Survey Methodology, June 1998
Vol. 24, No. 1, pp. 41-50
Statistics Canada

41

Estimation of Variance of General Regression Estimator:
Higher Level Calibration Approach

SARJINDER SINGH, STEPHEN HORN and FRANK YU'!

ABSTRACT

In the present investigation, the problem of estimation of variance of the general linear regression estimator has been
considered. It has been shown that the efficiency of the low level calibration approach adopted by Sirndal (1996) is less
than or equal to that of a class of estimators proposed by Deng and Wu (1987). A higher level calibration approach has also
been suggested. The efficiency of higher level calibration approach is shown to improve on the original approach. Several
estimators are shown to be the special cases of this proposed higher level calibration approach. An idea to find a non -
negative estimate of variance of the GREG has been suggested. Results have been extended to a stratified random sampling
design. An empirical study has also been carried out to study the performance of the proposed strategies. The well known
statistical package, GES, developed at Statistics Canada can further be improved to obtain better estimates of variance of
GREG using the proposed higher level calibration approach under certain circumstances discussed in this paper.

KEY WORDS: Calibration; Estimation of variance; Auxiliary information; Ratio and regression type estimators; Model

assisted approach.

1. INTRODUCTION

The statisticians are often interested in the precision of
survey estimates. The most commonly used estimator of
population total/mean is the generalized linear regression
(GREG) estimator. Let us consider the simplest case of
the GREG where information on only one auxiliary variable
is available. Consider a population Q = {1, 2, ..., N}, from
which a probability sample s(s ¢ Q) is drawn with a given
sampling design, p(.). The inclusion probabilities 7 =
Pr(ies) and m; € Pr(i and jes) are assumed to be strlctly
positive and known Let y, be the value of the variable of
interest, y, for the i-th population element, with which also
is associated an auxiliary variable x,. For the elements,
ies, we observe (y,,x;). The populauon total of the
auxiliary variable x, X= Y¥, x, is assumed to be
accurately known. The Ob_]eCtIVC is to estimate the
population total ¥ =Y,y . Deville and Sirndal (1992)
used calibration on known population x-total to modify the
basic sampling design weights, d, = 1/x,, that appear in the
Horvitz-Thompson (1952) estimator

n n y, n
Pr=Y, 2= dy,. a.1)
i=1 T, =1
A new estimator,
}I}DS :E wlyl (12)

i=1

was proposed by Deville and Sdrndal (1992), with weights w,
as close as possible in an average sense for a given metric
to the d,, while respecting the calibration equation

(1.3)
i=1
A simple case considered by Deville and Sdrndal (1992) is
the minimization of chi-square type distance function given
by
(w. - d)*

Yy, —— (1.4)

i=1 d;q

where g, are suitably chosen weights. In most of the
situations, the value of g, = 1. The form of the estimator
depends upon the choice of g;. By minimizing (1.4) subject
to calibration equation (1.3) we obtain weights

e go)

d;q;x;

Edq,,

Substitution of the value of w, from (1.5) in (1.2) leads to
the traditional regression estimator of total given by

(1.5)

=

Y. dq,x,, .
dy + 22— [X Z dx) (1.6)

. Edq, x;

In this paper, the problem of estimation of variance of the
regression estimator (1.6) has been considered at two
different levels of calibration. The higher level calibration
approach covers a greater variety of estimators than the low
level calibration approach adopted by Sdrndal (1996).
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Higher level calibration approach makes use of known total
as well as known variance of the auxiliary character,
whereas low level calibration utilizes only known total of
auxiliary character.

The section 4 has been devoted to study the stratified
sampling design. The original stratum weights are calibra-
ted which results in combined regression and combined
ratio estimators in stratified sampling. The estimators of
variance of combined regression and combined ratio esti-
mators proposed by Wu (1985) are shown to be the special
cases of the low level calibration approach. The higher level
calibration approach has been shown to apply to a broader
variety of estimators.

