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Longitudinal Analysis of Swiss Labour Force Survey Data
by Multivariate Logistic Regression

PAUL-ANDRE SALAMIN!

ABSTRACT

In longitudinal surveys, simple estimates of change, such as differences of percentages may not always be efficient enough
to detect changes of practical relevance, especially in sub-populations. The use of models, which can represent the
dependence structure of the longitudinal survey, can help to solve this problem. One of the main characteristics observed
by the Swiss Labour Force Survey (SLFS) is the employment status. As the survey is designed as a rotating panel, the data
from the SLFS are multivariate categorical data, where a large proportion of the response profiles are missing by design.
The multivariate logistic model, introduced by Glonek and McCullagh (1995) as a generalisation of logistic regression, is
attractive in this context, since it allows for dependent repeated observations and incomplete response profiles. We show
that, using multivariate logistic regression, we can represent the complex dependence structure of the SLFS by a small
number of parameters, and obtain more efficient estimates of change.

KEY WORDS: Longitudinal binary data; Multivariate logistic model; Labour force survey.

1. INTRODUCTION

One of the main objectives of the Swiss Labour Force
Survey (SLFS), is to produce estimates of change for the
percentages of the population in different employment
statuses. Typically, simple estimates of change, such as the
difference of the percentages of employed individuals
between two years, are calculated for the whole population,
and for a large number of sub-populations. In general, this
is unsatisfactory, as the estimates for the sub-populations
may not always be efficient enough to detect changes of
practical relevance. The work presented here was motivated
by the question, whether the use of models, which can
represent the dependence structure of the survey, could help
to solve this problem.

As the SLFS is designed as a rotating panel, we are
dealing with longitudinal categorical data, for which a fairly
large proportion of the response profiles, are incomplete by
design. The focus of interest is on modelling marginal
probabilities, namely, the probabilities to be in a given
employment status, as a function of time and other
covariates that define sub-populations. If the repeated
observations of the employment status were independent, a
natural approach would be to use logistic regression. The
multivariate logistic model, introduced by Glonek and
McCullagh (1995) as a generalisation of logistic regression,
is attractive in this context, since it allows for dependent
repeated observations and incomplete response profiles.

The aim of this paper is to show that, the ability of
multivariate logistic regression to model the complex
dependence structure of the SLFS data, leads to more
efficient estimators of change. Although we illustrate the
method using the SLFS data only, it is clearly of wider
applicability.

1

There are a number of important issues that are not dealt
with in this paper. As the SLFS data come from a complex
survey, it can be argued that any analysis should take the
sampling weights into account (Pfeffermann 1993). Here
we use the unweighted data only. However, it can be
shown, using the pseudo-likelihood approach of Binder
(1983), that multivariate logistic regression can be extended
to that situation (Salamin 1998). Non-response is always
of great concern in sample surveys. Here, we consider only
the incomplete response profiles that arise through the
rotation of the panel, in which case, the hypothesis of
missing completely at random, is reasonable. Note
however, that multivariate logistic regression, is flexible
enough to incorporate extra parameters for the incomplete
profiles, arising from panel, attrition. Thus, the individuals
which dropped out of the panel, could also have been
included into the analysis. Finally, it is well known that
classification errors may introduce large biases in the
observed response profile probabilities, see e.g,
Pfeffermann, Skinner and Keith (1998). It would certainly
be desirable to investigate how these biases affect the
parameter estimates of multivariate logistic regression,
which have interpretations in terms of marginal moments.

