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Combining Multiple Frames to Estimate Population Size
and Totals

DAWN E. HAINES and KENNETH H. POLLOCK'

ABSTRACT

Efficient estimates of population size and totals based on information from multiple list frames and an independent area
frame are considered. This work is an extension of the methodology proposed by Hartley (1962) which considers two
general frames. A main disadvantage of list frames is that they are typically incomplete. In this paper, we propose several
methods to address frame deficiencies. A joint list-area sampling design incorporates multiple frames and achieves full
coverage of the target population. For each combination of frames, we present the appropriate notation, likelihood function,
and parameter estimators. Results from a simulation study that compares the various properties of the proposed estimators

are also presented.

KEY WORDS: Incomplete frame; Capture-recapture sampling; Screening estimator; Dual frame methodology; Multiple

frame estimation.

1. INTRODUCTION

In classical sampling theory, it is assumed that a complete
frame exists. In practice, however, this assumption is often
violated. Frame imperfections such as omissions, duplica-
tions, and inaccurate recordings are almost inevitable in any
large data collection operation (Hansen, Hurwitz and
Madow 1953). Information collected from list and area
frames is used to obtain estimates of the unknown popula-
tion size and totals. For example, an ecologist or wildlife
biologist may use one list and one area frame sample to
estimate the number of bald eagle nests in a given region.
The U.S. Bureau of the Census uses dual system estimation
to measure decennial census undercounts. Darroch,
Fienberg, Glonek and Junker (1993) describe a three-
sample multiple-capture approach to estimating population
size when inclusion probabilities are heterogeneous. In
addition, state agriculture officials may be interested in
estimating the number of hog farms and the total number of
hogs in North Carolina. Typically, information from
multiple information sources is combined to estimate
population sizes and totals.

List frames are physical listings of sampling units in the
target population. These are constructed over the years
using information from scientists as well as city, county,
state, and federal agencies. Items found on a list frame can
include, but are not limited to, names, addresses, telephone
numbers, social security numbers, or physical descriptions
of location. These and other miscellaneous stratification
variables are used to identify persons, animals, businesses,
or other establishments. When estimating the number of
bald eagle nests in a region, we construct this year’s list
frame using information from last year’s list frame. With

the addition of new eagle nests, last year’s list frame
becomes quickly outdated and incomplete. Because of this
incompleteness, estimates based solely on list frames typi-
cally underestimate the true population size. Supplemen-
ting available information with an area frame sample may
provide an efficient estimation of the population size and
totals.

An area frame is a collection of geographical areas
defined by identifiable boundaries. The entire area in
which data are collected is divided into mutually exclusive
and exhaustive sampling units called segments. The
segments are usually stratified according to a characteristic
of interest. Once a stratified random sample of segments is
drawn, enumerators visit the sampled segments and record
measurements on all reporting units contained therein.

The National Agricultural Statistics Service (NASS)
currently employs a multi-frame approach for its sampling
and estimation of numerous agricultural commodities.
Fecso, Tortora and Vogel (1986) provide a review of
sampling frames for the agricultural sector of the United
States while Nealon (1984) details the multiple and area
frame estimators used by the U.S. Department of
Agriculture. Kott and Vogel (1995) provide a general
overview of multiple frame surveys.

In Section 2, we consider estimation based on infor-
mation from two or more independent list frames. We
show how these methods are related to capture-recapture
methods. In Section 3, we consider more efficient estima-
tors of population size and totals when information from an
independent area frame sample is available. We extend
these methods to the case of dependent list frames in
Section 4. Results from a simulation study that compare
different estimators are summarized in Section 5. Finally,
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Section 6 summarizes our results and discusses future
directions for research.

