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Price Index Surveys as Quasi-Longitudinal Studies

ALAN H. DORFMAN!

ABSTRACT

To calculate price indexes, data on “the same item” (actually a collection of items narrowly defined) must be collected across
time periods. The question arises whether such “quasi-longitudinal” data can be modeled in such a way as to shed light on
what a price index is. Leading thinkers on price indexes have questioned the feasibility of using statistical modeling at all
for characterizing price indexes. This paper suggests a simple state space model of price data, yielding a consumer price

index that is given in terms of the parameters of the model.

KEY WORDS: Random walk plus noise model; State space model; Laspeyres index; Paasche index; Geometric price index.

1. INTRODUCTION

Survey sampling for calculation of a consumer price
index is characterized by following a given item across time
to determine its prices at a succession of times. Only it is
not, typically, exactly the same item that is followed — it is
not this particular can of Brand Y Tomato Soup at Outlet Z
the price of which is repeatedly ascertained, for this
particular can is likely to have been sold and consumed, by
the time of the next visit of the survey sampler — but rather
a succession of items, each fitting the same description
(“Brand Y 8 oz. Can of Tomato Soup with Herring, sold at
Outlet Z”), the price of which is collected at different times.
In other words, it is essentially a group of items fitting a
narrow description which is followed across time. For this
reason consumer price index surveys may be termed
“quasi-longitudinal” as opposed to longitudinal surveys,
which would follow individual items across time.
Nonetheless, it is reasonable to hope that, having repeated
measurements across time might lead to estimation
procedures which could capitalize on the time series aspect
of such surveys.

In the light of that hope, this paper considers a question
which has by and large been ignored by statisticians and
economists, or, when not ignored, been answered in the
negative: Can a consumer price index (CPI) be treated from
a statistical point of view? That is, can the parameter, which
characterizes the “change in the cost of living” from one
period to another, and which price index surveys attempt to
estimate, be defined in terms of a stochastic model?

Aldrich (1992) gives an historic interpretation of early
attempts by Jevons and especially Edgeworth, to
incorporate distributional assumptions into the CP1. Recent
papers on stochastic modeling of the CPI, are those by Balk
(1980), Clements and Izan (1981,1987), Bryan and Cechetti
(1993), Kott (1984) and Selvanathan and Rao (1994).
Diewert (1995) reviews and criticizes these attempts, taking
an argument of Keynes (1930) as decisive grounds for
rejecting the stochastic approach.

In this paper, a specific approach to modeling the price
index using state space models is suggested, and a specific
state space model tentatively suggested. This model is
applied to scanner data to demonstrate the feasibility of an
index based on it. The approach we contemplate, circum-
vents the Keynesian criticism in fundamental ways, and
offers the prospect of the many advantages that sound
statistical modeling can bring, including, possibly, simpli-
fications of the survey sampling process.

In what follows, we first briefly review the definition of
a price index, and the two (non-stochastic approaches)
which have dominated consideration of choice of index
(Section 2). We review the Bryan and Cecchetti (1993)
example of a statistical model for the price index, and
Diewert’s formulation of Keynes’ objection (Section 3).
We then introduce an approach to modeling a consumer
price index, that circumvents the Keynes-Diewert
difficulties, and that leads naturally to the use of state space
models (Section 4). We present results of applying a rela-
tively simple random walk plus noise model to scanner data
from the A.C. Nielsen Academic Data Base (section 5).
We assess the new index in Section 6, mentioning further
research that might be useful.

2. BACKGROUND
What is meant by a Consumer Price Index (CPI) is a
single number indicating how the purchasing power of the
consumer has changed from one period ¢’ to another #. Its

raw ingredients consist of prices for the variety of available
items at (at least) the two time periods

D, = (pﬂ, ...,pIN), T=11
as well as quantities of the items sold

9, = e s T T =15 1.
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(Often however in practice quantity data from the periods
in question are unavailable, and one makes do with some
form of surrogate.) The CPI is derived from a “formula”
that uses these raw ingredients:

Ly =/(PePr 9 d)

where f() is a function of one of many possible forms.
Most such forms have a long history, and have been
extensively discussed in the index literature.

As examples, we mention here the Laspeyres index

with f.. =g, pt,l./Zfil q,,p,, the “relative expenditures”,
and r,, = p,./p, the “price relatives”. The Laspeyres index
uses the quantities from the earlier time period, as a fixed
basis of comparison of the earlier and later prices. The
Laspeyres index (or a close variant) has tended to be the
index most targeted by governments, because of its
simplicity and intelligibility to the layperson.

