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Confidence Intervals for Domain Parameters When
the Domain Sample Size is Random

ROBERT J. CASADY, ALAN H. DORFMAN and SUOJIN WANG'

ABSTRACT

Let 4 be a population domain of interest and assume that the elements of A cannot be identified on the sampling frame and
the number of elements in 4 is not known. Further assume that a sample of fixed size (say ») is selected from the entire
frame and the resulting domain sample size (say n, ) is random. The problem addressed is the construction of a confidence
interval for a domain parameter such as the domain aggregate T, =} ., x,. The usual approach to this problem is to redefine
x;, by setting x; = 0 if i¢ 4. Thus, the construction of a confidence interval for the domain total is recast as the construction
of a confidence interval for a population total which can be addressed (at least asymptotically in #) by normal theory. As
an alternative, we condition on », and construct confidence intervals which have approximately nominal coverage under
certain assumptions regarding the domain population. We evaluate the new approach empirically using artificial
populations and data from the Bureau of Labor Statistics (BLS) Occupational Compensation Survey.

KEY WORDS: Bayes method; Conditioning; Establishment surveys; Simple random sampling; Stratification; Survey

methods.

1. INTRODUCTION

In sampling from a finite population, we often are
interested in the estimation of totals, means, or other
quantities, for parts of that population, usually referred to as
domains. Such domains are not explicitly listed in the
frame, the number of items that will occur in the survey is
not known in advance, and often enough, we do not even
know the number of their elements in the population. For
example, we might sample schoolchildren for certain
medical problems, and then wish to know the mean blood
pressure of those children who are underweight. The class
of underweight children would constitute a domain. The
only information we have as to whether or not a child is
underweight is likely to be among the sampled children; if
so, then this would be a case where the domain is not
explicitly listed on the frame.

An essential part of the inference process is the estimation
of the precision of our estimators; this is typically given by
an estimated standard deviation, coefficient of variation, or
confidence interval. The notion of a valid confidence
interval underlies whatever measure of precision we use. All
confidence intervals have, by construction, a stated
“nominal” confidence level. A valid confidence interval is
a confidence interval with actual coverage matching the
nominal coverage. The actual coverage may be determined
theoretically or by empirical work mimicking the practical
circumstances in which the confidence interval would be
used. If a standard deviation is not such as to give rise to a
valid confidence interval, then the standard deviation needs
to be regarded as misleading.

In the case of estimates for domains, confidence intervals
constructed along traditional lines can lead to serious under-
coverage, a fact not always appreciated in the literature.
We refer to this as the domain problem. The present paper
addresses this problem by a somewhat complex methodolo-
gy involving Bayesian ideas, which, however, leads to a
rather simple practical solution, improving on current
methodology. The main change in method lies in replacing
the standard normal statistic used in the construction of
confidence intervals, with a Student’s #-statistic having
degrees of freedom that depend on the number and
configuration of the domain items in the sample.

We shall focus on domain totals and domain means for the
two common cases of simple random sampling and stratified
random sampling. In the case of simple random sampling, it
turns out that standard methods are satisfactory for the mean;
however, for the total, coverage can be lower than nominal
butnot usually worrisome. For stratified random sampling,
confidence intervals for both the mean and the total pose
serious difficulties with regard to coverage level. In this case,
the new methodology is augmented by use of a well known
approximation due to Satterthwaite (1946). Alternate
approaches to ours, also using this approximation, may be
found in Johnson and Rust (1993) and Kott (1994).

An outline of the paper is as follows: In Section 2, to
introduce ideas, we consider the case of the total in simple
random sampling, using it to illustrate the standard
approach for domain estimation, the coverage problem to
which this gives rise, and the approach here taken to rectify
the difficulty. Section 3 describes the extension to stratified
random sampling. Section 4 states our conclusions.
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2. THE CASE OF SIMPLE RANDOM SAMPLING

2.1 Standard Method

The standard approach to domain estimation is well
described in Sidrndal, Swensson, and Wretman (1992);
Sections 3.3, 5.8, and Chapter 10) (henceforth SSW). Their
approach is general. Here we paraphrase it for the case of
simple random sampling, and, by mild extension, for
stratified random sampling as well, and focus on the
domain total.

Let x, be the value of the characteristic of interest for the
i-th (i = 1,2, ..., N) element of the population and let A be
a domain of interest. We shall consider only the case where
the elements of A cannot be identified on the frame and the
number N, of elements in 4 is notknown; the case where N,
is known is fully treated in SSW. It is assumed that any
element of 4 included in a sample can be identified. The
problem is to construct a confidence interval for the domain
total, T, = Y., x,, based on a sample of n elements selected
from the entire frame.