2. MULTIPLE LIST FRAMES

2.1 Population Size Estimation

List frames used to estimate population size are usually
incomplete and do not cover the entire population. One
solution to the incomplete list frame problem is to merge
two or more incomplete list frames. Combining multiple
list frames may result in improved coverage of the target
population, and thus, may provide better estimators. In the
case of multiple list frames, it is commonly assumed that
each element in the population has the same probability of
being included on a given list frame. Hence, the list frame
elements themselves constitute our “samples.”  For
example, individuals may decide independently whether or
not to list their telephone numbers in the telephone
directory with equal probability. In the case of bald eagle
nests, this year’s list frame is constructed based on last
year’s nest sightings. If we assume that the probability of
a nest being sighted is the same for all nests, then the above
assumption is valid. Finally, the assumption is also valid in
capture-recapture experiments where the first list frame
consists of all animals captured on the first sampling
occasion and the second list frame consists of all animals
captured on the second sampling occasion. This scenario
corresponds to Model M, in the capture-recapture literature.
See Otis, Burnham, White and Anderson (1978) for details.
Model M, assumes all animals in the population are equally
at risk to capture on each sampling occasion, but this
probability can vary over different sampling occasions.

To begin, we consider the case of two independent list
frames, B, and B,. Suppose B, has size N, and B, has
size N . Let domain b,(b,) cons1st of those N, (N )
elements that belong only to frame B, (B,) and domain
b, b, contain N, », units that belong to both frames. The
final domain includes existing target population elements
that are not included on either list frame. Its size is
N- N =N, = Ny, Domain notation for list frames B,
and B, 'is presented in Table 1. Note that every element i m
every frame must be categorized into a domain without
error. Errors in domain determination are serious and
cannot be corrected at a later time. These errors are not
considered in the estimation phase and thus are regarded as
nonsampling errors. Nealon (1984) claims that domain
determination is the single largest source of nonsampling
error in multiple frame designs (Kott and Vogel 1995).

Let the probability that a population element is included
on frame B, (B,) be Pp, (pB ). Since list frames B, and B,

are assumed to be 1ndependent the probabihty of an
element belonging to domain b, is Py =Ds, (1 - ps,). The
remaining domain probabilities are defined similarly. The
population size N and the inclusion probabilities Pg, and

Pg, are unknown parameters. The likelihood function is
given by

N
o DPr-N|N,,N, ,Nyp, ) = *
(pB1 sz I b, b, b, [Nblasz’ Nblbz]
Ng. Ny N-N, N-N
ps P51 =py) -pgy o D
Table 1

Domain Notation for List Frames B, and B,

Domain Size Domain Probability

]vlz1 Py, :PB‘(I ‘PBZ)
sz Py, = (- pB,)sz
N3, Pys, = Pp Pp,

b, 1—pb1_pb2_pblbz=(l _PBI)(I _PBZ)

Maximum likelihood estimators (MLEs) of the frame
inclusion probabilities are obtained by maximizing the
logarithm of the likelihood (1). This procedure yields

NB NB
pp =— and py =—, @)
N N

where the MLE N is substituted for N. Rather than
differentiating the log-likelihood function to approximate
the value of N, we employ the “ratio method” of
maximizing the likelihood which equates <(N) to
9 (N - 1) (Darroch 1958). This process accounts for the
discrete parameter NV and yields the equation

ey

9WN) N
gW-1) (N- N, = N, = Nys,)

*

(1-pg)(A-pp)=1 3

Here we assume that N is large so that

NB’ :E and —NBZ :.__._52_
N-1 N N-1 N

Substituting the estimators in (2) into (3) yields

~

o Na s,

Nbl b2

4
Sekar and Deming (1949) derive an estimate of the variance
of (4), given by

NB,NBszle2

V) =
‘ N, 8,)°



Survey Methodology, June 1998

Substituting (4) into (2) yields the MLEs of Ps, and Pg;

~ Nbl b2 d A Nbl b2
= an =
Ps, Ps, =~
BZ Bl

The estimator ]\71 of N in (4) is called the Lincoln-
Petersen estimator in closed population capture-recapture
models. The elements on list frame B, may be considered
as the units captured in the first sampling occasion and the
elements on list frame B, may be viewed as the units
captured in the second sampling occasion. The elements in
domain b, b, correspond to recaptured elements. With this
correspondence, it is easy to see that the likelihood for the
population size and capture probabilities for two occasions
will be the same as that given in (1). Hence, the MLEs
derived for two independent list frames will be the same as
the corresponding MLEs for the capture-recapture model
with two sampling occasions.