The natural counterpart to the Laspeyres is the Paasche
index

N
213 4,0,

N
ZI? 4Py,

which standardizes the prices by the later period quantities.
Most indices following other formulas will tend to fall
between the Paasche and Laspeyres.

For later reference in this paper, we mention an index
based on the geometric mean, with fixed non-negative
weights f;, adding to 1:

v p f;
(2]

i=1 |\ Py

P

t't

This is sometimes referred to as the “Geomean”.

Fisher (1922) discusses these and many other index
formulae. He introduces what has come to be called the
“Test Approach”, for deciding among the variety of
candidates for the formula f{-): this approach lays out
properties (“tests”), which a reasonable index would seem
to require, and then examines to what extent each index
formula satisfies them.

One of the tests is the Time Reversal Test: 7, I, = 1.

[l
Two indices which continue to exercise their sway in the
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world, but fail this test are, the Ca~rli-Sauerbach index
C,, = Zﬁlfipn/pl,i and a geomean G, = Hﬁl(p”./pl,,)f""
which employs first period expenditures instead of fixed
weights. One readily shows that C, C,. > 1, using the
Cauchy-Schwartz inequality, suggesting that this index will
run too high.

If an increase in prices on item i tends to give an increase
in expenditure share, then G[, , Gn, < 1, so that under such
conditions, the first-period-geomean tends to run too low.
If an increase in prices on item i tends to give a decrease in
expenditure share, then Gl, , runs too high. In general, we
can expect this to be a rather erratic index.

This suggests the following maxim: price indices of the
form of a geometric mean, should not have weights tied to
prices at one of the periods being compared; those of the
form of an arithmetic mean should not have weights
independent of those prices.

By contrast with Gt,,, the geomean G, = Hﬁl (p,/p,;
which has fixed weights, is the unique index which satisfies
the five axioms on price indices in Balk (1995), and the
“circularity test”, which says that, for ¢ <t* <z, I, =
1, 1., Timereversal is an immediate consequence.

Indices which pass most of the tests, tend to be ones
incorporating quantity information from both periods; for
example, the Fisher index

)ff

Ft’t = (Lt’t Pt’t)”z

and the Tormqvist index

N Jru
7, =11 [ p—J ,

=1 \ Py

with  f,..=(f,; +f;)/2. The Fisher and Tornqvist are
frequently practically indistinguishable. Further discussion
of the test approach, may be found in Balk (1995), Diewert
(1987), and Eichhorn and Voeller (1976).

The second approach to assessing index formulas is the
“economic” approach. This defines a generic index of the
form

where U =U (45 ---» q,) 1s a well-defined “utility function”,
and C(p,, U) is the minimal cost at prices p,, of achieving
the standard of living, or “utility” U. For a particular utility
function U, one inquires whether a particular formula can
be regarded as a good approximation to the corresponding
cost of living index. Like the test approach, this tends to
yield indexes incorporating quantity information from both
periods. See Diewert (1987) for further elaboration.
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3. THE STOCHASTIC APPROACH

Aldrich (1992) gives the early history of attempts to
model price relatives or logarithms of price relatives, using
a common parameter that represents the overall rate of
growth in prices. A basic theme of his paper is, that the
stochastic approach to price indices, while being an early
example of the application of statistics to economic
concerns, died anatural death. Diewert (1995) also discusses
these, as well as more recent examples of the statistical
modeling of price relatives. The difficulty which, following
Keynes (1930), Diewert finds with such use of models is
exemplified by a model of Clements and Izan (1987).

The period from ¢’ to ¢ is divided into equi-temporal
pieces, giving relatively short intervals generically
represented as being from ¢ - 1 to . The logarithm of the
price relatives for such a “micro-period”, is given by

log[i] =m,+ B, + e, (1

with g, ~ (0, 0,2 /£,). Intheir model, the f’s are the average
expenditure share of the i-th item over the period ¢’ to ¢.
For the sake of identifiability, it is assumed that

N . )
Yi-1/;B,=0. These assumptions lead to a maximum
likelihood estimator

L b,
n,:zfslog[—],
in1

Pyi

giving an MLE of the price short period price trend as

N 7
exp (ftt) = H [&] ;

i=1 | Py,

that is, based on their stochastic model, one derives a
geometric index, with weights £, akin to that for the
Térnqvist.