2. ESTIMATOR OF YARIANCE OF THE GREG:
THE LOW LEVEL CALIBRATION
APPROACH

Following model assisted survey sampling approach of
Sarndal, Swensson and Wretman (1989, 1992), the Yates-
Grundy (1953) form of estimator of variance of the
estimator (1.6) is given by

n n
2 ) Dywe,~we)

I}YG (?DS) = % ol (2.1)

where D, = (m,m, - n,.j)/ny, i#jande =y, - Bxi have their
usual meanings. This estimator can easily be written as

n

Y Y D,e,-de)+

I7\((; (?DS) = % = 4

n 2
x-¥ d,x,.J (22)

i-1

¥, (X_ E dixiJ +,

i=1

% 2
Z d;q,x;
i=1

E E Dij(diei_%ej)(diqixieiv%qjxje) 2.3)

i=1 j=1

D, (diq.x,.e,. - a’jqjxjej)2 2.4)

H

The estimator at (2.1) has been discussed by Sérndal et al.
(1989, 1992, 1996) on different occasions and covers a
variety of estimators as discussed below:

For simplicity, let us consider simple random sampling and
without replacement (SRSWOR) design i.e., T, =m, =n/N
and T, = n(n-1)/N(N -1). Then we have foflowing
cases:

Case 2.1: If g, = 1, then (1.6) reduces to the usual regres-
sion estimator of total, Ygreg (say). Nowif w, =d, in (2.1),
it reduces to

~

vl

A

GREG)

2 _ n

= MZ e,.z 2.5)
n(n-1) ia

where f=n/N and ¢; =y, - f&x,.. Thus (2.5) denotes the

usual estimator of variance of the regression estimator (1.6).

Case2.2:1If g, = 1/x, theq the estimator (1.6) reduces to the
ratio estimator of total, Yratio (say). The estimator (2.1)
reduces to an estimator of variance of the estimator

Yratio, given by

~

76 (Feao) 2.6)

A

nm-1) 7 '

_ N2(1—f)i 62{)_(}2

where

e;y,—(%) x; and )2'=EE X;.

X n =1

The estimator at (2.6) is a special case of a class of estima-
tors of variance of the ratio estimator proposed by Wu
(1982) as

A

vl @7

7)) 0D 2 {z}

nn-1) 7 |

forg=2.
Case 2.3: Ifg, = 1 and w, is given by (1.5) then (2.2) and
hence (2.1) becomes

I}YG<?GREG) =
—N2(1 ) Zn: e,-2 + \Tll (X‘X) + \T’z (X_)?)2 (2.8)
n(n-1) 4
where
¥, - - (N-n) ; jzzlz (e;-¢)(x;e;-x,e) (2.9)
[ xiz] nin-1)
i1
and
@, = WYY (e, -xe) (210)

i=1 j=1

2N(n- 1)[§nj xf]
i=1
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Deng and Wu (1987) have defined a general class of
estimators of the variance of the regression estimator as

Nz(l—f) X|®
o )2

nn-1)
where e, =y, - Bx,. The linear form of the class of
estimators (2.11) takes the form as

I7\(0( ADW) 2.11)

PN N%(1
Prolfon) = L LY o]

2
1+g[)_f_1] +_g(g;1>[)_f-1] +] (2.12)
X 2 X

which is again similar to (2.8). Thus the low level calibra-
tion approach considers estimators of variance of estimators
of total i.e., both ratio and regression methods of estimation.
It is remarkable that there is no choice of g; which reduces
(1.6) to the product method of estimation considered by
Cochran (1963). Hence the estimation of variance of
product estimator has not been considered. To look at the
efficiency of such estimators, we consider an analogue of
the general class of estimators for estimating variance of
GREG by following Srivastava (1971) as

, ]H()—(] (2.13)
X

where H(.) is a parametric function such that H(1) =1
and satisfies certain regularity conditions. Following
Srivastava (1971), it is easy to see that analogues of the
general class of estimators (2.13) attain the minimum
variance of the class of estimators proposed by Deng and
Wu (1987) for regression estimator and Wu(1982) ratio
estimator. We want to say here that if we will attach any
function of the ratio X/X to the usual estimator of variance
given by

5 (¢ N2(1-/)
o) | 005

N(1-PO ¢
nn-1) o P

the asymptotic variance of the resultant estimator remains
the same. In other words, the efficiency of the estimators of
variance of regression estimator (GREG) of total obtained
through low level calibration remains less than or equal to
the class of estimators proposed by Wu (1982) and Deng
and Wu (1987). The weights w, used to construct estimator
of variance of GREG at (2.1) were obtained while estima-
ting the population total and hence named as low level
calibration weights for variance estimation. The next
section is devoted to the higher level calibration approach
where variance of auxiliary character is known. Several
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new estimators are shown as special cases of the proposed
higher level calibration approach.

