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Logistic Generalized Regression Estimators

RISTO LEHTONEN and ARI VEIJANEN'

ABSTRACT

In this paper we study the model-assisted estimation of class frequencies of a discrete response variable by a new survey
estimation method, which is closely related to generalized regression estimation. In generalized regression estimation the
available auxiliary data are incorporated in the estimation procedure by a linear model fit. Instead of using a linear model
for the class indicators, we describe the joint distribution of the class indicators by a multinomial logistic model. Logistic
generalized regression estimators are introduced for class frequencies in a population and domains. Monte Carlo
experiments were carried out for simulated data and for real data taken from the Labour Force Survey conducted monthly
by Statistics Finland. The logistic generalized regression estimation yielded better results than the ordinary regression
estimation for small domains and particularly for small class frequencies.
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1. INTRODUCTION

Consider the estimation of class frequencies of a discrete
response variable in a sample survey. The number of
individuals in a class equals the class indicator’s sum over
the population, the total of the indicator. Therefore, the
problem can be solved by methods designed for the
estimation of population totals. To improve the accuracy of
the estimation, a survey statistician often makes use of the
available auxiliary data. If the expectation of the response
variable can be assumed to depend linearly on the auxiliary
variables as can be the case for continuous response varia-
bles, it is advisable to use the generalized regression
estimator (S#rndal, Swensson and Wretman 1992; Estevao,
Hidiroglou and Sirndal 1995). Generalized regression
estimation can improve the efficiency and reduce the bias

*due to unit nonresponse if the auxiliary variables correlate
strongly with the response variable.

From a modeler’s perspective, a linear model is quite
restrictive and might not be the best choice for binary
response variables, such as employment status of a person
(employed, unemployed), or more generally for discrete
response variables, such as a person’s status in the labour
market (employed, unemployed, not in labour force). For
such variables we introduce a class of logistic generalized

- regression estimators based on a multinomial logistic model
describing the joint distribution of the class indicators. The
motivation for the selection of this specific model type thus
is similar to that used in the context of generalized linear
models (McCullagh and Nelder 1989).

The parameters of the logistic model are here estimated
by maximizing a sample-based weighted loglikelihood, the
Horvitz-Thompson estimator of the population loglikeli-
hood function (Godambe and Thompson 1986; Nordberg

1989; Skinner, Holt and Smith 1989; Sidrndal ez al. 1992,
p. 517).

As an application, we consider the estimation of the
unemployment rate in the Labour Force Survey conducted
monthly by Statistics Finland. Administrative records
indicating whether a person is registered jobseeker in local
employment office are available as register-based auxiliary
data, and these records were merged with the survey data on
individual basis using personal identification numbers which
are unique in both data sources. The corresponding auxiliary
variable correlates strongly with the survey measurement on
person’s unemployment. Thus, improvement in efficiency
and reduction of bias can be expected by making use of these
administrative data in the estimation procedure. Additional
auxiliary data (sex, age, regional data) were gathered fromthe
Population Register. Also these auxiliary data were merged
with the survey data on individual basis.

The properties of the generalized regression estimators
were studied by Monte Carlo simulation methods where
SRSWOR samples were repeatedly drawn from a population
constructed from the Labour Force Survey data. We use
incomplete poststratification or raking based on a main
effects ANOVA model. The experiments indicate that the
logistic formulation yields better results than the linear
formulation for small domains. We obtained good results
also when there was only one continuous auxiliary variable.

This paper is organized as follows. Section 2 defines the
multinomial logistic model and basic concepts used. In
Section 3 we introduce generalized regression estimators of
class frequencies in a population and domains, and discuss
the estimation of the model parameters by weighted
loglikelihood. Variance estimators are presented. Monte
Carlo experiments are discussed in Section 4. Conclusions
are drawn in Section 5.
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2. MODEL

Consider discrete m-valued random variables Y,
associated with N elements £ in a finite population U. We
observe their realized values y, only in a sample scU of
size n. Our goal is to estimate the frequency distribution of
the y,’s in the population; in classification problems, we
estimate the class proportions. Suppose we know the vector
of auxiliary variables x, for every element in the
population. We impose a multinomial logistic model

13,0y = PP

Y exp{x/B,}
r=1

(i=12,...m) (H

and assume that the Y,’s are conditionally independent
given the x,’s. In the binary case, this is the model used in
logistic regression. The parameter vector B is composed of
vectors B,(i=1,2, ...,m) with components B,«j (=1,
2, ..., q). The parameters are assumed identifiable, that is,
no two parameter values yield identical probabilities (1) for
every k. This implies that the auxiliary variables
x,;(j=1,2,..,q) are linearly independent. To avoid
identifiability problems, we set §, = 0. It is straightforward
to generalize (1) so that different auxiliary variables can be
assigned for the m classes (Lehtonen and Veijanen 1998).