Estimates of the Bi and of o2 can also be derived, as well
as estimates of precision, for example, of the variance of #&.
Thus, a new statistical foundation seems to be put under an
old estimator.

Diewert (1995) raises several objections, none of which
can be taken lightly. The chief of these is

“... the fundamental objection of Keynes
(Keynes 1930, p. 78): “The hypothetical
change in the price level [exp ()] which
should have occurred if there had been no
changes in relative prices, is no longer
relevant if relative prices have in fact
changed — for the change in relative prices
has in itself affected the price level’.”

If, say, the price of bread relative to the price of
automobiles changes, then by that very fact, the overall
price level changes.
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Keynes’ objection is not entirely clear. Why can’t there
be two aspects of price change, one overall, and the other
particular? However, it is not hard to agree that the indi-
vidual price trends are primary; an overall price trend can
only be some weighted sum of these. Diewert offers the
following translation into terms of a model, of Keynes’
objection. Since we must have the overall price trend of the
form

N
* *
T = E fz B>
i=1

the model (1) needs to be replaced by

log [ _’é"] =m + B, + e, @
Dy,

with B, ==, - B, and Zﬁl /B, =0. The crucial difference

between this and (1) is that now the item parameters B, are

indexed by time. But “then the resulting model has too

many parameters to be identified.” This would suffice to

nullify the approach.

Diewert (1995) does not discuss the much more
complicated time-series model of Bryan and Cecchetti
(1993). Of preceding papers, it is probably the closest to
our present paper, involving a complicated state space
model and use of the Kalman Filter. Like the other papers
Diewert reviews, it is subject to Keynes’ objection.

4. PRICE INDEXES RECONSIDERED

4.1 Common Presuppositions

The stochastic modeling of price behavior given in the
last section, whether embodied in equation (1) or (2), or
some similar model, has three notable characteristics; the
modeling is:

1. Comprehensive in the sense that it aims straight for an
overall “inflation rate” encompassing all items.

2. Atomistic: every item is modelled individually, having
its “private” parameter, its own rate of inflation
[exp(m, + B,)], apart from all other items.

3. Time isolated. price relatives modeling for period # - 1
to ¢ is disjoint from that for period - 2 to # - 1 etc.

It is the combination of these suppositions that yields
Diewert’s “over-parameterized” argument. The primary
thrust of Keynes’ criticism is against 1: an overall inflation
rate or rise/fall in the cost of living has to be a weighted
mixture of several price trends. This may be granted
without going so far as to embrace item 2. Item 2 is tacitly
accepted in almost all (non-stochastic) constructions of
price indices. However, it is not at all clear that every
single item has its unique price trend. Different items (for
example, Brand X ice cream at several supermarkets) are
likely to have a tendency to rise and fall together (at least in
the long run). There are degrees of homogeneity between
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items. In any case, none of these assumptions is a necessary
component of a stochastic view of price indices.

4.2 An Elementary State Space Model

We divide the time period ¢’ to ¢ into sub-periods ¢/,
t' +1,..,t-1,¢, and the collection of heterogeneous iterns
into homogeneous sub-groups g, where the defining
characteristic of homogeneity is a tendency to similarity of
price change behavior. We make two assumptions
1. 1., is a mixture of “homogeneous” indices /_,

gt l ’
2. 1 , can be attamed through chaining: I HT -
where T=t'+1,.

We focus on a smgle group index / ., dropping the
subscript g for simplicity of notation. Thus, for the
remainder of this paper, we focus on the “sub-index”
1,=1,

’We proceed to develop an elementary state space model
(Harvey 1990, Chapter 3) for the logarithms of the
within-group price relatives. Suppose the group contains »
ites. Fori=1,..,n,letr,=p./p, 1.; be the micro-period
price relatives, and y, = log( p"/p, 1,) log( p") -
log(p, ), their logs. The reason for using logs is that
considerable empirical work, beginning with Edgeworth
(see Diewert (1995)), suggests that the logs of price
relatives will be much closer to having a normal distribution
than the price relatives themselves, which can be
considerably skewed. Normal distribution of errors is a
standard assumption in state space models. Let
¥,= (Y, - ,,) and 1 be a vector of ones of length ».

Consider the multivariate random walk plus noise
(RWPN) model

y,=1p, +¢, € ~ MVN(o, Ees)

NQ.s,,) ©

gt't’?