Explicitly (as in SSW, Section 3.3) or implicitly (as in
SSW, Section 10.3) the standard approach to this problem
is to redefine x;, by setting x, =0 if igA, which forces the
population total T = Zﬁlx,. to be equal to 7). Thus, the
construction of a confidence interval for the domain total is
recast as the construction of a confidence interval for a
population total. In what follows it is assumed that the x,’s
have been redefined as above. We shall also assume, here
and throughout this paper, that » is sufficiently large and
n/N sufficiently small that second order terms can be
ignored. Define the additional population parameters,

X = T/N = population mean,
8% =Y¥" (x,- X)*/N = population variance, and
p, =N /N = proportion of population in 4.
Then
M Ty=Wm) Y x,x=Y0 x/mn=T,INs?=
Yo, (&, -x)Y/n-1), and p, = n,/n (where n is the
number of sample elements in 4) are unbiased for the
corresponding population parameters,
@) E(T)=T,
(3) var(T,) =N?S?%/n,
@) n(,- T )/ NS)—LN(O, 1), and
(5) s? is consistent for S%.’
It follows that y/n (T, - T,)/ (Ns) —<-N(0, 1), so, when
n is “sufficiently large”, appropriate values from the normal
distribution can be used to construct confidence intervals
for T,, as noted by SSW, p. 391.
The proportion of the populationin 4° is 1 - p, and
x;=0 for i€A4°; therefore, when p, is small and the

values of the x,’s for i€ A4 are concentrated away from zero,
the convergence in distribution in (4) can be slow.

Consequently, the distribution of Jn(T 4w~ T,)/Ns can
deviate from normal even for what are usually considered
to be moderate to large values of n. The simulation study
in Section 2.5 illustrates this.

For the case of stratified random sampling, confidence
interval coverage for domain quantities using standard
methods can be poor. Dorfman and Valliant (1993) noted
the problem in their study of wage distributions for domains
consisting of workers in specific occupational groups.
Preliminary empirical work by the authors indicated that
supposed 95% confidence intervals for total workers and
total wages for occupation based domains typically
provided only 75% to 85% coverage even for a large total
sample size (n =353 establishments). These results are
verified as part of the empirical work described in
Section 3. Furthermore, their work indicated that the
distribution of 7 .~ T, was strongly dependent on the
realized value of n,, which suggested that some type of
“conditional” confidence interval should be considered. It
seems desirable to establish methodology for the construc-
tion of conditional (on n, or equivalently p,) confidence
intervals for T, which provide nominal, or near nominal,
coverage regardless of the realized value of the domain
sample size. Inference conditional on sample size is
discussed in SSW, Section 10.4, but only for the case of
known N ; we are concerned throughout this paper with
the case of unknown N,,.

2.2 Definitions and Notation

We define the following parameters and estimators:

Domain parameters:

u, =T,/N, = domain mean,

6% =Y. ,(x,- n,)*IN, = variance of population ele-

ments in 4.
Domain estimators:

N, =paN,

A=Y 4x/n,=T,/N, (only defined for n, > 1), and

8% = Y4 (x, - L )*/(n, - 1) (only defined for n, > 2).
In what follows it is understood that n, > 2 (or equivalently
P, > 2/n) unless specifically stated otherwise. At n, =1 or
0, it is preferable to supply an “insufficient information”
tag, rather than attempt inference. The relationships given
below follow directly from the definitions:

Ty=Np,u, and T, =Np,f,,

)?=pApA and x =p [,

$%=p,(1-p Oy + PO
and

&4 )
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Also, it is straightforward to verify that
(\/’—“N)(TA - TA)Z\/ZHA(PAA_pA)"' ﬁAGAZ, )

where Z = @ (i,-p)/o, Thus, conditionally on
By T is biased for T ,, and if, for example, we assume an
underlyrng normality, and standardize (\/— /IN) (T T,) by
the corresponding conditional variance, we w111 get a
non-central f-distribution with unknown non-centrality
parameter proportional to \/;1- u, (P, - p,) providing little
basis for (conditional) sound inference. This is the problem
which the discussions in the next sections attempt to
address.

We remark that in estimating the mean p, by (i, the
bias is zero, and the problem of the preceding paragraph
does not arise. This is the reason that, in simple random
sampling, standard inference for means is sound, at least
when the domain variates are normally distributed.

2.3 General Methodology for Confidence Intervals

Let 6 = (T )/sT , where s; is an estimator (to be
specified) of the (condrtronal or uncondrtronal) variance of
the total. Assume that the form of the conditional (on P A)
distribution function of 8, say H(: 1By Py Wy cA) is
known where p,, u, and o), represent unknown parame-
ters. In order to construct a conditional equal tailed
(1 - o) x 100% confidence interval (CI) for T, we define
an upper critical value

¢,=c,@,p,,p,) =~ inf{x| Hlx|p;p,)2 a/2} =
-H'/2.0,:p,)

where p, is considered fixed and the dependence on
and o’ ", is temporarily suppressed; a lower critical value, say
¢, is defined in a similar manner. A conditional, equal
tailed (1-o)x100% CI for T, is then given by
CI(1 - o) = (¢, u), where

T+csT and ( = T+csT (3)
At this point the obvious practical problem is that the
critical values ¢, and ¢, depend not only on p, but also on
the unknown parameter p,. One approach to this problem
is to take a Bayesian tack and assume the parameter p, is
the realization of a random variable. Adjusting the notation
to reflect the assumption that p, is stochastic, we replace
H(x|p,;p,) by H(x|p,,p,) and have that

Pr{d < x| p,} = F(X|5,)

