with the First Set of
Common Variables

1 2 3 4 5 total
yes 447, 231, 89,7 2540, 5942 851,
no 61 1054, 11,5 11 4634, 234,
total 5084, 3364, 1004 36, 105,, 1085
Table 8

Synthetic Two-way Stratification Combined with the Second Set of
Common Variables

1 2 3 4 5 total
yes  447g 231my 894 2545 590 851,
no 6lsy 1054 1l 1146 464, 234,

total 508, 3364, 1004 36, 105, 1085

3.4 Imputing Values of the one Large Sample into
the Other Large Sample

By means of the two large samples and the small sample,
one may construct a synthetic sample in which the real
Y-values and predicted Z-values, and/or the predicted
Y-values and the real Z-values are simultaneously recorded.
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We define predictions for the Y- and Z-values analogously
to (7), namely

Y, = étck+[~3; (zk—fftck),k=l,...,n2, )]
and
Z, = /i'ck+(i7_’ (yk—ﬁtck),k= 1,.,n, (10)
with
-1
ny
B, = kz_:lvzk(zk—Alck)(zk—A'ck)’ X
3 5" Qe
1; W3k (yk - Ck) (Zk - Ck) )
and

n
a, = kZ_:l ik (Vg _B’Ck)(yk _Blck)’

—/i’ck)’ .

3
1; Wy (v, - B ’ ez,

For each (c,, y,) the Z-values can be imputed in the first
large sample by means of (10), k£ =1, ..., n,, and similarly
for each (c,, z,) the Y-values can be imputed in the second
large sample by means of (9), k = 1, ..., n,. Based on these
imputed values, we may define the following estimates for
the two-way table between Y and Z.:

ny n
At Al t 2

Evlkykzk =B va e A+

k=1 k=1
3

Al ~t |
kz:wyc(yk =B'c)(z,-A'c))  (11)
=1
and
&) ny

3
kz_; wy(y,-Be)(z,-d'c). (12)

One estimate is based on the first synthetic sample, the
other on the second synthetic sample. By pooling the
synthetic samples, one obtains a pooled synthetic sample of
size n, +n,, from which a pooled estimated for the
two-way table can be constructed. This pooled estimate
shows a close resemblance to (8). Note that if C and Z are
perfectly correlated then the left-hand side of (11) reduces
to Zk Vik ykzk, i.e., our estimated two-way table corres-
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ponds to a weighted estimated two-way table based on the
first sample, as if the real values of Z were imputed in this
sample. Similarly, if C and Y are perfectly correlated, then
(12) reduces to Zk Vo Vi Ze -

An important special case to consider, is when c is
categorical. Then the following equalities hold true:

t
Z vlk(ckck E vzk(ckck) diag ( AX)’
t

ken, ken,
so (11) and (12) coincide. Furthermore, we have for
categorical c:

E vlkckZ:k E v2kcka

ken, ken,

and

E v2k)§kckt = E vlkykckr'

ken, ken,

Obviously, if ¢ is categorical, then it suffices to create a
synthetic sample, which is based on either the first synthetic
sample or the second synthetic sample. In either case, the
weighting type estimates for the CZ-table, the CY-table, and
the YZ-table, can be reconstructed. Finally, we note that the
imputed values in all synthetic samples may be unrealistic.
As described in Section 2.4, the calculated predictions may
be replaced by live values according to some algorithm.

4. SUMMARY

In this article we presented a weighting procedure to
combine information from distinct sample surveys. The
linking pin between these surveys, is a set of common
variables, (see Figure 1). It is argued that these samples
should be weighted according to a sequential structure.
First, both large samples were weighted using X as control
variables. Based on these weighted samples, we could
obtain a pooled estimate for the population total of U. Then
both large samples were reweighted using simultaneously
X and U as control variables. This gave an estimate for the
population total of ¥ and Z.

Using statistical matching techniques with X and U as
common variables, we may also obtain an estimate for a
synthetic two-way table between Y and Z. Eventually, the
small sample was weighted according to two different sets
of control variables. The first set of control variables
corresponded to the estimated population totals of ¥ and Z,
and the second set of control variables to the estimated
synthetic two-way table. Using the first set of control
variables, is strongly related to incomplete two-way
stratification. The theoretical framework needed to develop
the second weighting method, was discussed all through
this article. By means of both weighting methods, the
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YZ-table can be estimated (it is tacitly assumed that ¥ and
Z are categorical). The marginal counts of the YZ-table
corresponding to the first weighting method, equal by
definition of the calibration equations, the estimated
population totals of ¥ (which is based on the first large
sample) and Z (which is based on the second large sample).
It was shown, that this consistency property also holds for
the second weighting method. A numerical study was
conducted to evaluate the performance of the weighting
methods with respect to the cell counts. It was found that
both weighting methods yielded nearly (design) unbiased
estimated two-way tables. The simulated (design) variances
of the second weighting method, appeared to be smaller
than the corresponding (design) variances of the first
weighting method, with respect to all estimated cell counts.
In principle, the Y- and Z-variables were assumed to be
categorical, however, it was argued that the ideas presented
were also applicable for continuous Y and Z or for
continuous Y and categorical Z.