Extending these ideas, we contend that combining &
independent list frames is directly related to having &
sampling occasions under Model M, in closed population
capture-recapture models, where ¢ =k (Otis ef al. 1978).
The general likelihood function for £ independent list
frames, B,, B,, ..., B,, has the form

gE(pB], ...,ka,N|N - '"’Nbl---bk) =

Nbx’ ""Nbl...b =1

N -N
[ ] HpB, U-py) " )
which has exactly the same structure as the likelihood
introduced by Darroch (1958) and is discussed in great
detail by Otis et al. (1978) and Seber (1982). The form of

the estimated frame inclusion probabilities is
N, 5,

pB = —_, l=1,...,k. (6)
N

!

Values of N are obtained by numerically solving the
(k - 1) degree polynomial in N resulting from the equality
LNy _ N
WN-1) (N_Nb o e

1

X

=N, ..5,)

B Vel =P ) = 7
(1-p) = (1-py)=1. @
We then select as N as the root that maximizes the value of
the likelihood function (5). Substituting this root into (6)
yields MLEs of the & frame inclusion probabilities.

2.2 Population Total Estimation

Suppose the measured y, values are available for all
units on the & independent list frames. The estimated
probability that the first element is included on at least one
of the £ list frames is

81

f, = BlUfB)|=1- (1= 5, )1 -, ) (1= By,

where pB =Ny /N and N is the MLE of N obtained from
N. From equatlon N,
N
- Nb1 T Nbl.‘.bk)

(1-2)=1

which simplifies to

An estimated Horvitz and Thompson (1952) estimator of
the population total is

fur=o ¥

ﬁ;l i€eBv...uB;
N -
N s
b, by..b; i€eBu..uB,

where ¥ , is the mean of distinct elements on the list
frames. Thus, for k independent list frames, the estimated
Horvitz-Thompson estimator coincides with the population
total estimator proposed by Pollock, Turner and Brown
(1994).

In some situations, values of the variable of interest, y,,
are not available for all units on the list frames. If the list
frames are large in size, random samples are selected from
each list frame and data are collected on those subsampled
elements. If there are k list frames, it is possible to define 2*
domains. We consider an extension of Lund’s (1968)
estimator for the total of all units on the list frames,

2t-1
Y, = 12_1: Ny,

which is a weighted sum of 2* - 1 domain means, y ;- The
weights are given by the domain sizes. Further, the
population total estimator is

Vi
21
1=1 NI

3. MULTIPLE LISTS PLUS AN AREA FRAME

3.1 Population Size Estimation

Joining multiple, individual list frames with an area
frame sample is a solution to overcoming list frame defi-
ciencies. Assume that the geographical area of interest is
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subdivided into U, segments. Also, assume that a simple
random sample of u, segments is selected from U,
segments that cover the entire population. Therefore, the
probability of a segment being selected is p, =u,/U,. In
some surveys, it is possible to subdivide the region into
approximately equally-sized segments. In such cases the
segment selection probability corresponds approximately to
the proportion of area sampled. The inclusion of an area
frame provides completeness of the target population
(Hartley 1962). We assume that each reporting unit belongs
to exactly one segment. Once a segment is selected, all
reporting units within the segment are observed. For
example, when estimating the number of bald eagle nests,
each nest belongs to one and only one segment. However,
this assumption is not always valid. Consider the case where
a hog farm crosses segment boundaries. In this case,
population elements may be associated with more than one
segment. To address this problem, association rules linking
population elements to segments are established at the
estimation stage. See Faulkenberry and Garoui (1991) for
more detail. The National Agricultural Statistics Service
implements three correspondence rules that map elements in
the population to sampled segments. The open, closed, and
weighted segment estimators are described in Nealon
(1984). Another related reference is Sirken (1970).