Log-linear models and marginal models are closely
related to multivariate logistic regression, and are further
discussed in Section 3. Here we discuss briefly transition
models, random effects models, and survival analysis, in the
context of the SLFS. Under a transition model, see e.g.,
Diggle, Liang and Zeger (1994, Ch. 10) or Zeger and Liang
(1992), the repeated observations of the employment status
are correlated, because past employment statuses influence
the present employment status. The focus of interest, are
the transition probabilities between the different
employment statuses, e.g., the probability of being
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employed, conditional on being unemployed in the past. In
the regression setting, the past responses are treated as
additional explanatory variables. An important issue, is the
determination of the number of past responses to include as
predictors. If the model for the transition probabilities is
correctly specified, we can treat the repeated transitions for
an individual as independent events, and use standard
statistical methods, such as logistic regression. Under a
random effect model, see e.g., Diggle et al. (1994, Ch. 9),
the probability of being in a given employment status, is a
function of explanatory variables, where the regression
coefficients vary from one individual to the next. This
variability of the regression coefficients, reflects the natural
heterogeneity of the individuals, due to unmeasured factors.
Given the regression coefficients, the repeated observations
of the employment status, are assumed to be independent.
The correlation among the repeated observations, arises
solely because we are unable to observe the true regression
coefficients. This approach is most useful, when inference
about individuals rather than population averages, is the
focus of interest. In survival analysis, also called event
history analysis in the econometric literature (Lancaster
1990), the focus is on modelling the transitions between
employment statuses over time, as a function of explanatory
variables. Here, the exact time at which a transition takes
place, is important. In the SLFS, the employment status is
observed once a year. The changes in employment status,
that took place during the year preceding the interview, can
be reconstructed. However, since this reconstruction is
based on the self-assessment of the subjects, there may be
some imprecision as regards prior status, and time of
change of status. An analysis of the SLFS data based on this
approach can be found in Gerfin (1996).

The article'is organized as follows. We begin in Section
2 by describing the data, a subset of about 5000 individuals
from the SLFS, which are used in the examples of Sections
4 and 5. In Section 3, we discuss multivariate logistic
regression, and contrast it with the log-linear and marginal
models. In Section 4, we illustrate the ability of multivariate
logistic regression, to represent the complex dependence
structure of the SLFS data, by a small number of para-
meters. In Section 5, we compare multivariate logistic
regression with a simple estimator of change. It is shown
that, using multivariate logistic regression, results in a gain
in efficiency. Finally, we present in Section 6 our
conclusions, and give directions for further work.

2. SWISS LABOUR FORCE SURVEY DATA

A detailed description of the sampling design and
weighting procedure of the SLFS, can be found in Hulliger,
Ries, Comment and Bender (1997). Here, we just recall
some of the relevant aspects of this survey. The SLFS
collects information on the employment of resident persons
of age 15 or more in Switzerland. Starting in the second

quarter of 1991, a sample of about 16,000 persons are
interviewed each year. The survey is designed as a rotating
panel, with a time-in-sample of 5 years. During the start-up
phase, i.e., from 1992 to 1996, approximately one fifth of
the original sample was rotated out each year, and replaced
by a renewal sample. The units in the renewal samples then
stayed in the panel for a full period of 5 years.

In the examples of Sections 4 and 5, we use the obser-
vations of the employment status, for the years 1992 to
1995, obtained from the individuals in the sample, of the
canton of Vaud. The structure of the data, as well as the
longitudinal and cross-sectional sample sizes, are shown in
Table 1. Due to the sampling design, some of the response
profiles are incomplete. For example, for the individuals
that were selected in 1991 and rotated out of the sample in
1994, the period of observation, denoted (1)234, goes from
1991 to 1994. We use the notation (1)234, to emphasise the
fact, that we do not use the observations taken in 1991.

Table 1
Structure of the Data, Longitudinal and Cross-sectional Sample
Sizes Canton of Vaud, 1992-1995

First year Observation times for various Period of

in sample parts of the sample observation

91 92 (1)2 622
92 93 (1)23 412
92 93 94 (1)234 527
92 93 94 95 (1)2345 481

92 92 93 94 95 2345 612

93 93 94 95 345 722

94 94 95 45 728

95 95 5 877

2,654 2,754 3,070 3,420 4,981

Employment status is a nominal variable with three
categories, defined as “employed”, “unemployed” and “out
of the labour force”. In the examples of Section 4 and 5, we
work with a binary variable, taking the value 1 if an
individual is employed, and 2 if an individual is
unemployed or out of the labour force. This is done solely
to simplify the presentation of the multivariate logistic
models. As the method can handle an arbitrary number of
categories, it would be preferable, not to collapse the
statuses in a real analysis. Caution must be exercised, if it
is nevertheless necessary to combine some of the statuses,
as heterogeneity of the statuses may introduce bias.