3. IMPROVED ESTIMATOR OF VARIANCE OF
THE GREG: THE HIGHER LEVEL
CALIBRATION APPROACH

Here we apply the calibration approach to estimate the
variance of GREG estimator at (1.6). The weights D of
Yates and Grundy (1953) for an estimator of variance g1ven
at (2.1) are calibrated such that the estimator of variance for
the auxiliary variable has the exact variance. We consider
an estimator of variance of GREG

E Z Qu (w;e, - wjej)2

lljl

Pes (7 GREG) G.1)

where Q are the modified weights attached to the
quadratic expression by Yates and Grundy (1953) form of
estimator and are as close as possible in an average sense
for a given measure to the D, with respect to the calibration
equation

LS Y 0, (dyx, - dx)? = Vyg [Bi)

— 3.2)
2 i=1 j=1

where

A
( HT):EZ > (mm - m)(dx, - dx,)”

i=1l j=1

denotes the known variance of the estimator of the auxiliary
total X(=Y~ x,) given by X, =Y, d x,. To compute
the right hand side of (3.2) we need either information on
every unit of the auxiliary character in the population, or
only V5 (X'HT) obtained from a past survey or pilot survey.
The examples of a situation where information on every
unit of the auxiliary character is known are the establish-
ment turnover recorded from census or administrative
records or Business Register (BR) or Australian Taxation
Office (ATO). Known variance of the auxiliary character
has also been used by Das and Tripathi (1978), Singh and
Srivastava (1980), Srivastava and Jhajj (1980, 1981), Isaki
(1983), Singh and Singh (1988), Swain and Mishra
(1992), Shah and Patel (1996) and Garcia and Cebrian
(1996). Singh, Mangat and Mahajan (1995) have reviewed
classes of estimators of unknown population parameters
making use of the known variance of an auxiliary character.
The idea of adjusting D, weights has also been discussed
by Fuller (1970) through a regression type estimation
procedure. For simplicity we restrict ourselves to the two
dimensional Chi-Square (CS) type distance, D, between
two nxn grids formed by the weights €, and D, for
i, j=1,2,..,n, given by
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1 <& n (Qij_Dij)z
2% 5 Dy,

In most of the situations Q. = 1 but other types of weights
can also be used. We will show that the ratio type
adjustment using known variance of auxiliary character is
a special case for a particular choice of Q.. Minimization
of (3.3) subject to (3.2) leads to modified optimal weights
given by

D= (3.3)

D, Q,(dx - dx)’

Q. =D+
y v 1 & &
22 2 D,0,(dx - dx)
i=1 j=1
Vool B )—?12- > Y D, (dx,-dx)| 34

i=1 j=1

for the optimal choice of Lagrange Multiplier A, given by

. 1 n n
o) 155 5 0,054
2 = i=l =1 . (35)
1323 0, 0,45 -4)"
i=1 j=1

Its proof is given in the Appendix. Substitution of Q,; from
(3.4) in (3.1) leads to the following regression type
estimator,

I7ss (?GREG) =

I7&((;( ADS) + él [VYG (XHT) I7\((; (XHT)] (3.6)
where
3)) D0, (d,xl - djx/)z( W€~ W, ej)2
B‘ - =1 Jj=1
1 n n
P ,z=1: Du‘Qij(d'x' N djx/)4
Z-L:l-z-z- (say) (3.7)
Hog

1
Vg Xur) =2 Yo er"=l D, (di X~ djxj)zfmd Vye (Tps)
is given in (2.1). Regression coefficient B, makes use of
the known total X of the auxiliary variable and hence can be
treated as an improved estimator of regression coefficient
by following Singh and Singh (1988). Under the higher
level calibration approach, we have the following cases:

Case 3.1: Under SRSWOR sampling design if g; :xi_1
and Q, =(d,x,~ d;x;)™? are the weights attached at low
level and higher level calibration approach, respectively,
then the proposed strategy reduces to

I}ss (Y Ratio) =

2 _ n 2 SZ
N (1-f), 1 Ee,?[if) 1 [RO

n (n-1)ia
where sz =m-1)'Y, X, - X )? is an unbiased estimator
of 82=(N-1)'YN, (x,- X)%