ACKNOWLEDGEMENTS

The author wishes to thank Peter Kooiman, Nico
Nieuwenbroek, and Ger Slootbeek for their careful reading
and useful remarks. The author also thanks two anonymous
referees and an associated editor for their valuable
suggestions to improve the article. The views expressed in
this article are those of the author and do not necessarily
reflect the policy of Statistics Netherlands.

REFERENCES

ALEXANDER, C.H. (1987). A class of methods for using person
controls in household weighting. Survey Methodology, 13,
183-198.

BAKKER, BF.M., and WINKELS, J.W. (1998). Why integration of
household surveys? — Why POLS?. Netherlands Official
Statistics, 13, 5-7.

BARR, R.S., and TURNER, J.S. (1980). Merging the 1977 Statistics
of Income and the March 1978 Current Population Survey.
Technical report, U.S. Department of the Treasury, Office of Tax
Analysis.

BETHLEHEM, J.G., and KELLER, W.J. (1987). Linear weighting of
sample survey data. Journal of Official Statistics, 3, 141-153.

COPELAND, K R, PEITZMEIER, F XK., and HOY, C.E. (1987). An
alternative method of controlling Current Population Survey
estimates to population counts. Survey Methodology, 13, 173-181.

DEVILLE, J.C., and SARNDAL, C.-E. (1992). Calibration
estimators in survey sampling. Journal of the American Statistical
Association, 87, 376-382.

183

DEVILLE, 1.C., SARNDAL, C.-E., and SAUTORY, O., (1993).
Generalized raking procedures in survey sampling. Journal of the
American Statistical Association, 88, 1013-1020.

FELLEGI, L.P., and SUNTER, A.B. (1969). A theory for record
linkage. Journal of the American Statistical Association, 64,
1183-1210.

HOFMANS, M.G. (1998). Innovative weighting in POLS. Making
use of core questions. Netherlands Official Statistics, 13, 12-15.

LEMAITRE, G., and DUFOUR, J. (1987). An integrated method for
weighting persons and families. Survey Methodology, 13, 199-208.

MADDALA, G.S. (1983). Limited-dependent and Qualitative
Variables in Econometrics. Cambridge: Cambridge University
Press.

OH, H.L., and SCHEUREN, F. (1987). Modified raking ratio
estimation. Survey Methodology, 13, 209-219.

PAASS, G. (1986). Statistical match: Evaluation of existing
procedures and improvements by using additional information. In
Microanalytic Simulation Models to Support Social and Financial
Policy. Amsterdam: Elsevier Science.

RAGHUNATHAN, T.E., and GRIZZLE, J.E. (1995). A split
questionnaire survey design. Journal of the American Statistical
Association, 90, 54-63.

RENSSEN, R.H., and NIJEUWENBROEK, N.J. (1997). Aligning
estimates for common variables in two or more sample surveys.
Journal of the American Statistical Association, 92, 368-374.

RODGERS, W.L. (1984). An evaluation of statistical matching.
Journal of Business & Economic Statistics, 2, 91-102.

RUBIN, D.B. (1986). Statistical matching using file concatenation
with adjusted weights and multiple imputations. Journal of
Business & Economic Statistics, 4, 87-94.

SARNDAL, C.-E., SWENSSON, B., and WRETMAN, J.H. (1992).
Model Assisted Survey Sampling. New York: Springer Verlag.

SEARLE, S.R. (1971). Linear Models. New York: John Wiley &
Sons.

SEBER, G.AF. (1977). Linear Regression Analysis. New York: John
Wiley & Sons.

SINGH, A.C., MANTEL, H.J., KINACK, M.D, and ROWE, R.
(1993). Statistical matching: use of auxiliary information as an
alternative to the conditional independence assumption. Survey
Methodology, 19, 59-79.

TUINEN VAN, H.K. (1995). Social indicators, social surveys and
integration of social statistics. Statistical Journal of the United
Nations ECE, 12, 379-394.

WINKELS, J.W., and EVERAERS, P.C.J. (1998). Design of an
integrated survey in the Netherlands. The case POLS. Netherlands
Official Statistics, 13, 6-11.

ZIESCHANG, K.D. (1990). A generalized least squares weighting
system for the consumer expenditure survey. Journal of the
American Statistical Association, 85, 986-1001.