3. MULTIVARIATE LOGISTIC MODELS

The multivariate logistic model, introduced by Glonek
and McCullagh (1995), can handle multivariate responses
of either nominal or ordinal types, and either discrete or
continuous explanatory variables. Here, we consider only
multivariate binary responses and discrete predictors. The
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multivariate logistic model, is an example of a generalized
linear model, see McCullagh and Nelder (1989). Its link
function, also called the multivariate logistic transforma-
tion, expresses the joint distribution of the response
profiles, in terms of marginal moments of increasing order,
the first two being marginal logits, and marginal log odds
ratios. The link function has the property, termed
reproducibility, that a multivariate logistic model, applies to
any subset of the response vector. This property ensures
that, the interpretations of the parameters are the same,
regardless of the number of response variables, and whether
or not higher order parameters are included. This makes
multivariate logistic regression, especially attractive for the
analysis of longitudinal data, where the repeated observa-
tions of an outcome arise on an equal footing, and where
the number of repeated observations may vary from one
individual to the next. Reproducibility is also the key to the
ability of the model, to accommodate observations with
incomplete responses. Note however, that we need to
assume, that the data are missing completely at random, if
the same parameters are to be used to model the complete
and incomplete response profiles. The parameter estimates
are found by maximum likelihood. A key step, is the
inversion of the multivariate logistic transformation. For
more than three responses, this may not always be possible,
as there are then constraints among the parameters (Glonek
and McCullagh 1995, Liang, Zeger and Qagish 1992).
Also, the presence of empty cells, may limit the order of the
parameters that can be fitted.

The log-linear model is widely used to model multi-
variate binary data. In the saturated log-linear model, see
e.g., Liang et al. (1992), the canonical parameter associated
with a subset of the variables, has an interpretation in terms
of conditional probabilities given the rest of the variables,
e.g., the first and second order parameters are logits and log
odds ratios, conditional on all the other responses. It follows
that, the log-linear model is not reproducible, which makes
it less preferable than multivariate logistic regression, for
the analysis of longitudinal data. It is nevertheless possible,
to build log-linear models that, as in the multivariate
logistic model, have marginal logits as parameters. This
leads to the marginal models (Diggle ef al. 1994, Ch. 8).
In these models, the dependence of the marginal proba-
bilities on explanatory variables, is modelled separately
from within-unit correlation. Under this approach, the
parameters are not estimated by maximum likelihood.
Rather, only the structure of the correlation, between the
repeated observations of an outcome is specified, and the
parameters are estimated by solving generalized estimating
equations (GEE), a multivariate analogue of quasi-
likelihood (McCullagh and Nelder 1989). A number of
specifications of the correlation structure have been
proposed, for example Liang ef al. (1992) use the marginal
log odds ratios, as in Glonek and McCullagh (1995). We
have made some comparisons between multivariate logistic
regression and PROC GENMOD of SAS (release 6.12).
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This procedure has the ability to fit correlated response
models by the GEE method. We found very similar
estimates of the marginal logits. The GEE method appeared
to be slightly less efficient than multivariate logistic
regression. A limitation of the GEE method is that, it cannot
yield estimates of the response profile probabilities, but
only of the marginal probabilities. By contrast, the multi-
variate logistic model does not have this limitation, since its
parameters are estimated by maximum likelihood.
Following Glonek and McCullagh (1995), we discuss in
Section 3.1 the multivariate logistic transformation, and we
give, in Section 3.2, the algorithm for maximum likelihood.

