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Estimating Labour Force Gross Flows From Surveys Subject
to Household-level Nonignorable Nonresponse

PAUL S. CLARKE and RAY L. CHAMBERS'

ABSTRACT

Measurement of gross flows in labour force status is an important objective of the continuing labour force surveys carried
out by many national statistics agencies. However, it is well known that estimation of these flows can be complicated by
nonresponse, measurement errors, sample rotation and complex design effects. Motivated by nonresponse patterns in
household-based surveys, this paper focuses on estimation of labour force gross flows, while simultaneously adjusting for
nonignorable nonresponse. Previous model-based approaches to gross flows estimation have assumed nonresponse to be
an individual-level process. We propose a class of models that allow for nonignorable household-level nonresponse. A
simulation study is used to show, that individual-level labour force gross flows estimates from household-based survey data,
may be biased and that estimates using household-level models can offer a reduction in this bias.

KEY WORDS: Gross flows; Household-based surveys; Nonignorable nonresponse.

1. INTRODUCTION

Labour force gross flows are typically defined as
transitions over time between the three major labour force
states, employed, unemployed and economically inactive.
Gross flows estimates are an important tool in the study of
labour force dynamics (for example, see Vanski 1985).
Large-scale on-going surveys such as the British Labour
Force Survey and the U.S. Current Population Survey,
provide data for gross flows estimation. However, non-
response, measurement error, sample rotation and complex
design effects, affect gross flows estimation from these
surveys. A discussion of these and other factors affecting
gross flows estimation, is given in Hogue (1985). Here we
focus on the problem of nonresponse.

We assume that a nonresponse mechanism leads to the
observed data being incomplete. If the probability of not
responding depends on the missing data, then the non-
response mechanism is nonignorable (Rubin 1976). The
model-based approach to analysing incomplete survey data,
is detailed in Little (1982). Model-based approaches to the
estimation of labour force gross flows, involve modelling
both the labour force flows and the nonresponse
mechanism, and simultaneously fitting both models to the
incomplete data. Examples of such models are given in
Stasny and Fienberg (1985), Stasny (1986) and, for
nonignorable nonresponse, in Little (1985). We call these
individual-level models, because individuals are modelled
as responding or not responding, independently of other
sampled individuals.

Both the Labour Force Survey and the Current
Population Survey, are examples of household-based
surveys, that is, surveys based on a random sample of
households, rather than individuals. Household-based
surveys can lead to correlated nonresponse behaviour

within households. For example, in the Current Population
Survey, a single household member (usually the head-of-
household) acts as a proxy for the other household mem-
bers; thus, if the chosen household member is a non-
respondent, so are other household members. It follows
that, due to correlated within-household nonresponse
behaviour, individual-level nonresponse models are
unsuitable for the estimation of labour force gross flows,
using household-based survey data.

In this paper, we propose a class of models for
individual-level labour force flows, and household-level
nonresponse, that account for correlated within-household
nonresponse behaviour. A number of plausible nonresponse
models that are estimable from the observed data, both
ignorable and nonignorable, are also presented. We then
simulate household-based survey data, using these house-
hold-level models, to demonstrate the potential utility of our
approach: first, individual-level labour force gross flows
estimates are shown to be biased, when fitted to household-
based survey data; and second, the bias of individual-level
and household-level gross flows estimates are compared, to
show the advantages of fitting household-level models to
household-based survey data. To conclude, we summarise
the findings of our simulation studies and discuss ideas for
further research in this area.

2. AMODEL FOR HOUSEHOLD-LEVEL
NONRESPONSE

2.1 The Data

A gross flow is the probability or frequency of
individuals in the population, making a state transition
between two points in time, ¢, and ¢,(#, <¢,). Labour force
gross flows refer to transitions between the three main
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labour force states: 1 = ‘employed’, 2 = ‘unemployed’ and
3 = ‘not in labour force’, where the last category refers to
economically inactive individuals, such as retired indi-
viduals and students. Let .S denote a simple random sample
of households, indexed by 4. Within household 4, there are 7,
eligible individuals, of which n,(ab) have labour force
flow (a, b) between ¢, and ¢,, where Y »M,(ab) =n,,and
a,b=1,2,3. We refer to {n,(ab)} as the complete data,
that is, the frequencies that would be observed in the
absence of nonresponse.