Consider the case of k independent list frames plus an
area frame. The population size, N, and the list frame
inclusion probabilities, pp , i = 1, ..., k, are unknown para-
meters. The area frame inclusion probability p, = u,/U , is
known. The likelihood function has the form

LPp - Py Nipysngs Bap,> -+ Mab,..bk> Nysoos Ny 5,)

N ny
= N N Dy (1 'PA)
Py Py oo Pap b2 Vs s Vb,

N-n,

k N-N
Hp NB/(l —pB) BI,
11 B !

where 7, is the total number of elements in the u, sampled
area segments and », is the number of elements in the u,
sampled area segments which do not belong to any list
frames. Similarly, ngp, ..., Map, .. by Ny, Np, .5, are
defined as the sizes of dlfferent domams it is 1mportant to
emphasize that the inclusion of an area frame may cause the
value of N, to change. N, mnow corresponds to the
number of elements on list frame B, which are not in the
u, selected area segments and not on any other list frame.
The MLEs of the parameters are given by pB =Ng / N,
where N is a solution to the k-th degree polynormal

N -p)-Pg)..(1-Pp) =

(N— na B nabI -t nab,...bk - Nbl

=N, )-8

Numerical methods are essential for solving (8) for the
MLE N of N. Among the & roots of (8), we select N that
maximizes the likelihood.

Applying this methodology to one list frame and one
area frame, we obtain

” na
N=Ny + % 9)
A

This estimator is also known as the screening estimator
(Kott and Vogel 1995). The screening estimator catego-
rizes elements into two distinct groups. The first group
contains elements which belong to both the list and area
frames and is called the overlap domain. Since it is
assumed that all elements on a list frame belong to the area
frame, the size of the overlap domain coincides with the
number of elements on frame B, and has the value Nj.
The second group contains elements in the area frame not
included on the list frame(s) and is referred to as the
nonoverlap domain. The size of the nonoverlap domain is
an unobserved random quantity, N,. The term n, is the
number of elements found in the u, area segments which
are not included on the list frame(s) following a specific
association rule. An estimated value of N, is n,/p,.
Hence, an estimate of the population size is given by N in
(9). The resulting MLE of Pg, is

- B
pBl -
n
N, +-2
Bl
Py
When multiple list frames are available, it is possible to
combine them into a single list frame and use the above
estimator to obtain an estimate of N. That is, consider the

screening estimator

n
+ o +Nb1'_.bk+——“—. (10)
py

Note that the screening estimator ]\72 is appropriate even
when the list frames are not independent of each other. We
discuss this further in Section 4.

Using this methodology for one area and two
independent list frames yields the likelihood

¢ (pBl’sz’ Nip,n, Nb,’ sz’ Py Maby Np by Matys,) =

N ny NBl PNBZ

Py Pp, Ip
1 2

R, Nbl’ sz’ Pab,r Pab, Nob,s Mab, b,

-n N-N, N-N,
(L-p ) " =py) " =pp)
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The MLE of N is
N, =N=@2p,)" *

[V, * Ny )ps + (g = Noyw, = 1)) * @27

11
\/[(Ngl +N32)p,4 +(n"—Nb1172_nab,bz)]2 +4p (1 —pA)NB,N - (11)

where b, b, denotes the number of elements included in
the u, sampled area segments that belong to both list
frames. An estimate of the variance of N may be obtained
using the Taylor series approx1mat10n of (11) and the
asymptotic distribution of (N, Ny, n,, Nblbz’ o, bz)'

3.2 Population Total Estimation

When y,’s are available for all elements on k indepen-
dent list frames and for a sample of segments from an area
frame, we consider an estimated Horvitz-Thompson estima-
tor to estimate the population total. Recall that we assume
the following:

1. The probability that a unit is included on the i-th list
frame, pj , is the same for all units.

2. The event that a unit is included on one frame is
independent of its inclusion on another frame.

3. The probability that a unit is included in the area frame
sample of u, segmentsis p, =u,/U,.
Since we consider the case where population units belong
to exactly one area segment and all units within a sampled
segment are observed, the third assumption is valid. Hence,
the probability the i-th element is on at least one of the £ list
frames and/or the area frame sample is
-p )= Pg)(1 -y )

7 =1-01 (1= Bp,) =

na + nab1 ton s Nbl"-bk

A

N
The estimated Horvitz-Thompson population total estimator
is

~

N

Ryt Ry, *°

E yi=NyL’

Yyr= N
+ Ny, b, i€ sample

where y, is the mean of the distinct elements on list frames
B, ..., B, and the elements in the area frame sample.