The sampling design specifies the inclusion probabilities
of population elements. The 4-th element is drawn with
inclusion probability m, and elements £ and p are simul-
taneously in the sample s with probability =, > 0 (m,, = m,).
As usual, the sample membership indicators 7, = I{kes)} are
assumed conditionally independent of the Y ’s given the
x,’s, but the inclusion probabilities may correlate with the
auxiliary variables.

Under unit nonresponse, if element £ responds with
probability 8, independently of the Ip’s and ¥,’s (pe U),
then we substltute 0, for m,. Correspondmgly, is
replaced by T, 6,9, when the elements respond mdepen-
dently of each other

3. LOGISTIC GENERALIZED REGRESSION
ESTIMATION

3.1 Definition of LGREG

To estimate the frequency distribution of the y,’s, we
define class indicators Z,, =I{Y, =i} with realizations
z,, and estimate the totals # =), z,. The Horvitz-
Thompson (HT) estimator of ¢, is tHT Zka a,z,, where
the sampling weights are a, = I/nk Generahzed regression
estimation (GREG) is assisted by a regression model
Z,=x, B +¢, with Var(e,) = o, (Sirndal ef al. 1992;

K
Estevao ef al. 1995). The parameter B¢ is estimated by

Y -1
ﬁ?=(2akx"f"] [Eak"k k’]( P 1,2,0m) @

kes Oy kes O

and the fitted values Z,, =x; ﬁ,Gare incorporated in the

GREG estimator

=Y 2,+Y a(z,-2) (=12.,m. O

kelU kes

The selection of a linear model for a GREG estimator (3)
is fully justified for a continuous response variable. For
binary measurements Z,;, a linear model might be un-
realistic. Ordinarily, we would prefer a logistic model to a
linear one. In the logistic formulation, the predicted value
always lies in [0,1], whereas in the linear formulation, the
predicted value can exceed these natural limits. If the
probability of Z,, = 1 is close to O or 1, then the two models
yield different results. Moreover, when there are m > 2
classes, it appears sensible to describe the joint distribution
of the Z,;’s (i=1,2,...,m) by the multinomial logistic
model (1). To apply the model (1) in generalized regression
estimation, we estimate the expectations p,; = E(Z, 1x,; B)
=P{Y,=ilx B} by

A exp{x/B.
iy PUY =il = e P
1 +X2:exp{x,;ﬂ,}

which depend nonlinearly on the auxiliary variables. We
define a logistic generalized regression (LGREG) estimator
by

f,=) By +E alzy—fy) = wm). (4

keU

The GREG and LGREG estimators (3) and (4) include
a sum of predicted values over the population. However, it
is not actually necessary to have information about the x’s
for every element in the population U. In GREG (3), it is
enough to know the auxiliary totals )., x;, because (3)
can also be expressed in the form tG = {HT +
e X ™ Lokes U Xy)’ ﬂG For the special caseofcomplete
poststratification, the information required in LGREG is
similar to that needed in GREG. For other cases, such as
incomplete poststratification, we cannot compute ), . fi,.
in (4) without knowing the frequency of each value of x,
in the population. For example, if we have two discrete
auxiliary variables, then in GREG we need the marginal
frequencies, but in LGREG we need the cell frequencies.

In addition to estimates for the whole population,
estimates are usually calculated for subpopulations. The
population U is partitioned into domains U, ;, < U of size
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N4y The set s of respondents is composed of corres-
ponding subsets s ,, =sN U, with n, elements. As in
GREG estimation (Sirndal et al. 1992), we apply LGREG

estimator

(d)/ E a, +

kel

E a, (Z = ). ®)

kes( 4

These estimators are additive: ), f( &y =Ny I we
combine two nonoverlapping domains d; and d,, the
LGREG estimate for d=d,ud, is t(d), t(d )i t(d )
Hence, Yt @y =t for nonoverlappmg domains and
Zi 7 i N

In generalized regression estimation, an estimate (3) or
(4) can be negative, when negative residuals coincide with
large values of a,. Negative GREG estimates become more
common, as the number of auxiliary variables increases
(Chambers 1996). In LGREG estimation, in contrast, this is
not so, because fi,; is bounded by the model formulation. In
our experiments, LGREG estimates were negative only for
small domains in certain cases. In many cases, LGREG
estimate equals the sum of estimated expectations and then
it is always positive (see Section 3.2).

If the model (1) includes an auxiliary indicator variable,
its total over the population is exactly estimated by
LGREG. This calibration property is desirable in many
applications.