) h(;A)fH(xmA’pA)f(ﬁA IPA)g(PA)dpA, 4)
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where h(p,) =ff(ﬁA|pA)g(pA)dpA and g(p,) is the
density of p,. It should be noted that as a consequence of
our sampling scheme the distribution of np,, conditional
on p,, is Binomial (n,p,) so that f(p,|p,) is known
Under the Bayesran approach, the cr1t1ca1 values are ¢, =
co(0,p,)=-F(a2|p,) and ¢, =¢, (a, pA)=~F !
(1- a/2{p,) so the upper and lower limits for a
conditional (1 - a) x 100% Cl for 7, are

A * 2 *
u=TA+cus7~,A and0=TA+c9sTAA. o)

For the purposes of our current research we assume that the
prior distribution g(p,) is N (p c ) with K, and (sp/1
to be specified, with the und‘erstandmg that of, is
sufficiently small that p, lies between O and 1 with near
certainty. The normality assumption is made for mathe-
matical convenience. It also captures notions we may have
of degrees of closeness to, and symmetry about, M, . For an
empirical Bayes approach, we use pp =p,; we cons1der
several possible alternatives for o> , discussed in detail
below. Our experience indicates that the normality
assumption is not crucial; rather, it is primarily a matter of
convenience.

2.4 Confidence Intervals Under Normal
Assumptions

To proceed further we assume that within the domain 4
the x; are distributed N(p,, o A) In practice, this
assumptron may not be met. Nonetheless, it leads to
suggested modifications that will not at any rate give lower
coverage of confidence intervals than the standard
approach. Combining this assumption with earlier results,
in particular equation (2), and ignoring lower order terms,
we have

@ [n(T4-T)/n|p,, p,] is distributed

NG/nu,(By= Py Ba):
62
(b) |(mp, - 1)— ]pA,pA is distributed ¥*(np, - 1), and
o4

(c) the conditional random variable in (b) is stochastically
independent of the conditional random variable in (a).
Consider 8, = (7, - T,,)/ (N8 ,/p, /y/n), which utilizes
the conditional variance of 7', as the standardizing term. It
follows immediately from (a), (b) and (c) that, conditional
on (p,,p,) the random variable ér is distributed as a
non-central f with np, - 1 =n, - 1 degrees of freedom and
non-centrality parameter

A :\/ZYA(pAA _pA)/\/pT’
with
V=1, 0,
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Thus, we have specifieq the conditional distribution
function H(-|p,,p,) of 8,. As f(p,|p,) and g(p,)
have been previously specified, it follows that F(-| §,) in
(4) is well-defined although extremely cumbersome to
calculate. The dependence on p, and o5, through v,,
should be noted.

Although F(-|p,) as given above can be used to
determine the critical values, they are extremely difficult to
calculate. A relatively simple approach, given in the next
paragraph, provides a close approximation to the critical
values. We have verified the closeness of the approxi-
mation by computing the exact values for selected cases
using large scale simulations.

Adoption of a locally uniform prior on p, leads to the
approximate posterior distribution p, ~ N(p,, var(p,))
and we could approximate var(p A) byp,(1-p A)/n We
adopt the slightly more flexible prior p, ~ N(u, c ) and
empirically choose p =p,, with several poss1b111t1es for
012, that will be specified below. It follows from Appendix
A that [A] p,] is distributed approx1mately as a normal
with mean zero and variance y (1-p )/ +vy,), where

v, =p,(1-pns,

Then, from the result in Appendix B, conditional on p,,

(7,1

N3, \[p_A
Jn

is distributed as a central # with n, - 1 degrees of freedom.
Let # ./ ", , be the (1 -a/2)100% percentile of this
distribution. The upper confidence limit », defined in (5),
is given (approximately) by

u=T,+N&,[p,/nx

(-2t ovd/ 0 v iwmn e ©

As & *, 1s conditionally unbiased for 7 ", and p 4" GA/nA
is condltlonallzy unbiased for Hy, we use 'YA
(pA <5A/nA)/csf1 to estimate yA Substituting yA for y4 in
(6) yields

= 1y + (/) x

A a2 %
pAcAWA
[[1 * L2 )/(1 * WA)) Hoam, -1 @

where 5?2 is defined in (1).

It remains to choose y,. We note that # is strictly

decreasing as y, increases and

—lann,-1 =% 23S Y, becomes small,
Jn
A a2,.2
1+p,84/s
2

T+NS

%
Y arzn, -1 =t TOr W, =1,

as y, becomes large. (8)

In each case the lower critical value can be dealt with in an
analogous manner resulting in three competing confidence
intervals; namely, CI (1 - o) = (E @,),i=1,2,3, with @i
defined similarly to # in (8) with tl a2, -1 TePlaced by
taram, . The competmg confidence intervals are labeled in
order of decreasing length.

The first case is equivalent to assuming that c is large
relative to var(p,) and leads to using the usual
unconditional variance but with degrees of freedom equal
to n, - 1 In most practical problems this seems reasonable
since (SPA is an unknown constant and var(p,) is 0(p,/n).
The second interval corresponds to adoption of a normal
prior as noted above, with 0123 =p,(1-p,)/n The last
confidence interval is based on the assumption that p, is
essentially degenerate at p, .