Table 1 shows the complete labour force flows data for
household 2 as a 3 x 3 contingency table. If 4 responds at
both times, the observed data are the cells of this 2-way
table. However, if the household does not respond at tort,
the observed data correspond to the margins of the table:
n,(1+),n,(2+),n,(3+) are the observed data if s responds
at ¢, but does not respond at ty; and n,(+1),
n,(+2), n,(+3) are the observed data if / responds at t, but
does not respond at ¢,. (An index replaced by ‘ +° denotes
summation over all levels of that index.) Furthermore, if A
does not respond at both #, and ¢,, the observed data is the
household size, » ,» Which we take to be known and fixed
between ¢, and ¢,.

Table 1
Complete Labour Force Flows Data for Household 4
t
Status 2
1 2 3
1 n,(11) n,(12) n,(13) n,(1+)
4 2 n,(21) n,(22) n,(23) n,(2+)
3 n,(31) n,(32) n,(33) n,(3+)
n,(+1) n,(+2) n,(+3) n,

2.2 Model Specification

It is inappropriate to treat the nonresponse behaviour of
individuals within a household as independent, in house-
hold-based surveys. In the Labour Force Survey, for
example, one eligible household member determines
whether the household can be interviewed. Therefore, if no
eligible individual can be contacted, each household indi-
vidual is a nonrespondent. To construct a model for
household-level nonresponse, we take the ideas behind
individual-level nonresponse and extend them to the
household, by considering a household to be an entity with
its own nonresponse flow between ¢, and ¢,. To allow for
nonignorable nonresponse, the probability of a household
nonresponse flow is modelled as a function of its individual
labour force flows, as shall now be described.

Let N, =(N,(11),N,(2]), ..., N,(33)) be the random
vector of labour force flows frequencies for household 4,
where N, (ab) is the random variable, whose outcome
corresponds to the number of individuals with labour force
flow (a, b), a, b =1, 2, 3. Further, denote the random vector
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for the nonresponse flow of household 4 by

R, =(R,,R,,), where

15
R, = 0

is the nonresponse status random variable for 4 at
=1, 2. The realisations of these random quantities are

({enoted by n, and r,. Wenow assume that n, and r, are

known, and write the joint probability of IV, and R, as

if household responds at t

otherwise

Pr(N,=n,,R,=r,)=Pr(N,=n)Pr(R,=r,|N,=n,),

where Pr(V, =
Pr(R,=r,|N,
model.

The labour force flows model is taken to be multinomial,
with probability function

n,) is the labour force flows model, and
=n,) is called the nonresponse flows

n, (ab)
Pr(N, =n,; ) =n [ 20" 0
ab n,(ab)!
where o (ab) > 0 is the probability of an individual having
labour force flow (a, b) and Z bm(ab) = 1. The vector of
labour force flows parameters is denoted by @ = (w(11),
®(21), ..., ®(33)), of which 8 are free. The assumption of
multinomial sampling in (1), implies that individuals’
labour force flows behaviour, is independent within
households, and that households are homogeneous with
respect to their labour force flows behaviour. These
assumptions are unrealistic, but (1) can easily be extended
to a more realistic model for the labour force flows, as we
discuss in Section 4.
The probability of household 4 having nonresponse flow
(u,v), is taken to be

n(uv|n,)=Pr(R,=w,v)|N,=n,;y)

- LY n,(@b)yav| ab), @)

nh a b

for u,v =0, 1, namely, a weighted average of the non-
response model parameters. By setting », =1, it can be
seen that y (uv | ab) > 0 is the probability of a household of
size one (i.e., an individual) having nonresponse flow
(4,v), given it has labour force flow (a,b). Thus,
YW @v|ab)=1 and y =(y(11]11),y(01]11),.
v (00 |33)) is the vector of nonresponse parameters, of
which 27 are free.