M =My "M M ~
with g ,m_,Te (@, ¢’ +1,..,¢-1, ) mutually independent.
The model implies that the amount that overall group prices
are rising (or falling) in one micro-period, tends to hover
around the amount they tended to rise (or fall) in the
previous micro-period. This is a matter of common
observation: if the price rise in one month tends to be high
(low), then in the next month it tends to be correspondingly
high (low). Since we are considering a homogeneous set of
items, it makes sense that their log price relatives have a
common mean. We leave for later work, the question of
how to join sub-indices into an overall index.

The model (3) implies the simpler univariate RWPN
model

YV, =H tE,E NN(O’GEE)

M, =M+, 1, ~ N0, o, ) ()
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with y,=n"'1'y,€e, =n""1"¢, and 6, =n"'1'y 1.
Some information is thrown away in using (4); on the other
hand, the normality assumption is even more likely to hold.
For convenience, calculations in the study described in
Section 5, were based on the univariate model.

The Kalman Filter (Harvey 1990, Section 3.2) can be
used to give estimates fi_, and 6, cm] of the state
parameters p_ and the variances o, o, = respectively.

Then we define /[, =E(G,|S,), where G, =
IL(p,/p, ,)f isa geomean dependent on fixed shares f,,
and S, represents the totality of state parameters p_ through
time t, and also the “hyperparameters” s O In other
words, we condition on what we take to be the underlying
process through time ¢. Then

1
I”:exp(pt U T ey +EV)’ (5)

where v = (t- )Y} .c,.f.f., with o, the covariance of
g, and g, typically of lower order than the state para-
meters p.  The natural estimator of [, is I, =

exp(fd, +f,_, +...04,,,); then
R 1.
E(I’,IIS,) TOXPI M M M Y EV ’ (6)

where ¥, given in the Appendix, does not in general equal v,
but is frequently close, and in any case is of the same order
of magnitude. The difference A(v) =¥-v can be
estlmated by say A (v), yielding a bias-corrected estimator
I 1, exp(- 1/2A(v)) _Expressions for v and ¥, and a
suggestlon for a maximal A ), are given in the Appendix.
It may be noted that A(v) and hence [,,, depends on the
weights f;, but that It ., does not.

5. EMPIRICAL STUDY

To determine the feasibility of the calculation of price
indices using the RWPN model and gain some idea of the
behavior of the RWPN index, a small empirical study was
made, using price and quantity data for Canned Tuna in the
A.C. Nielsen Academic Data Base. Canned tuna has
somewhat volatile price and quantity behavior, due to
frequent sales, at sometimes very marked discount.

The study covered the Northeast USA and the 104 weeks
of the years 1992-1993. The original data set was rather
large. To make the investigation manageable, weekly data
was combined into 4-week periods, giving a total of 26
periods over two years. Thus for purposes of this study, the
data were cumulative quantities and quantity-weighted
average prices over four week periods.

The homogeneous groups were defined by brand and
type, as follows: 3 brands here labeled A, B, C of
“premium” tuna in water, the same three brands of “light”
tuna in oil, and again the same three brands of “light” in
water, making 9 groups in all.
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The study focused on 83 outlets which had positive
quantities over most of the 4 week periods, for each of the
9 distinct groups.

The RWPN based index 7, and the adjusted RWPN
based index /,, were calculated for four time intervals. In
each case, the final period ¢ = 26, and the early period was
taken successively as ¢’ = 3, 6, 10, 14. For the purpose of
comparison, we also calculated the corresponding Laspeyres
and Paasche Indices. These two standard indices provide
also a basis of indirect comparison to the Fisher and
Toérnqvist, which will be about half way between them.

Figures 1 and 2, for premium and light tuna respectively,
give the values of the four indices for the four time
intervals, the points representing the state space indices, the
lines used to indicate the Laspeyres and Paasche. The
adjusted RWPN I: , is invariably larger than the unadjusted
RWPN /,,. Note that, since it is the first period that we are
varying, where the path of indices is monotone up, this
would suggest a downward trend in the cost of the
particular tuna group (and vice versa).

We observe that the new indices are not out of line with
the traditional indices, frequently lying between the
Laspeyres and Paasche, but they tend to be considerably
more stable as ¢’ changes, suggesting possibly that the
traditional indices are reacting to “noise” in the data, and
that, in fact, basically very little change is going on in this
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two year period. It may also be observed in Figure 2, that
Light in Oil and Light in Water have similar within brand
behavior, suggesting that we might have taken a broader
“homogeneous” grouping.