3.1 Multivariate Logistic Transformation
Let Y,,Y,, ..., ¥, be d repeated observations, taken at
times f, <4, <...<t,, of the same binary variable, and let

m, =P, =i, Y, =k, Y, =),

iiy iy
where i, i,, ..., i, are all either 1 or 2, be the joint proba-
bilities of the random variables Y,,Y,,....,Y,. In the
multivariate logistic model, the joint probabilities of
Y, Y,, .., Y, are parameterized in terms of marginal logits,
marginal log odds ratios, and contrasts of marginal log odds
ratios. This parameterization can be written as n =

C Tlog(Lm), where = is the vector of dimension g = 29

i T
m=(n T gz o Top 21 Mg 20)'s

1L.11°

and where, the matrices L and C are tensor products of
suitably chosen marginal indicator and contrast matrices
respectively. The matrices L and C, which depend on the
length d of the observation period, are defined recursively,
beginning with L, = C, =1, as

L, el;

L, = .
L,,®L

d

and

C,, 0

“%lo ¢, o0

vzhere 12T =(1, 1), L is the two by two identity matrix, and
C = (1, -1)T (Glonek and McCullagh 1994).

To illustrate matters, we consider periods of observation
of length d=1,2,3,4. For d=1, n = (nl,nz)T and mn =
(Mg M)’ = (logm,, logit ¥,)", where the plus subscript
indicates summation, and logit ¥, is defined as

P, =1 T 71'.
of )=log ! :10g——1.
P(Y, =2) 1-mx m,

logit ¥, =log
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In that case the multivariate logistic transformation is
equivalent to the usual logistic transformation. Note that,
although the parameter 1, =logn, =0 is strictly super-
fluous, it is convenient to retain it, as a means of ensuring
that the mapping 7 - 1) is of full rank, and also expressing
the requirement that «t, = 1.

_ _ T
Ford=2,n= ()15 Typs Tyy5 TMy,)” and

N =g Ny N Nyp)” =

(logm,,, logit Y, logit Y, log OR(Y,, Y,))"

where
OR(Y,.Y,) =
P, =LY,=D)P(,=2,Y,=2) =n;m,
P(Y,=1,Y,=2)P(Y,=2,Y,=1) =m,n,

is the odds ratio, a quantity measuring the association
between the variables ¥, and Y,. The parameters ; and n,
are the marginal logits at times ¢, and ¢,, for example

n, = logit ¥, = log ———.
(I-m,

Ca T
For d =3, 1= (1) ), 7,15, .., Myyps Mppp)” and

M= Mg Ny My Mys M3 Nyo Nz My .

The parameters m,,n, and n, are the marginal logits at
times ¢, f, and £;. The parameters 1,,, 1, and n,, are the
log odds ratios of the corresponding two-dimensional
marginal tables, for example

N B T Ty
My =log OR(Y,, ¥;) =log————=.
LSTRLIH

The parameter 7,, is a contrast of log odds ratios given by
My =10gOR(Y, Y, | ¥, =1) - logOR(Y,, Y, | ¥, = 2)
Ty

=log———=—= - log
LT RIT T2

T12Ton

For d =4, = (R}, T} 10 - Toppyp> Toppyy )T @nd
N = (Mgs My My Mz Mg Nz Tags Moo
7
PR PR PYRR FPYPR 1 EYPR | PEVRRLIPEVPR) [PV o
The parameters 7, n, and Ny where 1 <i<j<k<4,are

defined as above, using the appropriate marginal tables. The
parameter 1),,,, is a contrast of log odds ratios given by

Nz =10gOR(Y,, Y,|Y,=1,¥,=1)
- 10gOR(Y,, ¥, | ¥, =1,Y,=2)

- 10gOR(Y,, Y, | ¥,=2,Y,=1)
+10gOR(Y,, ¥, | ¥, =2, Y, =2).