2.5 Empirical Study for SRS

We compared the several confidence intervals of
Section 2.4 in a small empirical study, using artificial
populations, for which the domain variable was normal. In
all cases the population size N was 1,000, and the sample
size n was 100 or 300. The parameters p, and y, varied
from population to population. Letting M, be the number
of runs with n, > 2, we allowed the run size M to vary to
give M, =10,000. Table 1 gives coverage results. CI;
represents the confidence interval based on the standard
normal methodology. The results for CI, closely approxi-
mated the results for CI, and are excluded. The value of M
is included to indicate how many trials fell into the
“insufficient information™ pile, at a given setting of the
parameters. Several conclusions seem warranted:

1. Standard confidence intervals using the usual variance
estimate and normal quantiles can give low coverage.
This occurs for several values of p, when v, =1/2 or
Y, = 2, however, the under-coverage is not too severe
if the domain variable is normal. The case where
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Y, =2 or takes even larger values is probably more
likely in practice. Thus if the domain variable is normal,
the use of standard confidence intervals under simple
random sampling case is not particularly worrisome.

2. The strictly conditional intervals (i.e., CI;) using the
conditional variance can give abominable coverage,
when v, is large. That is, confidence intervals based on
“large” values of vy, gave very poor results.

3. The use of the standard variance estimate but replacing
the standard normal quantile with a ¢t-quantile having
degrees of freedom based on the number of sample units
in the domain (i.e., CI, ) gives approximately nominal or
conservative coverage regardless of the value of v,.

Table 1
Coverage of 95% Confidence Intervals for Domain Total
for Artificial Populations with
Domain Variate Normally Distributed*

Coverage
P, n M CI, CI, CI,
y=1/2

.01 100 38774 100.0 100.0 91.2
300 11773 98.3 100.0 83.2

.02 100 16327 91.1 99.4 95.0
300 10078 88.6 95.5 939

.05 100 10303 88.7 97.8 93.5
300 10000 92.3 94.4 92.5

.10 100 10001 90.9 94.8 92.5
300 10000 94.0 95.0 923

y=2

.01 100 37749 99.9 100.0 83.5
300 11740 944 100.0 89.1

.02 100 16348 99.0 100.0 88.4
300 10075 914 98.9 74.7

.05 100 10312 90.5 99.5 77.6
300 10000 93.8 95.8 66.6

.10 100 10000 91.7 96.5 67.9
300 10000 94.0 952 65.0

* See Equation (8) and accompanying text for definition of CI,
and CI,. CI, is the standard normal confidence interval.

As a minor observation on the results, we note the
counter-intuitive increases in coverage for smaller p, and
n. We believe this is due to the fact that, at very small
values of p, and n, p, is constrained to be positive, and so
cannot deviate much below p,. Were intervals calculable
for n, =0, there would be a serious drop in coverage in
these cases. Note that the coverage rises unexpectedly only

where M is large.

3. THE CASE OF STRATIFIED RANDOM
SAMPLING
3.1 Definitions and Notation

Assume there are X strata and, where appropriate, terms
previously defined have corresponding stratum level
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definitions. For example, n, is the sample size and n,,
is the number of sample elements in A for the £-th stratum.
Thus, a natural estimator for the domain total

K K A .
Ty=Yket Liea¥ni = Lot NiBag My 18
Ty= ZkeB, Ty = Ekea, NP axPapo

~ ~ n
where ., =ng/n,, B, =Y, x,/n, and B, ={k|n,, > 1
and 1< k<K}. As p,, =0 for k¢B,, it is straightforward
to verify that

5 . K . -
E[(TA -7y |PA’PA] =2k Ni(By = P =, 9

and

A . 2,2 2
var[(TA - TA) IpA’pA] = EkeBl Nk pAkGAk/nAk =
2,2 2 )
Ekegl Ny BaxCai/ 1y = 6,

where p, =[PP Baxl: P4 =Py P4y - Pyx]- Thus,
as in the simple random sampling case, there is a
conditional bias [i ,, which needs to be taken into account.

3.2 A Methodology for Confidence Intervals

The general methodology for confidence intervals of
Section 2.3 for simple random sampling holds here as well.
One need only reinterpret scalars as-vectors; for example,
replace p, by P,=(Pyy-PByy)’- In particular,
Hx|p,p,)=Pr{0<x|p, p,} wil be the conditional
distribution function of 6 = (T, - T,)/6,, where 6, is a
re-scaling factor to be specified.

Let B,={k|n, >2 and 1 <k<K} and, for keB,,
define 63 0= ZT:{‘ (x — A k)2/ (n4,— 1). Under normality,
(n,,- D83 /05 ~ X, - 1), so if {d |keB,) are
non-negative constants with )’ _ B, d, >0, then by the usual
Satterthwaite (1946) two moment approximation, the
conditional random variable

[(1/c)2k632 dy(n g~ D@22 By pA]
is distributed approximately as a y?(v), where
2
¢= EkeBz dy (g~ 1)/EkeBZ dp(ny - 1)
and
2 2
V= (EkEBz d(ng = 1)) /EkeBz di (ng = 1.