We can also use the screening estimator to estimate the
population total. The known overlap domain total is
combined with an estimator of the nonoverlap domain
(NOL) total to yield ¥g=¥, +¥ o ¥/P4 The NOL
domain consists of elements on the area frame that are not
on any of the list frames and Y, =¥, By is the total of the

Bu..u
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distinct units on the £ list frames. In the subsampling case,
we may replace ¥, in Y by Lund’s estimator, given by

Yy =Ny yy *

Ny Yy, * Npo, Yo, " * Ny 5, Vb0,

4. DEPENDENT LIST FRAMES

We now consider the case where dependencies exist
among list frames but where area and list frames remain
independent. In capture-recapture experiments, for
example, the probability an animal is captured on the
second sampling occasion may depend on whether it was
captured on the first sampling occasion. See Fienberg
(1972), Cormack (1989), Wolter (1990), Pollock, Hines,
and Nichols (1984), Huggins (1989), and Alho (1990) for
specific examples.

We consider the case where we have two list frames, B,
and B,, that are dependent. Let p,, denote the probability
of being included on both list frames. If B, and B, are
independent, then p,, =p, Ps, where Pg, and Pp, are
inclusion probabilities for B and B,, respectively. Define
Pyo(Py;) as the probablhty of being included on frame
B, (B,) but not on frame B,(B,). The probability of
exclusion from both list frames is denoted by py, =1 -

p pB tp 11°
The likelihood function is given by

L@ Py P1o NP1 Nys Ny R s Py s Ny 5By )

N n, N-n
- A
- Dy (1 ‘PA)
Py Ny s Ny s oy s P s Ny o Py )

.
Noyt R, Nyysy* faby s,

Np, * Map,
(pBl_pll) (pBZ"Pn) P

NNy =Ny, = oy = ap, = Ny oy~ ap s,

(1 -pg =Py, *P1y) S (12)

Maximizing (12) with respect to p 5, Py Pri and N leads to
the approximate solution

n
a
P, ¥ Ny, ¥ gy * —>

N = Nbl ab, b,
Py

+Nb2 + nab1 +

which coincides with the screening estimator ]\72. That is, N
is also the estimator that is obtained by pooling the two list
frames into a single list frame where the duplications are
eliminated and the nonoverlap domain size is estimated
using the area frame sample. Also, it can be shown that the
two-stage maximum likelihood procedure of Sanathanan
(1972) leads to:
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na + ]v'BluB2

B,uUB
py+(l-p)——
N2

=N,

Thus, the maximum likelihood estimator and Sanathanan’s
estimator both coincide with the screening estimator. If
information from two dependent list frames is available and
the nature of the dependency is unknown, then we cannot
estimate the individual parameters. When information from
an independent area frame is available, all parameters are
estimable. However, for estimating N, N . is sufficient
and no additional information is gained from NB ,N, B, and
Np,»,-

Mzethods are available for modeling the dependence
among k list frames when estimating population size and
totals. Additional population information or information
from an independent area frame is needed to accurately
model the dependence. Fienberg (1972) and Cormack
(1989) consider constrained log-linear models to model the
dependence. On the other hand, Wolter (1990) uses
external constraints such as a known sex ratio to estimate
the population size in the dependence case. Another
technique used is to model the inclusion probabilities as a
function of the covariates. Alho, Mulry, Wurdeman and
Kim (1993) use a conditional logistic regression model to
estimate the probability of being enumerated in a census
and apply the model to the 1990 Post-Enumeration Survey.
The role of auxiliary variables in capture-recapture
experiments with unequal capture probabilities is addressed
in Pollock ef al. (1984), Huggins (1989), and Atho (1990).

5. SIMULATION STUDY

We conduct a simulation study to assess the overall
efficiency of different population size estimators for the
special case of two list frames plus an area frame. This is
the most feasible combination of sampling frames for real
survey problems.