A key step in maximum likelihood estimation is the
computation of the inverse of the multivariate logistic
transformation. To ensure that m>0, we work with
T =expv, ie., we seek to solve for v in the equation
n =CTlog(Lexpv). In general, no explicit solution is
available, so an iterative method must be used. In particular,
the Newton-Raphson iterations can be applied as described
below. For clarity, we define the two functions @(x) =
C Tlog(Ln) and y(v) = @ (expV).

(i) Begin with an initial approximation v,

(i) Then take v, =v,- [Dy(v)] (¢(expv,)-n),
where Dy (v) is the Jacobian matrix of the function
y(v), and iterate until convergence.

The Jacobian matrices of the function @ (n) and y (v) are
given respectively by De(n) = C T (diagLn)'L and
Dy (v) = D@ (expv)-diag(expv).

3.2 Maximum Likelihood Estimation

For a binary response variable observed at d time points,
there are ¢ =27 possible response profiles i = (s e iy),
where i), i, ...,i, are all either 1 or 2. For each profile
i = (..., i,;), wedefine the indicator variable Y, i, which
is equal to 1 if the profile i has been observed, and 0
otherwise. We then have

P(Y.l_",.d =) =P, =i,..Y,;=i)= L

1 g

Defining the g-dimensional vectors

Y.

Y=, Y 22...22)T

, Y.

11..12% =**» ©22..21°

and

_ 7
= (Mg gps By 12 -0 T 010 Toap 20) >

we may then write ¥ ~ M(1,n), i.e., ¥ is a multinomial
vector with g = 27 categories, whose probabilities are given
by the vector «.

The multivariate logistic regression models, are then
defined to be those of the form = X where Xisa g x p
matrix of explanatory variables, P is a p-dimensional vector
of unknown parameters, and 1 = C Tlog(Lx) = ¢@(m).

If we let y be one observation of the random vector 7,
then we may write the kernel of the log likelihood function
as [(B;y) =y Tlogm(B) where, using the inverse of the
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multivariate logistic transformation, we can express the
joint probabilities m as a function of the unknown para-
meter B, as () = ¢ ' (XB). The score vector is given by

s(B) =s(B,y,X) = Dn(B)" (diagn(B)) 'y,

where Dn(p), the Jacobian matrix of the function w(B),
relating the parameter P to the vector of probabilities m, is
givenby Dr(B) = [D¢ (¢! (XB)] ' X, and where D ¢ () =
C T(diag Lm) 'L, is the Jacobian matrix of the link
function. The information matrix is defined as J(p) =
Es(B)s(B)’. Now it follows from the assumption on the
distribution of Y, that E(YYT) = diagn, from which we
may deduce that

S(B) = (B, X) = Dn(B) (diagn(B)) ' Dn(B).

If we have »n independent observations y, ~M(1,m,),
k=1,..,n, wheren, =C Tog (Lm,) = X, B, then the score
vector and the information matrix are given by s(p) =
Yhe15 (B, vy, X,) and S(B) = Yi I (B, X))

The maximum likelihood estimator of B is the solution
of s(B) = 0, that can be found by using the Fisher scoring
algorithm which, starting from some initial value f,,
iterates the sequence B ., +B, + S,;l (B,)s(B,) until
convergence.

Incomplete response profiles can readily be incorporated
into the analysis. In particular, if some subset of the
response variables Y}, Y,, ..., ¥ is recorded for a particular
unit, then the probability distribution on that c-dimensional
marginal table is multinomial, and, as a consequence of the
reproducibility of the multivariate logistic transformation,
a multivariate logistic regression model applies to the table
of probabilities. Furthermore, the design matrix relating the
marginal probabilities to B, is constructed by selecting the
appropriate rows of the full design matrix, that would be
used if complete data were available for that unit.

4. MODELS FOR LONGITUDINAL
DEPENDENCE

In this section we illustrate, using the SLFS data of
Section 2, how multivariate logistic regression can be
applied to describe the dependence between the repeated
observations of the employment status. We do not intend to
carry out an exhaustive search for a best mode], but rather
to demonstrate the ability of the method, to represent a
complex dependence structure by a small number of
parameters.