This suggests that we restrict our attention to expressions of
the general form

2 A2 ;2
04 = EkeBz d(ny = )8/ 04y
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with choice of the dj to be specified. Note that when
B, =B, and dz NkszkGAk/nk(nAk 1), 8, =5, = Lies,
d (n 4 - 1)é, i/ O is an unbiased estimator for the
cond1t10nal variance &),. However, as in the simple random
sampling case, this estimator will tend to be too small. We
use the more general expression to develop a family of
t-statistics when we “uncondition” on p ,. Each of these
will involve unknown parameters, and, as in the simple
random sampling case (transition of equation (6) to
equation (7)), estimation of these unknowns will be
necessary. Thus the net result will be several rival “near
t-statistics” which we may then compare empirically.
Because the samples are selected mdependently from
each stratum we have f(p,|p,) = l'[k 1Ji(Palpyy) and,
as a consequence of our within stratum sampling scheme,
n, D 4 has a binomial distribution B(n,, p,,). We assume
that the {p Ak| 1<k <K} are jointly independent so

g(p,) = X g,(p,,) which implies
£8P 8P ) =1Lt £ (Bl P8P ad)

and
h(p,) = Hf=1 ffk(ﬁAk | P48 (Pai)AD 4y

In what fo]lows we assumne that the prior distribution of p .,
is N( M, c ) and for the empirical Bayes approach, we
use p, = p ,, and, analogously to the case of simple
random samphng, we define

. . 2
Var =Pai(1 ~ By)/m0, .-

It is straightforward to extend the result in Appendix A
to the case of stratified random sampling and it then follows
that, for fi, defmed by 9, [i,/6,]P,] is dlstnbuted
N(O var(fi, IpA)/oA) where var({i, IpA) ZkeBNk
pAkpAk(l B/ n (1 +wy,,). Using the result in Appendlx
B, it follows that, conditional on § ,, the random variable

5 (f,- TA)/\/var(ﬁAIﬁA) oy i
2
\&4/cv
&,-T )/Jvar(ﬁA 1p,)+ 6
\jEkeB A 1)(0Ak/03k)/2k631 dp(ng -1

is distributed approximately as a central ¢ with v degrees of
freedom. _
Letting ® = var(fi, |p,) + 6;7‘,, with

2 _ 22
Yar =Mai/ Oax

and assuming the y,, are near zero we have

2, 2
®=E P P

keB, nk

( Ak(l _pAk) +1).

Thus, the upper bound on the CI would be (approximately)

d -1 a2 / 2
J/E"E‘*z ™ D GAk)®V2tv, (10)
\/Z keBde(nAk— D

where ¢, stands for the critical values of the 7, distribution.
Unfortunately the bound depends not only on our choice of
the d,, but also on the unknown parameters p ,, and (si e
It is not hard to show that v < Yyep (n,, -~ 1) = v, and,
if we set d, =1 (or any constant for that matter) then
V=V We refer to v specifically as the unweighted
degrees of freedom. In this case the upper bound on the CI

would be
2 ;2
. szkeB2 di(ny = 164/ 040 "
=T,+ @Y

V > keB, (ngy -1 ke

Another approach is to attempt to finesse the problem of
estimating ©® (at least when B, = B,) by a judicious choice
of the d,. To that end let us assume that B, = B, and let

=4y

N? DSk 2
d=—"""", 1-p,)+1D
k k(nA -1 Ak Ak

so that ZkeB d,(n,, - 1) = © and O cancels outin (10). We

then have

52
Nk PAk Ak

N ) .
u="T,+ ZkeBz (yAk(l—pAk)+1)tvl,

k

where v, is the degrees of freedom associated with this
second choice of the d,. More generally (i.e., when
B, # B,), we have

N2p &
N, D,y Bax .
\ EkeBz - (Yf!k(l Pyt D
U= f’A + k @V’tvl.
N2p o
NPy Sux .
\ ZkeBz . V(1 =Py + D
%

In any event, we are still faced with the problem of
estimating the population parameters and we have the
additional problem of estimating the degrees of freedom.
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A third p0351b111ty, which we have already mentioned, is
to let d Nk pAkcAk/nk(nA,c 1) so that when B, = B,,
6. =5, = ZkeB d(n,, - 1)8%,/0;, is a condltlonally
unbiased estimator for & ;- In this case we have

7o A

\/ EkeB Nk kaAk/ ny

where v, is the degrees of freedom associated with this
third choice of the d,. As in the second case, we are faced
with the problem of estimating the population parameters
and the degrees of freedom.

Now, it should be noted that if we estimate o, ' With Ry "
for k€ B, and let ® be a yet to be specified estimator of ®
then the (estlmated)/ upper bounds above are u = T +
6” Lo u=1T,+0"t, and u = T +®” ¢, respectlvely
The degrees of freedom are estlmated b§/ substituting
estimates of the population parameters into the two
respective choices of the d,. Both ¥, and v, are smaller
than v_, , so, for any reahzed value of @, the confidence
interval using v_,. will be the shortest. There is no general
relationship between the sizes of ¥, and ¥,. Empirical
evidence indicates that there is little to choose between the
second and third approach.