5.1 Design of the Study

In order to study both dependent and independent cases,
we define the parameter 0 that reflects the dependence
structure between list frames B, and B,. It has the same
form as the odds ratio and is written formally as

Py P
Po1Pro

In the case of two list frames, the value of 6 determines a
unique solution for p,,. Our study varies the following
factors:

e:

Factor Levels Definition
N 500, 5000 Population size
Dy 0.05, 0.10, 0.20 Inclusion probability for area
frame 4
pp(=pg) Inclusion probability for list
1 2 0.7,0.9 frame B, (B,)
0 0.5,1.0,1.5,2.0 Odds ratio

For each parametric combination, we generate data (n,,
Nb ,Nb, aby? Mab, ,Nb b Mab b, ). OnethousandMonteCarlo
rephcatlons are generated for each parametric combination.

5.2 Estimators

We compare four population size estimators, N N N
and N N is the Lincoln-Petersen estimator Wthh does
not 1ncorporate area frame information. The estimator N
is suitable when the list frames are independent. Since the
estimator ignores information from the area frame sample,
it is expected to be inefficient when information from an
area frame is available. The screening estimator, N, sums
the overlap and nonoverlap domain estimates and is
particularly suitable for the dependent list frame case. The
third estimator, N3, is derived from the full, independent
sampling frame likelihood function. This estimator exploits
the information contained in the area and list frames and the
fact that the list frames are independent (8 = 1).

We expect N to be the best estimator when list frames B,
and B, are 1ndependent whereas we expect N to be the
best estlmator in the dependent case. Asa result we also
consider a pre-test estimator that tests for independence of
the list frames. We define N to be N if there is strong
evidence to believe that frames B, and B, are not
independent. Otherwise, we take N N Formally,

.~ | N, if GOF >y] oo5 =3.84

4 5 .
N, otherwise,

where GOF is the chi-square goodness-of-fit test statistic
for testing Hy: 8 =1 and is derived from the following
two-way table.

In B, NotIn B,
In B, Pab, b, P, M4nB,
NotIn B, P, n, M 4nB;
M4nB, M4nB; n,

Figure 1. Classification of Sampled Area Frame Elements

Figure 1 categorizes the n, elements according to their
presence on or absence from list frames B, and B,.
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5.3 Comparing the Estimators

Tables 2 and 3 display the percent relative bias and the
percent relative root mean square error of the estimates
N N N and N for population sizes of 500 and 5000,
respectively We scale the bias and the root mean square
error by N in order to directly compare estimators based on
different population sizes. A comparison of N with N
shows the benefit of drawing an area frame sample In
practice, these benefits depend on the relative cost of the
area frame sample. In this study, we do not take sampling
costs into account. The probability of being included on
both list frames, p;,, is given in parentheses in the 6
column. When p, = pc= .9, p,, must lie between .8 and .9.
However, for § ranging from .5 to 2, p,, varied only from
.806 to .817.

The estimator N is unbiased for N and has the smallest
percent relative b1as The estimators N and N are
asymptotically consistent for N and yield b1ases close to 0
when 6 = 1. On the other hand, N and N have large
biases when 6 = 1. The percent relatlve blas of N is
smaller than that of N but it is not close to zero. The bras
does not change srgmﬁcantly as p, increases from .05 to
.10 to .20.

When N =500 and p, = p, = .9, N3 has the smallest
percent relative root mean square error (% RRMSE). This
is partly due to the fact that the limited range of p,, values
is similar to the p,; value for the independence case (.810).
The % RRMSE for N is 40 - 50 % smaller than that of N
On the other hand, the % RRMSE of N is only 15 - 30 %
smaller than that of N Therefore, when the list frames
have very high 1nclus1on probabilities, both N and N are
much better than N Additionally, if area frame samphng
costs are high, N may be a reasonable alternative estimator
to N When N=500 andp, =p. = .7, N has the smallest
% RRMSE for the independence case. When 0=2, N has
the smallest % RRMSE. If N = 5000 and p, = .7, N has
the smallest % RRMSE for only 6 = 1. For all other 0
values, N yields the smallest % RRMSE. In all cases, N
has very small variance and most of the % RRMSE is due
to the bias in N For8<1, N tends to have positive bias
while for 0 > 1 N has negatwe bias. For the case of N =
5000 and pj = .9, N has the smallest % RRMSE for 6 = 1.
N has the smallest % RRMSE for 6 =.5 and 2. For

=1.5, there is no best estimator with respect to
% RRMSE.