We consider 6 models of decreasing complexity, see
Table 2. For all 6 models, we have one parameter for each
of the marginal logits corresponding to a given observation
time. Symbolically, this is denoted by n, =f,. Since the
observation times are the 2nd quarter of the years 1992 to
1995, we take i =2, 3,4,5. Thus B,, say, corresponds to
the logit of the probability of being employed in 1993.
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Similarly, the indices for the higher order parameters run
from 2 to 5. For model 1 we take a saturated model for the
longitudinal dependence, i.e., we have one parameter for
each of the interactions of order 2, 3 or 4 within each period
of observation. For the models 2 to 5, we assume that the
interactions of order 3 and 4, are all equal to zero. The
longitudinal dependence is then described in terms of log
odds ratios only. For model 2, we take a saturated model for
the log odds ratios. In model 3 we drop the covariate period
of observation, i.e., we suppose that the log odds ratios are
the same for all the periods of observation. In model 4, we
use stationary log odds ratios, Z.e., log odds ratios which
depend only on the difference between times of obser-
vation. Note that the parameter y, in model 4, corresponds
to the constraint B,, = B,, = B,5 on the parameters of model
3, and similarly for y, and y,. Inmodel 5, a linear model
for the stationary log odds ratios is assumed. In model 6,
finally, we assume that the observations taken at different
times, are independent. Note that, in that case, multivariate
logistic regression is equivalent to ordinary logistic
regression.

Table 2
Six Models for Longitudinal Dependence
Parameters

3 rd th
Model I\lllirgglltl;al L?ftioodsds ordzr ;:r(eilrieters
1 =B My =By perioa Nyt = Bijk perioa * iar = Bijut, perioa
2 M =B My =By perioa My =0, My, =0
3 n=B m,;=B My =05 My =0
4 n=B =Yy Mye = 0> Mgy =0
5 n=B, my=d+v.li-jl m,=0,m,=0
6 n=B mn;=0 Ny =0,1,,=0

The parameter estimates for the models 2 to 6, are given
in Table 3. The number of parameters and the values of the
log likelihood function at the maximum likelihood esti-
mates, can be found in Table 4 where, for comparison, we
also included the log likelihood for the fully saturated
model.

Overall, we notice that the assumed form of the
longitudinal dependence, appears to have little effect on the
estimates of the marginal logits. This is a desirable
property, as the marginal logits would typically be the
parameters of interest. The standard errors of the marginal
logits, are almost the same for the models that take into
account the longitudinal dependence, but are inflated by
about 15% for ordinary logistic regression (model 6). It can
also be shown that the estimates of the marginal logits are
positively correlated under the models that assume a
longitudinal dependence, and uncorrelated for ordinary
logistic regression. For the example considered here, the
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correlation was found to lie between 0.4 and 0.8. Thus,
modelling the longitudinal dependence, leads also to more
efficient estimates of the difference of marginal logits.

It can be seen from the fit of model 1, that the interaction
parameters of order 3 and 4, are not significantly different
from O. This suggests that the longitudinal dependence can
be described by the log odds ratios only. This hypothesis is
corroborated by the incremental deviance of model 2 with
respect to model 1, which is found to be 7.9, on 12 degrees
of freedom. Further, all the parameters of model 2 are
significantly different from 0, and an examination of the
standardised residuals for the fitted probabilities of the
response profiles, does not reveal any anomaly. For
applications in official statistics, model 2 would be the
preferred model, since it is based on as few assumptions as
possible, while still allowing a substantial reduction in the
number of parameters, thus rendering less acute the danger

of sparse tables when longer periods of observation and
models with more covariates are considered.