Addressing the problem of estimating ®, we can write

=), NkzﬁAk(“ik(l _pAk) + Gflk)/nk *
keB,-B,

2,\,\2

w DS/ 1y, o
t

b
V2

lg NkzﬁAk(“/z;k(l - ﬁAk) * c,zqk)/”k'

For ke B, - B, the estimator 6’ "1 18 not defined, however
it 1s stralghtforward to verlfy that (1 - pAk)E[pAk | nyl s
+uAk(l pAk)<E[pAk|nAk] It follows that

2 . o N2
= E N By = By )i/ my +
keB,

Y N2 p 8+ Un - 1in,)in,
keB,

will tend to underestimate ®, and

2 2, A 2, s\ a2
5= D NkPAk“Ak/”k+E Neby( _pAk)l‘J‘Ak/nk+
keB,-B, keB,

Y N2 BB+ 1in, - 1n, ) n,

keB,

will tend to overestimate ®. Clearly, sa2 < sb2 with equality
only when B, = B,.

It can also be verified that in the case of stratified
sampling, the standard variance estimator for estimated

population totals is
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> Ny /”k E N} Pyl - pAk)”Ak/(nk

k-sB1

2. A2
* E N B84, -

keB,

Un, )l (n, - 1).

This looks like a satisfactory estimator of @, if the n, are
not small.

These results imply that CIs of the form ( 85,1 a9, )
will provide the highest level of coverage; but CIs of the
form (T 504t ) andevenperhaps (T 804l -anv, )
have obvious computatlonal advantages. Several of these
competing forms of CI are evaluated empirically in Section
3.3. Theseresults can easily be extended toratio estimators by

the standard linearization approach.

3.3 Empirical Investigation for Stratified Random
Sampling: the BLS Wage Data

Witha view toimproving estimation of precision on wage
data produced by the U.S. Bureau of Labor Statistics, we
investigated coverage and interval length in two simulation
studies on populations constructed from a test sample of the
Occupational Compensation Survey Program (OCSP)
conducted in 1991. The OCSP consisted of establishment
surveys in several metropolitan areas, aimed at estimating
wages levels for a select group of occupations. The surveys
were carried out by stratified simple random sampling, with
establishments stratified by employment size and industrial
classification.

One population (the “Small Population) took the test
sample itself as the population, with six non-certainty strata,
and one certainty stratum of 12 establishments. Five hundred
stratified random samples were taken from this population
at sizes n = 36 and 60, corresponding to the choices n, = 4
and n, =8, reflecting relative sample sizes of sampling
from the original population. The second population (the
“Large Population™) was constructed by expanding the
sample data through replication (by simple random sampling
with replacement, within each Small Population stratum) of
establishments to achieve a population the size of the original
population; again there were six noncertainty and one certain-
ty strata; foreach stratum sample sizes were the same as in the
actual sample. Domains are defined by the different occupa-
tions of interest; only a fraction of establishments have
workers in a particular occupation, and lie in the correspon-
ding domain. Table 2 gives the number of establishments
having workers in the selected occupations for the small
population.

In both cases sampling was without replacement, so
finite population correction factors were included (as
appropriate) in the construction of the Cls. Also, the study
was limited to a concern with 95% coverage.
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Table 2
Number of Establishments in Given Domain (Occupation),
by Stratum for Small Population

stratum
Occupation 1 2 3 4 5 6 7 total
4021 o 4 11 10 8 10 7 50
1141 o 3 n 7 11 9 7 48
1122 0 3 8 13 14 12 6 56
3180 10 11 5 25 20 4 5 80
2911 0 3 14 2 13 17 7 56
1142 2 8 15 9 15 19 9 77
1180 17 20 S5 61 31 3 1 138
1403 12 16 22 28 25 27 9 139
All Estabs 35 35 33 136 66 36 12 353

Small Population: Table 3 gives coverage and median
relative interval length for total wages, at two sample sizes n, = 4
and n, = 8, for 8 occupations, and three methods of confi-
dence interval construction: the standard variance estimator,
sjd, with the standard normal z-quantile, the unweighted
degrees of freedom v, and the weighted degrees of
freedom v,. Occupations are ordered by increasing values
of the average value, over runs, of the unweighted degrees
of freedom. We note:

1) Almost universally, coverage using the standard vari-
ance estimator and the standard normal quantiles
(infinite df) is poor.

2) Coverage for the other interval types is far more
satisfactory. In general, the coverage is near the nominal
95%, or slightly conservative, for weighted degrees of
freedom; as expected, intervals based on unweighted
degrees of freedom tend to yield coverage a few points
below those based on weighted degrees of freedom.

3) Two occupations (1122, 4021) yield seriously low
coverage for totals even with the improved procedures.
Investigation of these particular occupations suggests
a strong violation of the normality assumption. In 4021,
for example, two units in stratum 5 have a number of
workers, and hence total wages, an order of magnitude
higher than the other establishments in this stratum and
indeed in the population. Furthermore, the wage rate of
these two outliers is markedly lower than the great bulk
of establishments: with just these two excluded from
the population, the overall population average wage
would be $9.68/hour; with them in, it is $8.28. Since
there are 66 establishments in stratum 5, it is easy for
these two establishments to escape being in a sample of
size 8; the consequence is a serious overestimate of the
mean wage or underestimate of total wage. At the
same time, wages for the establishments that are in the
sample are relatively homogeneous, so the variance
estimate will tend to be too low. The presence of
several smaller establishments in the domain contribute
to enlarging the degrees of freedom, and so the
t-adjustment is unable to compensate fully. Itis hard to
see how to guard against such a problem short of
having prior information, and allotting such outliers to
a certainty stratum. Even so, the adjusted intervals are
a significant improvement on the naive normal
distribution based interval.