As expected, the percent relative root mean square eITors
of N N and N decrease as the value of p, increases.
Thus as the area frame information increases, the
% RRMSE decreases. Also, as the population size
increases from 500 to 5000, the % RRMSE decreases.
Since the values of p, in our simulation are small, NL has
a large variance. On the other hand, even though N, is
biased, it has a very small standard error and results in a
smaller % RRMSE. The estimator N reduces the bias of N
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but has a large standard error. Hence, N is not a
particularly beneficial estimator. For larger values of Oandp,,
we expect N to perform better than N For the values of
0 and p, we considered, we recommend N over other
estimators.

The value of % RRMSE for N is between that of N
and N in most cases. We write the estimator N as N =
SN + (1 8)N where 8 = 0 or 1 based on the results of
the goodness of fit test. The % RRMSE and % RBias of
N need not be between those of N and N because 8 is
not independent of N and N

5.4 Limitations of the Study

The goal of our study is to compare the bias, standard
error, and mean square error of four population size
estimators. We assume that inclusion probabilities for both
list frames are identical. Future studies may include
unequal inclusion probabilities as well as larger values of 8.
Clearly the benefit of N over N depends on the cost of
sampling from an area frame Our paper considers only
small values of p,. Small p, values are associated with a
high area frame sampling cost. Even in this case, we
observe a significant reduction in % RRMSE and % RBias,
thereby justifying the use of N3 over Nl. We do not
consider an objective function which incorporates sampling
costs, % RRMSE, and % RBias.

Throughout this paper, we assume that all units have the
same probability of being included on a given list frame.
Haines (1997) considers the case where the inclusion
probabilities are modeled as a function of a covariate.
When inclusion probabilities are heterogeneous, larger units
may have a higher list frame inclusion probability than
smaller units. Heterogeneous inclusion probabilities play
an important role in estimating population totals when the
response variable has a highly skewed distribution or has
rare values. Haines (1997) also presents two stratification
procedures that are useful when area and list frames are
stratified on the same variable. These results will be
presented in future publications.

6. DISCUSSION

The primary focus of this paper is population size
estimation based on several sampling frames. Information
from area and/or list frame(s) is collected and combined to
obtain various estimators. We derive population size
estimators when information is available only on %
independent list frames and also when information is
available on an area frame sample in addition to the list
frames. We conduct a simulation study to compare the
performance of the estimators in the special case of two list
frames plus an area frame. Based on our simulation study,
we recommend the estimator derived from the full,
independent likelihood, N3, for the case where the list
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Table 2
Simulation Results for N = 500

Py
.05 .10 20

Ps 0 %RBias % RRMSE % RBias %RRMSE  %RBias % RRMSE
7 S5 N 62.30 66.01 60.64 64.04 63.26 66.81
(462) v, 030 49.07 -0.75 3237 0.85 22.58
V, 55.52 58.95 48.15 51.15 40.53 43.32
v, 48.15 58.88 37.88 49.25 24.95 38.80
1 v, 047 19.26 1.01 19.08 -0.11 19.45
(490) v, 0.45 57.34 0.34 39.61 0.88 27.25
V, 0.43 18.21 0.83 16.93 0.14 15.75
v, 2.40 27.57 1.39 22.94 0.29 17.96
15 N ~35.60 40.06 -36.48 40.58 -35.69 40.26
(:308) v, 3.11 66.43 -5.08 41.96 0.30 28.79
V, -32.07 36.79 -31.01 35.28 -24.04 28.88
V, -22.74 47.62 -26.21 37.57 -17.06 3038
2 N -60.07 62.91 -61.31 64.06 -60.41 63.28
(522) v, -6.12 66.59 -1.15 46.68 1.67 30.99
V, -55.36 58.35 -51.21 54.19 -40.89 43.99
v, -41.39 63.79 -34.79 55.45 -18.60 4135
9 5 N 5.37 6.79 5.27 6.63 5.59 6.97
(:806) v, 0.08 14.78 -0.06 10.17 -0.06 6.55
V, 5.04 6.44 4.62 5.93 4.24 5.53
v, 5.94 9.48 5.03 7.05 4.34 5.72
1 N, 0.30 5.01 0.17 5.01 0.25 4.94
(810) v, 0.78 20.72 0.41 14.06 -0.06 9.03
V, 0.33 4.83 0.20 4.68 0.17 4.24
v, 3.23 13.79 1.88 9.35 1.00 5.98
L5 N -4.29 7.07 -4.39 7.32 -4.55 7.37
(819 v, -0.65 21.52 0.35 15.88 0.002 10.27
V, -4.07 6.78 -3.83 6.73 -3.49 6.15
v, -0.43 13.77 -1.18 10.92 -1.43 8.20
2 N, -8.28 10.27 -8.40 10.36 -8.33 10.32
(817 v, -0.29 25.59 0.39 17.66 0.35 11.41
N, -7.80 9.82 -1.35 9.38 -6.30 8.20
N, -2.52 17.96 -3.10 14.02 -2.73 10.33
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Table 3
Simulation Results for N = 5000