The models 3, 4 and 5 show that, it would nevertheless
be possible to greatly simplify the description of the
longitudinal dependence, without losing too much infor-
mation. In going from model 2 to model 5, we observe that
the deviance from the fully saturated model, does not
increase much, see Table 4. Further, an examination of the
residuals shows that, the models 3, 4 and 5 fit the data
almost as well as model 2. On the other hand, while model
2 requires 20 parameters to describe the longitudinal
dependence, model 5 needs only 2 parameters. This must be
contrasted with model 6, which assumes independence
between observations taken at different times: the log
likelihood is much smaller than for the fully saturated
model, see Table 4, and the fit to the data is poor.

Table 3
Parameter Estimates and Standard Errors
Parameter Period Model 2 Model 3 Model 4 Model 5 Model 6
logit 92 0.6348 (0.0350)  0.6360(0.0352)  0.6348 (0.0352)  0.6347 (0.0352)  0.6471 (0.0409)
logit 93 0.5555 (0.0335)  0.5570(0.0338)  0.5597(0.0335)  0.5601 (0.0335)  0.5509 (0.0396)
logit 94 0.5440(0.0324)  0.5407 (0.0325)  0.5402 (0.0326)  0.5397 (0.0325)  0.5377 (0.0374)
logit 95 0.4699 (0.0317)  0.4711(0.0320)  0.4710(0.0320)  0.4712(0.0320)  0.4705 (0.0351)
B,s (1)23 4.2563 (0.3311)  4.2579 (0.1465)
(1234 4.2003 (0.2894)
(1)2345 4.0859 (0.2954)
2345 4.4830 (0.2841)
Bsy (1)234 4.0894 (0.2794)  4.1111 (0.1310)
(1)2345 3.9611 (0.2840)
2345 4.0989 (0.2600)
345 4.2490 (0.2468)
Bs (1)2345 5.3992 (0.3854)  4.5561 (0.1389)
2345 3.9779 (0.2544)
345 4.7288 (0.2735)
45 4.5069 (0.2600)
B., (1)234 3.7168 (0.2641)  3.8371 (0.1442)
(1)2345 4.2560 (0.3059)
2345 3.5330(0.2370)
Bys (1)2345 4.4000 (0.3098)  3.7913 (0.1334)
2345 3.6493 (0.2396)
345 3.6116 (0.2192)
Bys (1)2345 4.3984 (0.3173)  3.5774(0.1530)
2345 3.2209 (0.2256)
Y, 4.3260 (0.0928)
Y, 3.8519 (0.1050)
Ys 3.5340 (0.1495)
6 4.7341 (0.1266)

-0.4191 (0.0653)
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Table 4
Number of Parameters and Value of the Log Likelihood
Function at the Maximum Likelihood Estimates

Number of parameters of

Model order hk;ﬁﬁiod
1 2 3 4 Total
Full Model 20 20 10 2 52 -5342.7
1 4 20 10 2 36 -5345.4
2 4 20 0 0 24 -5349.4
3 4 6 0 0 10 -5365.2
4 4 3 0 0 7 -53689
5 4 2 ) 6  -5369.5
6 4 0 0 0 4 78153

5. COMPARISON WITH SIMPLE ESTIMATE
OF CHANGE

In this section we concentrate on the estimation of the
difference of the probabilities of being employed between
any two given years. We show that, estimates based on
multivariate logistic regression, are more efficient than
simple estimates defined as the difference of the propor-
tions of employed individuals.

The model considered here, is the model 2 of Section 4,
with sex as an additional explanatory variable. We have, for
each sex, one parameter for each of the marginal logits
corresponding to a given year. The longitudinal dependence
is accounted for by a saturated model for the log odds
ratios. The third and fourth order parameters are set to O.
This model has therefore 8 parameters for the marginal
logits, and 40 parameters for the log odds ratios: 2 sexes
x 20 odds ratios within periods of observation, see Table 3.
By inverting the multivariate logistic transformation,
estimates of the probability of being employed, and of their
differences between any two given years, can also be
computed.