3.2 ML Estimation by n-Weighted Loglikelihood

We estimate the parameter B in the model (1) by
maximizing a n-weighted loglikelihood

LB, ...B,) =

an {I{Y l}log[ Zz pk,.) +§ I{ Y, =i}log pk,.}

kes

(Godambe and Thompson 1986; Nordberg 1989; Sirndal
et al. 1992, p. 517). In general, we maximize the likelihood
function numerically by appropriate numerical methods
such as a Newton-Raphson algorithm.

It can be shown that for complete poststratification, the
fitted values Z,, in GREG are equal to the estimates [i,; in
LGREG. Thus, when there are no missing cells in complete
poststratification, the GREG and LGREG estimators are
identical (Lehtonen and Veijanen 1998). This does not
hold for other models such as incomplete poststratification.

The LGREG estimator (4) has two parts: a sum of esti-
mated expectations over the population and an adjustment
term Y, a,(z, - A,). It can be shown that if the model
contains an intercept, the adjustment term vanishes and the
frequency ¢, is estimated by Vvl (Lehtonen and
Veijanen 1998).
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_In our experiments, we apply a ratio estimator
—t /(t +t) Its variance is estimated by Taylor
lmearlzatlon techmques (Sédrndal et al. 1992, p. 179):

P(R) =

[(1 “RRC,+2RE-1C, +1€2c?ﬂ], 6)
(t +t)

where C,.j., the covariance of f, and t}, is estimated by

A A, €€
¢,-= Z T "k Ty 7

kpes Ty, Ty T,

In(7), e, =z, - fi,; and Ap =Cov({, I) Wy ~ T T
Similar derivations hold for the correspondmg domain
estimators.

4. EXPERIMENTS

4.1 Details of Simulation Studies

In all the simulation experiments, K = 1,000 samples
were drawn from a population with simple random
sampling without replacement (SRSWOR). Monte Carlo
means and standard errors of the estimates were calculated
from the simulated samples. The design effect for an
estimator 7, 4y Was calculated as a Tatio of estimated
varlances Deff(f, @ D= V (t< d),)/V (t( d),) where
V (t )) denotes the Monte Carlo variance estimate of
the HT estimator (Lehtonen and Pahkinen 1996). We
measured the overall accuracy of domain estimates by the
mean absolute relative domain error over D domains and K
samples 5;:

D K 100’? IOEIMN
MARDE() =~ Y Ly 1@V @i

1
D p=1 K ja t(dp)i

In the GREG estimates (2), the variance was a constant
o, = 6%, which cancelled out. For LGREG, domain
frequencies were estimated by (5) and variances by (7). For
GREG and HT, see Siarndal et al (1992, p. 401).
Confidence intervals for the frequencies were computed as
if the class indicators were independent. At the nominal
significance level of 95%, an acceptable coverage rate lies
in [93.65%, 96.35%] for K = 1,000 simulated samples.

4.2 An Experiment With Simulated Data

To compare LGREG with GREG, we simulated a data
set, in which the auxiliary variable X was a continuous
random variable uniformly distributed in (-3,3). The
variable of interest, ¥, representing three classes followed
distribution (1) specified by x B, =0, x; B, =3X, -1, and
x, B, = -2X, for N = 10,000 elements (k=1,2,...,N). A
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thousand samples of size n = 1,000 were independently
drawn with SRSWOR. X, and X2 were used as auxiliary
variables. All the estimators appeared unbiased (Table 1).
The variance estimates had empirical bias smaller than 3%
and standard deviation smaller than 5%.

Table 1
The design effects (Deff) for class frequency estimators and the
empirical coverage rates (CR) (%) of 95% confidence intervals for
classes i =1,2,3

Deff CR
Method ~ = ~ = A ~
tl t2 t3 tl t2 t3
HT 1 1 1 95.2 95.3 94.7
GREG 0.93 0.55 0.57 95.0 943 95.6

LGREG 0.89 0.45 0.50 94.9 93.7 95.3

The best results were obtained by LGREG, probably due
to the fact that the proportional frequencies of classes varied
greatly over the range of the auxiliary variable. The
probability of each class was such a function of the
continuous auxiliary variable that a linear regression model
did not fit the data well.

4.3 An Experiment With the Finnish Labour Force
Survey Data

4.3.1 Constructed Population

We studied the estimation of the unemployment rate
using the Finnish Labour Force Survey (LFS) data of three
consecutive months of the year 1994. The constructed
population consisted of 33,329 individuals. From the
Population Register we obtained, for each population
member, age class (15-24, 25-34, 35-44, 45-54, and 55-64
years), sex and region (three areas). A jobseeker indicator
was obtained from the register maintained by Ministry of
Labour showing which individuals were registered as
unemployed jobseekers. The time lag in this administrative
data source is about two weeks. It can thus be expected that
the proportion of persons with changes in the actual labour
market status is small within this short time interval. It
should be noticed that the register-based jobseeker status is
defined differently from the employment status measured in
the Labour Force Survey. The survey measurement is based
on a standard International Labour Office (ILO) definition.
All these auxiliary data were merged with the survey data
on individual basis.