Py
05 .10 20

Py 0 %RBias  %RRMSE  %RBias  %RRMSE  %RBias % RRMSE
7 5 N 61.47 61.82 61.39 61.76 61.69 62.04
(462) v, -0.18 15.78 0.26 10.65 -0.15 6.72
v, 54.84 55.17 49.06 49.38 39.38 39.65
V, 19.73 38.12 4.77 19.52 -0.01 7.21
1 N, -0.28 6.14 -0.13 5.99 0.35 6.15
(490) V, 0.43 18.14 0.47 12.85 -0.20 8.34
V, -0.22 5.82 -0.03 5.35 0.16 4.88
v, 0.26 9.82 -0.04 7.44 0.11 5.95
15 N -36.21 36.68 -36.29 36.78 -35.90 36.38
(:308) V, 0.41 20.39 -0.16 14.21 0.39 9.55
v, -32.87 3337 -29.97 30.49 -24.13 24.66
V, -19.11 3115 -11.51 23.92 -3.12 14.03
2 N -61.04 61.3 -60.53 60.81 -60.64 60.92
(322 V, 0.40 20.09 0.60 15.43 0.31 9.67
v, -55.69 55.96 -50.24 50.55 -41.46 4176
A -14.10 36.31 -2.34 20.96 0.26 9.84
9 05 N 5.56 5.70 5.52 5.67 5.54 5.68
(:806) v, -0.12 4.55 0.11 3.19 -0.03 2.08
V, 5.21 5.35 4.86 5.01 4.22 435
V, 4.97 5.41 3.64 4.88 2.26 3.79
1 N, -0.02 1.58 0.08 1.55 0.01 1.57
(810) v, -0.09 6.16 -0.17 4.08 -0.14 2.79
A -0.03 1.53 0.05 1.48 -0.02 1.35
v, 0.37 3.19 0.11 2.18 0.09 1.89
15 N ~4.66 5.00 ~4.52 4.85 ~4.61 4.90
(819 v, -0.25 7.54 0.11 4.95 -0.09 3.14
V, -4.39 473 -3.96 4.32 -3.55 3.85
V, -2.50 6.31 -2.26 5.02 -1.84 3.82
2 N -8.45 8.68 -8.38 8.60 -8.46 8.69
(817 V, -0.21 7.86 -0.06 5.29 0.01 3.73
v, -7.95 8.18 -7.39 7.61 -6.49 6.73
N, -3.76 8.80 -2.77 6.99 -1.25 4.97

87
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frames are independent or nearly independent. For the
moderate to strong dependence cases, we recommend the
screening estimator, N,.

We also study population total estimation. We consider
two scenarios for estimating population totals. In the first
case, we assume that observations are available on all units
that comprise the list frames. In contrast, the second case
assumes that information is available only on subsamples
from each of the list frames. We consider an estimated
Horvitz-Thompson estimator if list frames are independent
and a screening estimator to estimate the population total if
the list frames are dependent.

In this paper, our focus is on population size estimation.
In practice, one may be interested in estimating population
totals for several characteristics based on multi-stage
samples involving unequal inclusion probabilities.
Relevant papers on this topic include Bankier (1986),
Skinner (1991), and Skinner, Holmes, and Holt (1994).
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