Before defining the likelihood function for the complete
data, partition S into 4 mutually exclusive and exhaustive
subsets

§=5,Us,Us,US,,
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where S, ={h:r, =(u,v)} is the subset of households
with nonresponse flow (u, v). Thus, since S is a simple
random sample of households, the likelihood function for
the complete data is

L@,y;{n,r,H =11 1l L,(@.v;n,, @), @3

u,v hes,,

where L, (@, y; n,, (4, v)) is the contribution of household
heS,, to the likelihood, the product of (1) and (2).

2.3 Model Fitting
2.3.1 Maximum Likelihood Estimation

Since the complete data are unavailable, (3) must be
modified to give the likelihood based on the observed data.
Denote the observed databy {n}}. As discussed in Section
2.1, the observed data for households that respond at #, and
t,, is the full cross-classification in Table 1, namely,
n, =n,. Similarly, if €S, then n, = (n,(1+),n,(2+),
n,(3+)); if heSo1 then n, = (n,(+1), n,(+2), n,(+3)); and
if heS,,, then n) =n,.

The contribution of household 4€S,, to the observed
data likelihood, is obtained by summing L, (@, y;n ,, (4, v))
over all possible values that the full 3x3 cross-
classification of labour force flows can take, given the
observed margin. Representing this set of tablesby n, : n >

the observed data likelihood for S is

L(o,y; {n;,r,}) =11 I Y L, v;n, (uv). @

u,v heS,, ”h:”;,

Model fitting requires calculating (4) at each stage of an
iterative optimization process. This is computationally
intensive, because the complete data likelihood function
must be summed explicitly over the missing data. For
example, the observed data for heS,, is n, = (n,(1+),
n,(2+),n,(3+)) and the likelihood contribution of this
household to the observed data likelihood is

Y L(o,y;n,, (1,0).

nyin,

To explicitly calculate this contribution, each 3x3
complete data table n, for fixed n, is generated and
L,(®,y;n,,(1,0)) evaluated for each. For household size
n, =5, there are at least 21 and at most 108 possible tables,
depending on the values in the fixed margin; for n, = 15, a
very large household size, the respective numbers are 136
and 9,261. A similar procedure is used for h€S,,, except
here n; = (n, (+1),n,(+2), n,(+3)) is the fixed margin. If
heS,,, then no data about labour force status are observed,
only the household size n,. Soeach 3 x 3 table with total n,
must be generated, and the likelihood function calculated
for each: for n, =5 there are 1,287 tables and for n, = 15
there are 490,314. It is not infeasible, in terms of computer
run-time, to calculate such sums directly. The number of
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explicit calculations can be reduced, by recognising that
each household is defined only by its observed labour force
flows frequencies and nonresponse flow. Thus, summation
over the missing data need only be performed once for a
household with a particular nonresponse flow and labour
force flows frequencies; the contribution of this household
to the likelihood is then raised to the power of the number
of similarly defined households in S.

2.3.2 Parameter Estimability

If we fix n, =1 for all A, the complete data have no
household structure, and form a 4-way table cross-classified
by labour force status and nonresponse status at #, and #,.
The observed data log-likelihood (4) is now equivalent to
that of the individual-level models in Stasny and Fienberg
(1985), Little (1985) and Stasny (1986). For these models,
estimability requires that the number of model parameters
does not exceed 15 (one for each observed table cell, less
one for the multinomial sampling constraint). Hence,
(o, y) are inestimable because there are 8 + 27 = 35 free
parameters. Since interest is focused on the labour force
gross flows probabilities, @, it is neccessary to constrain y
to ensure estimability.

When n, > 1, determining parameter estimability is more
difficult, because (4) has a complicated closed-form
expression. Fitzmaurice, Laird and Zahner (1996) use a
numerical method to determine estimability, that involves
showing that the information matrix is non-singular in the
neighbourhood of the maximum likelihood estimate.
However, not only is this impractical for problems of a high
dimension, but evaluating the information matrix for the
household-level model, is particularly difficult in this case.
Instead, we adopt a pragmatic approach for determining
parameter estimability: first, we restrict attention to models
that satisfy the necessary condition for estimability when
n, = 1; and second, different starting values are used to for
each fit. If the different starting values reveal a non-unique
maximum likelihood estimate, or any parameter estimate is
unchanged from its starting value then the model
parameters are taken to be inestimable.