Case3.2:If g, =1 and Q, =1Vi & j, then we have

(o) - LD 2 - )
nn-1) i3

VYG

o, (x- 2) + 9, (SXZ - sf) (3.9)

where {, and {, are given by (2.9) and (2.10),
respectively, and

2 _
¥, = nN n(l )
nz E (x,.—xj.)4

i=1 j=1

. 4 (‘xj_xj)(e,'_ ej) +
i=1 j=1

' - D2 |
. (3.10)
E xiz

i=1

Without loss of generality, the estimators of variance of
GREG given at (3.8) and (3.9) are neither members of a low
level calibration approach nor of the class of estimators by
Deng and Wu (1987). These estimators are members of the
analogues of classes of estimators for estimating variance
of GREG given by Srivastava and Jhajj (1981) as

X (5 I NMa-H& 2 x 8

Pss(Porec) [ " zlj e, ] H| 2 g (3.11)
where H(.,.) is a parametric function such that #(1,1) =1
and which satisfies certain regularity conditions defined by
them. Following Srivastava and Jhajj (1981) and Deng and
Wu (1987), it is a class room exercise to see that the class
of estimators at (3.11) remains better than the class of
estimators defined at (2.11) and hence (2.13).

A difficult issue in using (3.1) is how to get non-negative
estimates of variance using calibration. The simplest way is
to optimize the CS distance function (3.3) subject to
calibration constraint (3.2) along with the conditions
Q. >20Vij=112,.,n. While it is difficult to develop a
solution to this problem theoretically, well known quadratic
programming techniques can yield useful numerical results.
Straightforward extension to using other distance functions,
as discussed by Deville and Sirndal (1992) for instance, to
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the two dimensional problem due to the indeterminate
nature of the D, weights is not possible. It is open to others
to propose new distance functions which guarantee the
non-negativity of the weights.

4. STRATIFIED SAMPLING DESIGN

Suppose the population consists of L strata with N,
units in the A-th stratum from which a simple random
sample of size n, is taken without replacement. The total
population size N = Y i N, and sample size n = Yo 1y,
Associated with the i-th unit of the A-th stratum there are
two values Yn, and X with x 0> 0 being the covariate. For
the h-th stratum, let’ w,=N, '/N be the stratum weights,
f, =n,/N, the sample fractlon Vo Xp Yh, X the y-
and x - sample and population means respectlvely Assume
X-= Zh 1 W, X, is known. The purpose is to estimate
Y =Y W Y ,» Possibly by incorporating the covariate
mformatlon x. The usual estimator of population mean Y is
given by

L
y,.=3 W, 5, 4.1)
h=1

We are considering a new estimator, given by

L
= Z w,y, 4.2)
h=1
with new weights . The new weights W, are chosen
such that chi-square type distance, given by
L (wy-w,)
i+ (4.3)
= W,q,
is minimum subject to the condition
L —
Yy w, %, =X (4.4)

h=

-

Minimization of (4.3) subject to calibration equation (4.4)
leads to the combined regression type estimator given by

L
E W, 4,%,¥)
fs: EWhyh -

L

X-Y Wh)?h} 4.5)
h=1

E W, qhxh

for the optimum ch01ce of weights given by

W =W, + W,a,%,
Wyt

Z qhxh

(4.6)

(X—:X:;thh]

45

Ifg,=Xx, ! then estimator (4.5) reduces to the well known
combined ratio estimator in stratified sampling. The well
known estimator of variance of combined regression
estimator is given by

(YSz):il W ( _ﬁ?) 2h

n,

“@.7
where
Vlh 2
=(n, - 1! E €p;
i=1

is the h th stratum sample variance and eh, Vo= Vn~

2
b(x,-x,) and b = Zhl hqhyhxh/Zh 1 W, 4, %, have
their usual meaning. The lower level calibration approach
yields an estimator of variance of the combined regression
estimator as

(4.8)

where

AN

n,

and W, is givenby (4.6).If ¢, = X, then (4.8) reduces to
an estimator given by

o \2 L w1 -
V(ySI)RAno:( ) P h( fh) éh

X n,

4.9)

which is a special case of a class of estimators for estima-
ting the variance of combined ratio estimator given by Wu
(1985) as

7(53), (] y Wl oh),

Xs) h=1 ny

(4.10)

for g =2. The properties of variance estimators of the
combined ratio estimator are also studied by Saxena,
Nigham and Shukla (1995). In higher level calibration, a
new estimator is given by