6. FURTHER WORK

The investigation described in this paper suggests several
topics for further research.

Measures of precision and estimates of the RWPN
indices, in terms of variances or confidence intervals based
on the state space model, need to be worked out. Even
those who are dubious about the viability of a stochastic
methodology in price indices, find the possibility of having
a measure of precision appealing (Diewert 1995). It would
also be of interest to get measures of precision of more
standard indices, based on the state space model.

Empirical work is desirable that investigates more
closely what groups of items might best be considered
“homogeneous”. Also, models possibly more elaborate
than the simple RWPN model require investigation. In this
respect, the use of scanner data will be a great help,
supplying as it does, quantity data as well as prices, in great
detail.

Brand A, Premium in Water

1.2

1.0
©
+©

[+X:]

3:26 6:26

Brand B, Premium in Water

09 10 11 12 13 14

+ rwpn
o rwgnadjus(od

a6 6:26

3:26 6:26

Figure 1.

10:26 14:26

Four Price Indexes for Four Time Intervals, Premium Tuna
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Brand A, Light in Oil
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Brand A, Light in Water
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©
o

08 10 11 12 13

Figure 2.

The state space methodology has methods of handling
missing data (Harvey 1990, Section 3.4.7). A point of
major concern is how well these models will handle missing
data in estimating price indices. In particular, since in
practice most data for calculating price indices is based on
a small sample of items available, we need to know the
robustness of state space indices to the absence of data.

Algorithms for smoothing and forecasting of state space
models, are well known. Their use in revising and
forecasting indices, might be of great interest.

Finally, in this paper we have focussed only on getting
an index for a single homogeneous group. It would be of
interest to develop a state space model that combines
groups and enables us to get an overall measure of
purchasing power.
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Four Price Indexes for Four Time Intervals, Light Tuna

APPENDIX

Details of expressions (5) and (6).
We have that

fi
G,, - H,- Py Py Pro
Piri Prai Pr
_H (n -1, e, )f,’

and letting

Plt’t = log (Gt’r) = Ei fl log(pti/pt’i)’

we have that

E f log(n t-1,i "
=2 At Vet

l+1)

myt’+1,i)
and also that

1.,=E(G,,)=exp(E(H,) + 1/2var(H,)),
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where the moments are calculated conditional on the state
S,, asin Section 4.3. Let v = var(H,,). Then

E(H,)=E(H, | S,) =
o S T ) T R

and

v =var(H,,) = var(H,]|S,) =

[ Yy ms) s
T=t'+1 i i i’

where o, is the covariance of €, and ¢£,. We note that
v={(t- t )Y, f. o, in the special case that the errors ¢,
are independent and identically distributed at each tlme
period.

Wenowcon51derest1mator1 =exp(d, + [, ,+
We find that E(”) exp(pl+pt41 M
where

V= var(z flTlS,) = {E yf}var(f/t]S,) +

t'+1 t'+1

)
+1/29),

4

v var(@,|S,) = {E v,

t'+1

*2
Y Pr'—1}°é§

with
! v
T =k0+ > I a-&)
v=t+l u=1+l
and
t v
Y; = E H (1 - ku)’
vat'+l u=t'+1
where
k‘[ =p‘t|‘[-1/(p‘t|‘t—l + 1),
and Dijryr P 1€ the mean square errors of i given data

up to t- 1, T respectively, and are estlmated using the
Kalman Filter.
This result follows from the equations used in estimating
[
=ky +(A-k)QA,,

A=k vy A -k i,

ﬁt’+1 :kt’+1;l'+] + (1 kr'+1)ﬁr’

(c¢f Harvey 1990, equation 3.2.8), by expressing each fi_ in

termsof y_,y. |, .., Y, m“r
In comparing v and ¥, we find, empirically that

t
2 *2
E Yo Ve P =t
t'+1
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We here consider the simple case where var(e,) = o, and
cov(e,, £, ) =po,,, with p > 0, for i’ # i, that is where not
only variances, but all covariances are equal and
non-negative. It then can be shown that

Gz =7 _ZZ E G = E Z o fifi < nz ﬁzcéa’
i ! I H !

where 7 is the number of items in the group. The lower
bound is achieved in the case f, = 1/n, and the upper in the
case p=0. In the first case, no bias adjustment is
necessary; in the second we would take A v)=V-9,
where ¥ = (t—t)an. 6; andv {Z, +17:+Y; Py} 6z
These correspond respectlvely to I and I
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