2.4 Nonresponse Models

To enable parameter estimates to be obtained from the
observed data, 0 and y must be constrained in accordance
with assumptions about the nonresponse mechanism. The
nonresponse parameters are interpreted as individual
nonresponse probabilities, but within the household frame-
work established thus far, it is inappropriate to talk about
individuals not responding. However, in reality, it is
individuals within households that determine a household’s
nonresponse flow, not the household itself. Therefore,
constraints are placed on the nonresponse parameters at the
individual level, that apply at the household level through
the functional dependence of m(uv|n,) on y in (2). For
example, if the nonresponse parameters are constrained
such that y (uv | ab) =y (uv) for all a, b, then the household
nonresponse mechanism is ignorable, because household
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nonresponse flows are independent of the labour force
flows.

We now present four models for the nonresponse
mechanism, two of which are ignorable, and two
nonignorable.

— Ignorable models.
— Model I,: Constant nonresponse probability,

(v |ab) = M7 (1 - D x A1 - A,

which has 1 parameter, A, the probability of an
individual not responding;

—~ Model I,: Independent of labour force status, but
different nonresponse probabilities, at ¢, and z,,

v(uv|ab) =21 -0 x 0177 (1 - 8y,

which has 2 parameters, A, 0, the probabilities of
nonresponse at £, and £,, respectively.
— Nonignorable models.
— Model N : The nonresponse distributions at £, and ¢,
are independent but depend on labour force status at ¢,
and ¢,, respectively,

y(uv|ab) = Ma)' ™ (1 - L(@)*x 0(b)' " (1 - 6(b))’

which has 6 parameters, A = (A (1), A(2), A(3)) and
0 =(0(1),0(2),0(3)), where A(a) is the probability
of not responding at ¢, , given labour force status g at 7,
and 0(b) that at ¢,, given labour force status b at 7, ;

— Model Ng: The nonresponse distributions at 7, and ¢,
depend on labour force status at # and ¢, re-
spectively, i.e., afirst-order Markov process. Unlike N ,,
the nonresponse distributions at # and ¢, are
dependent: if the nonresponse status at £, is 1, then
the nonresponse distribution at ¢, is the same as at
t,; but if the nonresponse status at f, is O, the
nonresponse distributions are distinct,

V(uv|ab) = r@)' (1 - ra)*

u=1,

MBI - Ay, if
X

0™ (1-0()y, if u=0,
fora,b=1,2,3 and u, v =0, 1. Under model I ,» there are
atotal of 8 + 1 =9 free parameters, satisfying the necessary
condition for estimability of an individual-level model.
Models I, N, and N, have 10, 14 and 14 free parameters,
respectively, and so also satisfy the necessary condition for
estimability.

3. SIMULATION STUDY

3.1 Simulation Procedure

We used a simulation study to investigate the conse-
quences of failing to account for the househoid structure of
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household-based survey data, and to compare labour force
gross flows estimates for individual-level and household-
level models. For this purpose, household-based survey
data was generated using Monte Carlo sampling. Each
sample data set consisted of 10,000 individuals arranged
into households of size n, =k for all . Within each
household, labour force flows were generated from (1), and
the nonresponse flow was generated from (2), under one of
models N, or N. The data were made incomplete by
collapsing each complete labour force flows data table, to
be consistent with the household nonresponse flow. In
total, 1,000 independent data sets were generated in this
way.

The population parameters used to generate the labour
force flows are shown in the following table:

b
w(ab) 1 2 3
1 043 0.245 0.035
a 2 0.02 0.160 0.01
3 0.015 0.035 0.05

This is clearly a population in recession, since the
probability of moving from being employed to unemployed
is very large (w (12) = 0.245). Under models N, and N,
the population parameters are

i

1 2 3
A @) 0.2 0.8 0.5
(i) 0.5 0.2 0.8

It should be noted that these parameter values do not
represent realistic nonresponse flows behaviour, they were
chosen for the purpose of illustrating this methodology.
However, this does not affect the general conclusions of the
paper, which are also relevant for realistic values of the true
nonresponse probabilities.