Interval lengths are taken relative to 2xz g, = 4 times
the root mean square error of 7, calculated over runs.
We report the median of these standardized lengths
(across runs). When the distribution of T ', 1s actually
normal, the median length is close to 1.

Table 3
Estimated degrees of freedom, coverage, and relative median length of Cls for total wages of workers in occupation,
for the small population

Four Sample Establishments Per Stratum

Eight Sample Establishments Per Stratum

Occupation 4021 1141 1122 3180 2911 1142 1180 1403 1141 4021 1122 3180 2911 1142 1180 1403
df =v,,, 1.5 1.6 1.6 20 23 28 43 6.1 37 38 39 56 60 80 123 166
df =9, 13 13 14 15 17 19 23 3.5 20 23 23 31 35 43 54 97

Coverage

AA 542 47 69 51 s 73 .85 .89 .87 74 49 65 79 78 8 .88 .92

AA Sy .89 92 93 99 95 96 97 92 87 65 75 .89 8 90 S0 .94
TA ES4lp 92 .93 95 99 96 96 98 .95 91 74 80 94 89 95 96 .96

Median Relative Length

AA 5,2 053 075 059 070 074 085 090 0.88 0.87 063 066 080 083 088 092 0.96

AA E8g4l, 265 3.67 280 260 220 198 150 1.14 1.63 1.09 113 110 110 1.06 1.02 1.04
f‘A 5040y 330 4.32 3.19 340 3.08 3.06 270 158 3.08 240 238 200 174 138 138 1.13
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4) The relative interval length of the standard interval

tends to be too small, that is, it tends to be less than 1.
5) Interval length among the other variance-degrees of
freedom combinations is largest for ssfd with ¥, and
smallest for ssfd with v__ . These differences can be
appreciable; there is a tradeoff between coverage and
interval size.
6) For a given interval type, the relative interval length
tends to 1 as v increases. The conclusions from a

study of mean wages are similar.

Large Population: Table 4 gives coverage and interval
length for total wages for five interval types, and a wider
range of occupations, ordered by average v_ . The
interval types include the three used previously for the small
population. The two new intervals utilize the weighted
degrees of freedom together with s, and s, respectively.
Results are based on 5,000 runs.

1) The results are consistent with those for the Small
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3) There can be marked differences in interval length for
the different interval types; however, all ratios of
interval length to 4 X root mean square error tend to 1,
as v, gets large.

4) Little differenceresults fromusing s, s, or s, with £, .
1

Again, the results for mean wages, while differing in detail,
lead to the same overall conclusions, and are omitted.

4. SUMMARY AND CONCLUSIONS

From our theoretical investigation and simulation work,
we draw the following conclusions:

1. Standard 95% confidence intervals for domain means or
totals, when based on the standard normal distribution and
standard methods of variance estimation, tend to yield less
than actual 95% coverage. Theextentof the deviation will
vary with domain (occupation in the wage study), butcan
be quite considerable even when the sample size is large.

Population, in terms of the relative coverage and interval 2, New nonstandard methods offer a sharp improvement,
sizes of the several interval types. The standard normal giving intervals with better coverage, typically at or
is unsatisfactory for many occupations. close to the nominal 95% coverage. These intervals tend
2) The coverage for intervals using the weighted degrees of to be longer than the standard intervals. The increase in
freedom, V,, is less than 90% for only a small fraction length will vary with domain, and will depend on the
of cases. particular method for CI construction that is adopted.
Table 4

Estimated degrees of freedom, coverage, and relative median length of CIs for total wages of workers in occupation,
for the large population

Occupation

1718 1604 18021716 2911 2052 1332 1141 4021 1232 2853 3020 1122 11421714 1514 3180 4030 1063 1403 1180

df =V 2.97 345 4.44 119 12.4 13.1 153 169 16.8 17.3 20.6 249 28.0 28.6 29.1 34.8 41.5 599 77.6 779 128
df=v, 2.67 234 2.35 5.97 590 4.25 11.4 9.00 6.32 15.5 13.5 104 15.2 9.67 153 18.0 25.2 14.3 274 285 90.0
Coverage
AAzssldz .89 60 .85 87 87 .89 93 93 89 92 92 92 .88 .89 .8 93 92 81 94 94 94
AAtsm,tvmax 96 83 94 B89 88 91 95 95 91 94 94 93 88 90 8 .93 92 8 95 94 95
AAisat‘71 97 88 94 91 89 97 96 96 91 94 94 95 8 91 8 .94 93 .8 95 94 .95
AAism,t‘,] 97 89 94 92 90 97 9 91 94 94 95 B8 89 91 8 94 93 83 95 .95 .95
7A"Atsbtﬁl 97 89 97 92 90 97 96 96 91 95 94 95 .8 91 .87 95 93 83 95 94 .95
Median Relative Length
AA-:sﬂdz 0.99 0.78 0.92 0.97 0.95 0.96 0.99 0.98 0.96 0.97 0.98 98 0.95 0.96 0.93 0.98 1.00 0.91 1.00 1.00 1.01
AA:sﬂd - 2.14 1.47 1.40 1.08 1.06 1.06 1.08 1.06 1.04 1.04 1.04 1.03 0.99 1.00 0.98 1.01 1.03 0.93 1.01 1.01 1.02
AAisatﬁl 2.32 224 246 1.37 1.37 1.59 1.12 1.15 1.34 1.05 1.11 1.16 1.04 1.19 1.04 1.04 1.05 1.07 1.09 1.04 1.02
AAism,tﬁ1 2.34 227 2.48 1.37 1.39 1.60 1.13 1.18 1.34 1.05 1.13 1.18 1.04 1.20 1.04 1.04 1.06 1.07 1.10 1.05 1.02
YA"A:sbtﬁl 247 233 2.79 1.39 1.38 1.61 1.14 1.20 1.35 1.07 1.13 1.18 1.04 1.19 1.05 1.05 1.06 1.07 1.10 1.04 1.02
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For domains which yield large samples, there will be
little difference from standard intervals.