A simple estimator of change is given by the difference
of the proportions of employed individuals between any two
given years. Its variance, which takes into account the
overlap of the two samples, is given by

1
n,(1-m )+ n,,(1-=n,)
n+r n+c
n
- 2'—(7[11 - 7[1+7t+1),

(n+ryn+c

where #» is the number of cases for which observations are
available for both years, r and ¢ are the number of cases for
which observations are available for only one year, =, is
the probability of being employed during both years, and
m,, and m,, are the marginal probabilities of being
employed.

Tables 5 shows, for the SLFS data of Section 2, the
estimates of the difference of the probability of being

1
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employed under both methods. Note that both methods
yield similar estimates of change. The standard errors of the
simple estimates, are on the average, 30% larger than for
multivariate logistic regression. The corresponding mean
relative efficiency of multivariate logistic regression, with
respect to the simple estimates, is 1.7. By comparison, the
mean relative efficiency of multivariate logistic regression
with respect to ordinary logistic regression, is 3.2.

Table 5

Change in the Probability of Being Employed

Canton of Vaud, 1992-1995

Multivariate
Comparison logistic Simple estimate
regression

Woman 92 vs. 93 0.0138 (0.0090)  0.0136 (0.0115)
92 vs. 94 0.0184 (0.0102)  0.0168 (0.0134)

92 vs. 95 0.0375 (0.0109)  0.0356 (0.0149)

93 vs. 94 0.0047 (0.0087)  0.0031 (0.0107)

93 vs. 95 0.0238 (0.0095)  0.0219 (0.0128)

94 vs. 95 0.0191 (0.0076)  0.0188 (0.0100)

Men 92 vs. 93 0.0220 (0.0095)  0.0283 (0.0116)
92 vs. 94 0.0245 (0.0102)  0.0334 (0.0133)

92 vs. 95 0.0387 (0.0106)  0.0452 (0.0144)

93 vs. 94 0.0024 (0.0092)  0.0052 (0.0111)

93 vs. 95 0.0167 (0.0098)  0.0169 (0.0130)

94 vs. 95 0.0143 (0.0080) 0.0117 (0.0102)

6. CONCLUSIONS

The analyses of the SLFS data presented here, have
shown the usefulness of multivariate logistic regression.
Modelling the longitudinal dependence is necessary, in
order to obtain a satisfactory fit of the observed response
profile probabilities. Ignoring the longitudinal dependence,
we still obtain acceptable point estimates of the marginal
logits, but the information on the detailed structure of the
data is lost. Modelling the longitudinal dependence leads
also to more efficient estimates of the marginal parameters
and of change, when compared with ordinary logistic
regression, and a simple estimator of change. Finally, the
ability of multivariate logistic regression to represent a
complex dependence structure, by a small number of
parameters, has also been illustrated.

Using the results of Glonek and McCullagh (1995), it is
possible to extend the examples presented here, to
multivariate responses of either nominal or ordinal types,
with either discrete or continuous explanatory variables.
The method can also be extended, to take the sampling
weights into account (Salamin 1998). For the SLES, it was
found that the sampling weights have little effect on the
parameter estimates of the multivariate logistic model. The
standard error of the parameter estimates, was inflated by
about 15%. This moderate increase of the variability of the
parameter estimates due to the sampling weights, is plausible.
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Indeed, as in the SLFS, only one person per household is
selected, a large cluster effect was not expected.

Apart from the sort of analyses presented here, multi-
variate logistic regression may also be used for modelling
non-response probabilities in longitudinal studies. Such
models may be useful when the sampling weights need to
be adjusted for non-response. The ability of multivariate
logistic regression to give a parsimonious model of the data,
may also be of interest in small-area estimation. In partic-
ular, estimators for a given geographical region could be
based on models for an appropriately chosen larger region.

Although we did not encounter serious problems in the
examples presented here, further work may need to be done
on the problem of sparse tables. A critical step, when there
are a large number of empty cells, is the inversion of the
multivariate logistic transformation. The approach of Lang
(1996), where the inversion of the link function is avoided,
by specifying the models through constraints, may be of
interest in this context. Another area of investigation is the
influence of the classification errors on the parameter
estimates of the multivariate logistic model.
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