3.2 Simulation Results

Estimates for individual-level models are obtained by
fitting (4) with n, = 1 to each incomplete data set. Figure 1
summarises the sampling distributions of the individual-
level maximum likelihood estimate of w(12), ®(12), for
nonresponse models / 1» Iy» N, and N, (estimates for
ignorable models /, and I, are included together, because
both yield the same estimates of the labour force flows).
The vertical lines represent the intervals between the
2.5-percentile and the 97.5-percentile of each estimate’s
sampling distribution, and the bold point represents its
median. There are three distributions obtained for each
individual-level estimate: the left-most distribution is that
when the household size is £ =1, i.e., the simulated data
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have no household structure; and reading from left to right,
the next two distributions are those obtained when the
household size is k¥ =2 and k =5, respectively. The solid
horizontal line denotes the true flow probability, o (12) =
0.0245. The behaviour of the sampling distribution of
®(12) in this study, reflects that of the other labour force
gross flows estimates.

Figure 1a summarises the sampling distributions when
N, is the true model. If the fitted individual-level model is
I,, I or Ng, the labour force gross flows estimates have
large biases, whatever the household size. As would be
expected, the median estimate for correct model N, is
unbiased if £ = 1 and a small bias is apparent for £ =2 and
k = 5 (although this bias is smaller for £ = 5 than k = 2).
Bias reduction with increasing k is also apparent for
individual-level estimates /,, [, and N,. This behaviour
is unexpected, since it seems natural to expect the bias of
the individual-level estimates, to increase with the house-
hold size. The results are slightly different in Figure 1b
when N, is true. Here the estimate for individual-level
model N, becomes more biased as k increases, but the bias
decreases for mis-specified individual-level models 7,, I,
and N,. Furthermore, the misspecified estimates for /, and
I, have a small bias, when compared to those for
misspecified model N,. These results are discussed in
Section 3.3.

2 k=1
° i ket
S ke2 { k=2
e s & kes
o ¥ k5 ) *
] =1k=2k=5
o H k=132 4
{1 4 o«
o 1
o
° 1A and 18 NA NB
a)
G
s k2's
-2+
k= ok =17 8
o .
o + 4 b I
o vy k=5 VS
-
wn k=2 }
S i
° (=R
3 i
o
|A and IB NA NB

Figure 1. Sampling Distribution of & (12)for Individual-Level
Models 14,15, N4 and Ng When the True Nonresponse
Model is a) N, and b) N, and the Household Size is
k=1,2,5.

A comparison of the median estimates of w(12) for the
fitted individual-level and household-level models when
Ny is true, is presented in Figure 2. There are four sampling
distributions associated with each model: the first two
represent those from fitting an individual-level nonresponse
model, and a household-level nonresponse model, when the
household size is k=2; and similarly, the next two
distributions are those when the household size is 5.
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For a particular pair of individual-level and household-
level sampling distributions, it can be seen that the
household-level estimate is less biased than its equivalent
individual-level estimate, and the spread of each household-
level sampling distribution, is narrower. The exception to
this, is when fitting model /,, where the household-level
and individual-level distributions are identical. This
equality occurs because the observed data likelihood for the
individual-level and household-level models, are equivalent
when the nonresponse model is ignorable. Another feature
is that, if the nonresponse model is correctly specified, the
household-level estimates are unbiased.
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Figure 2. Sampling Distributions of @& (12) for Individual-Level
and Household-Level Models/,, I, N, and N, When
the True Nonresponse Model is N, and the Household
Sizeis k=2, 5.

3.3 Summary

The estimates of the labour force gross flows under
individual-level models, are never less biased than those of
household-level models, when fitted to household-based
survey data in our study. It should be noted, that if the true
model is ignorable, it is unnecessary to utilise a household-
level nonresponse model, because the individual-level and
household-level models are equivalent. For example, if 7,
is true, (2) reduces to A**"(1 - A)!"*, and (4) factorizes
into two components, dependent on @ only and A only; the
factor dependent on ® can be shown to be equivalent to
that for the individual-level model, and thus the labour force
flows estimates are the same.