The nonresponse rate varied by jobseeker status so that
among registered jobseekers the rate was 11.4% whereas for
the others the rate was 7.6%. The probability of nonresponse
was modeled by a logistic ANOVA model and the ML
estimates of nonresponse rates (ranging from2.9% to 22.8%)
were used as a nonresponse model in simulations.

For simulation experiments, we constructed an artificial
population consisting of N = 30,835 persons. Employment
status was defined by three classes: “employed”,
“unemployed”, and “not in labour force” with population
frequencies f, =17,373, t,=4,433, and ¢, =9,029,
respectively. The unemployment rate was defined by
R=1,/(t + t,) =20.33%. As domains we used the cells in
the crosstabulation of age classes, sex, and the register-
based unemployment status.

From the artificial population, K = 1,000 independent
random samples of size » = 1,000 persons were drawn with
simple random sampling without replacement. In each
sample, nonresponse was simulated by the nonresponse
model fitted to the original population. The response
probabilities were then estimated from each sample by
logistic regression with the same ANOVA model as in the
nonresponse model. We multiplied each probability x, by
the estimated response probability.

Three models were used to compare LGREG with
GREG. The components of x, were dummies correspond-
ing to age (5 classes), sex, region (3 areas) and jobseeker
status. In incomplete poststratification, or raking, a main
effects ANOVA model was based on classified auxiliary
variables. We compared models with and without the
jobseeker indicator. The third model also included a fourth-
order polynomial of age.

4.3.2 Results

Incorporating no auxiliary information, HT estimators
had usually larger variance than the generalized regression
estimators (Table 2). Both generalized regression estimators
based on a raking model with age, sex, and region yielded
some improvement over the HT estimates. Much better
results were obtained by models including the jobseeker
indicator, which correlates more strongly (» = 0.83) with
the ILO unemployment indicator than the other auxiliary
variables. Thus these auxiliary data improve the efficiency
of estimation (¢f. Djerf 1997).

Table 2
Properties of unemployment rate estimates (R(%)) for the raking
model (R) and the model including age polynomial (P), with (E)
or without (N) the jobseeker indicator. SD denotes the standard
deviation and CR (%) denotes the coverage rate of 95%
confidence intervals

Model Method R Bias SD  Deff CR MARDE

HT 2032 -0.0081 1461 1 957  35.28
RN  GREG 2030 -00262 1454 0995 953  46.03
RN  LGREG 2031 -0.0229 1454 0995 953 4593
RE  GREG 2030 -0.0244 0895 0612 960 3574
RE  LGREG 2029 -0.0419 0901 0617 948  34.80
PE  GREG 2030 -0.0259 0887 0607 956 3541
PE  LGREG 2029 -00421 0896 0613 951 3476
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Table 3
Mean absolute relative domain errors (MARDE) and mean
coverage rates (CR) (%) of 95% confidence intervals
for estimated class frequencies in domains with true frequency
i (i =1,2,3) (a) smaller than 100, and (b) at least 100.
The model included the age polynomial

MARDE CR
Method —< ~ N = N ~
fan fae fap  'ar fap  'an
(@ GREG 9692 6736 12195 882 778 846
LGREG 80.28 67.20 104.05 83.9 76.5 51.7
(b) GREG 695 1231 1435 941 859 937
LGREG 6.88 1234 1429 939 85.4 933

The differences between GREG and LGREG were small
at the population level (Table 2). LGREG was never
inferior to GREG. Domain totals, especially in small
domains, were more accurately estimated by LGREG than
by GREG (Table 3). When the model included the age as a
continuous auxiliary variable, the standard deviation of the
unemployment rate estimate was smaller for LGREG than
for GREG in 19 of 20 domains. Unfortunately, the
confidence intervals obtained by LGREG were often too
narrow due to small variance estimates (Table 3).

5. SUMMARY

We introduce a new approach to the model-assisted
estimation of population class frequencies of a discrete
response variable in survey sampling. Our logistic general-
ized regression estimation (LGREG) is based on a multino-
mial logistic model, which might be more realistic for class
indicators than the linear model normally used in general-
ized regression estimation (GREG). LGREG and GREG
estimators yield identical results for complete poststratifi-
cation, but differ for other models such as raking. As
compared with GREG, LGREG usually requires more
auxiliary information, not only the auxiliary totals. Never-
theless, LGREG appears preferable to GREG when the
class probabilities vary greatly over the range of continuous
auxiliary variables and when we need estimates for small
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domains, particularly in the presence of small class
frequencies.
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