3. The instances where coverage fell below nominal, even
using the #-adjusted intervals, may be ascribed to severe
violation of the normality assumption for the domain data.
Thus the r-adjustment is not a cure-all. Nonetheless, even
in such cases there is a good deal of improvement in
coverage over the use of the standard normal interval.

4. The Kkey idea behind these intervals is to condition on
the amount of information on the particular occupation,
which, roughly speaking, is measured in terms of the
number of units in the sample that belong to the domain.
The fraction of such units within each stratum is
unknown, and to handle this fact we put a prior
distribution on this unknown, reflective of the degree of
our ignorance of it, an idea we borrow from the
Bayesians. However, in the final analysis, it is the
realized coverage probabilities that determine the merit
of the approach.

5. The principal effect of these ideas is the abandonment,
for purposes of CI construction, of the standard normal
quantiles (+1.96 for 95% coverage). These are re-
placed by quantiles from the Student’s ¢-distribution,
with degrees of freedom determined from the sample
and varying with domain. If because of publication
requirements or for other reasons, there is need to report
standard deviations rather than confidence intervals,
then we recommend reporting an effective standard

deviation given by the length of the proposed z-based

95% confidence interval divided by twice 1.96.

6. The standard estimate of variance seems acceptable for
estimating the variance, when accompanying the new
t-quantile. In most instances this combination should be
quite satisfactory, so that the only change from standard
methodology will be the introduction of adjusted
degrees of freedom. However, in some instances, the
alternative standard deviations may improve coverage or
reduce the length of confidence intervals.

7. An open question concerns what degree and type of
collapsing of strata (if any) should be used in the
estimation of variances and of the degrees of freedom
for the purpose of confidence interval construction. In
general, there will be a tradeoff: as strata are reduced in
number, the estimate of variance will tend to increase,
but so will the degrees of freedom (reducing the size of
t, or tﬁ].) The answer to this question may be
population specific, and experience from past surveys
useful.
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APPENDIX A

From the discussion in Section 2.2 we know that np,
has a binomial distribution Bin(n, p,), hence, for p, = 0,
1/n,2/n,..,1,

S Tp+l) T@+2)
f(pA IPA) TC(n+ 2)1“(np"A +DI'(n(1 —ﬁA) +1) X

(npy+1)-1 N(1-p )+1)-1
iy 4 (1 __pA)( (1-+1) =kpA(pA)/(n + 1)

For each (fixed) value of p,, the function kﬁA( p,) is the
pdf of a Beta distribution with parameters o, =np, + 1 and
o,=n(l-p,)+1. Asboth ®, and ®, will be larger than
unity with high probability (at least in most real world
situations), it is reasonable to approximate kﬁA (p,) witha
normal pdf having equivalent mean and variance, which are
approximately p, and p,(1 - p,)/n respectively.

Assuming that p,~ N(p,o?), it follows that the
posterior distribution is

h(palB) =/ (B, |P)E Y/

1 Pap | pa)?
2\ p,Q-pin o2 ’

fol fib,\p)g(p,)dp, =ce

where ¢ is the normalizing constant.
Under the “empirical Bayes” assumption that p = p, and
o? =p,(1-p,)/n wehave

A _papy?
1 o 2\ 1Bl ‘
V2 /b ,(1-p)/2n

If we drop the specific assumption regarding o2, and let
v =(p, —ﬁA)/n)/02 then [p,|p,)~N(p,.p,(1-
I +y)n).

h(pA [ﬁA) =
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APPENDIX B

Result: Assume W is distributed N(0, ¢?) and, conditional
on W =w, the random variable T is distributed as a
non-central ¢ with v degrees of freedom and non- centrality
parameter w. Then, the unconditional distribution of
T/yc? + 1 is central ¢ with v degrees of freedom.

Proof: First notice that 7 can be written as T = (X +
W)1{S%/v, where X is distributed as N(0, 1), S? is distri-
buted as xzv, and X, W, and_S? are mutually independent.
Therefore, X' = (X + W)/4/1 + ¢? is distributed as N(0, 1).
As X’ and S? are independent, it follows by definition that
T' =TIY1 +c? =X"1JS%/v is distributed as ¢,.
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