It appears, as the household size increases, that the bias
of the labour force flows estimates decreases, if the true
model is nonignorable. In fact, this result arises because we
use (1) to generate the labour force flows, and not because
the model estimates are unbiased for large n,. To see why,
consider the household formation process, used to generate
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each Monte Carlo sample: as » i increases, each household
frequency tends to the same value, i.e., n, (ab) converges to
n,®(ab); hence,

n(uv|n,) -LE n,o(a, b)y (uv|ab)

nh ab

=Y w(ab)y(uv|ab),
ab

which is independent of n,, that is, the simulated
household nonresponse mechanism is ignorable. Therefore,
the labour force flows estimates are unbiased, because
fitting the nonignorable models to the simulated data, yields
parameter estimates that are consistent with ignorable
nonresponse. To generate nonignorable household-level
nonresponse, it is necessary to prevent n,(ab) - n, @ (ab),
by extending (1), to allow for differential labour force flows
between households. Such extensions to the labour force
flows model are discussed in Section 4.

Figure 1b) shows two anomalous results that contradict
the above explanation, when N, is the true model. First,
the bias of individual-level model N,’s estimate, increases
as n, increases. However, further simulations with
household size n, = 10, revealed that the individual-level
estimate bias is zero. Thus, asymptotic ignorable non-
response is also evident when N, f is true, but n, must be
large before its effect becomes apparent for individual-level
model N,. Second, the bias of the ignorable individual-
level model estimates is small, almost zero, when N, is
true. This small bias reduces even further as n, increases,
in line with asymptotic ignorability, but we have yet to
arrive at a satisfactory explanation as to why the ignorable
models perform so well in this situation. Further study is
necessary to investigate this finding.

4. DISCUSSION

In Sections 3 and 4, it is demonstrated by means of a
simulation based study, that modelling household-level
nonignorable nonresponse, when estimating labour force
gross flows from household-based surveys, leads to reduced
bias in the flows estimates, compared to those from
individual-level models. If the nonresponse model is
ignorable, it is unnecessary to use household-level models,
because the individual-level and household-level models
are equivalent. Furthermore, it is shown that controlling for
household-level nonresponse does not necessarily remove
all bias from the estimates of the labour force flows.
Correct specification of the nonresponse model is still seen
to be imperative, although taking the household structure of
the data into account, may lead to a refinement of the flows
estimates if the nonresponse model is misspecified. In
particular, we show that household-level estimates are less
biased than their equivalent individual-level estimates.

Clarke and Chambers: Estimating Labour Force Gross Flows

Our nonresponse model is an extension of the idea that
nonresponse can depend upon the characteristics of a unit,
in this case, the labour force flows of household members.
Nonresponse in household-based surveys can occur for
more than one reason, e.g., refusal, non-contact, moving
house or sample rotation. The current model can easily be
extended to model more complex nonresponse patterns, by
specifying the nonresponse indicator as a polytomous
variable, and parameterizing the nonresponse model in
accordance with the complex nonresponse patterns. It
should also be noted, that we do not assume that the
household-level model is an accurate representation of
household nonresponse behaviour; rather, we assume that
the household-level model, offers an approximation of
within-household nonresponse dynamics.

An important problem, highlighted by the results from
the simulation study, is our assumption that individual
labour force flows behaviour is homogeneous within
households. Clearly, this is an unrealistic assumption. The
model is easily extended, by specifying the labour force
flows and nonresponse flows probabilities, as regression
models to accommodate individual-level, household-level,
or higher level covariate information. For example, the
labour force flows probabilities could be specified as a
multinomial-logistic regression:

o, (ab)

_plb) | plb) T
o, (11)

] 1 hi»

where ®,,(ab) denotes the probability of individual i in
household 4, making labour force flow (a, b), x,, is a (row)
vector of covariates, and (By", B\“”) are the regression
coefficients for multinomial-togit (a, ). However, fitting
these models requires conditional independence assump-
tions to be made, about the relationship between the
distributions of the covariates, the labour force flows and
the nonresponse flows, because the covariate information
may be missing for nonresponding households. An
alternative solution, is to allow for heterogeneous between
household labour force flows, using random effects, by
making assumptions about the distribution of between
household differences. Fitting these models is also
complicated and would require, for example, a Markov
chain Monte Carlo procedure to perform the necessary
integration. If S is not a simple random sample, auxiliary
design variables can be incorporated into the fitting process,
using the regression framework just described.
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