Loow?,
A M “.11)
=1 Wh

where Q, are suitably chosen weights such that Chi-Square
distance function given by
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£ 2Dy

4.12
X 5o (4.12)

is minimum subject to higher level calibration equation
defined as

L
; Q,5p = V(%) 4.13)
where,
L 1-
V(Eg) =Y. Wz( “ ) Sy
h=1 nh
is assumed to be known and shx (n, - D! 21;/ (x),— X,

is an unbiased estimator of S2, =(N, - D)1y (X -X, ).
This procedure leads to a new estimator for the variance of
the combined regression estimator given by

PPy = Vs (Porea) * Bo[ Y (Es)- P(Es)]  @19)
where
ésﬁZL: Wh*Z(n]—fh 0525 h/EL: wE(-1,) -

h=1 h "y

denotes the combined improved estimator of regression
coefficient in stratified sampling and

2 7)) >

Shx

Vg = E w,

n,

is an unbiased estimator of V(xg). If ¢, =1/x, and
0, = llshx, then estimator (4.14) reduces to a new estimator
of variance of the combined ratio estimator given by

St(j}Ratio)=zL: M ezh( Xv)z{@} (415)

Xst V()?St)

which is a ratio type estimator proposed by Wu (1985) for
estimating variance of the combined ratio estimator but
makes use of extra knowledge of the known variance of the
auxiliary variable at the estimation stage. Several more new
estimators can be constructed for new choices of weights

q,and Q,.

5. A WIDER CLASS OF ESTIMATORS

If we define u = X/Y"_ d,x, and v = V' (X, -y V(X ur)
then a wider class of estimators has been defined as

A

Vss(?cm)={% 3 ,:1 D,(d el.—dj.ej)z}H(u,v) 5.1)

where H (u,v) is a parametric function of « and v such
that H(1,1) =1 and which satisfies certain regularity
conditions. Then all estimators obtained from the following
functions,

l+a(u-1)

L+B-1)’
Huvy=1+au-1)+pv-1)

H@u,v) =u®vB, Hu,v) =

and H(u,v) = {1 +o(u - 1) + B(v - 1)}"! are special cases
of the higher level calibration approach, where o. and B are
unknown parameters involved in the function H(u,v).
Replacing these parameters with their respective consistent
estimators in the class of estimators at (5.1) leads to the
same asymptotic variance as shown by Srivastava and Jhajj
(1983), Singh and Singh (1984) and Mahajan and Singh
(1996). The extension of present investigation to two phase
sampling following Hidiroglou and Sdrndal (1995) is in
progress.

The next section has been devoted to studying the
performance of the higher order calibration approach
through simulation.

6. SIMULATION STUDY

Under the simulation study, we have considered compa-
risons of estimators of variance of ratio estimator as well as
that of regression estimator. To avoid any kind of confu-
sion, we have redefined the estimators considered for
comparison as follows:

6.1 Ratio Estimator

We have compared the estimators of the variance of the
ratio estimator, given by
2
( J (6.1.1)

N1 - f)z
s o s?
¥, (YRATIO) =V (YRATIO) _Xz

b

I(YRA’HO) nn-1) =

with the estimator, given by

6.1.2)

6.2 Regression Estimator

We have also compared the estimators of the variance of
the regression estimator, given by

I}1(?01&:(;):
Nz(l—f)ze o, (- R) + 9, x- 2P (621
nn-1) ;
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with the estimator, given by

P (Pores) = 71 (Forea) * 03 (S2 -1 (622)
where ,,i=1,2,3 have the same meaning as defined
earlier.

We have considered two types of populations viz. finite
populations as well as infinite populations to cover almost
all practical situations.

6.3 Finite Populations

In case of finite populations, we have taken a population
consisting of N =20 units from Horvitz and Thompson
(1952). The study variable, y, is the number of house-
holds on i-th block and known auxiliary character, x, is the
eye-estimated number of households on the i-th block. All
possible samples of size n = 5 were selected by SRSWOR,
which results in

(N) - 15,504

n

samples. From the £-th sample, the estimator

5 A X 0 5 Ny
YRATIOIsz(}], with ==Yy,

n =1

was computed. Empirical mean squared error of this
estimator was computed as

MSE(?RAHO)=(]:) Z[fmnolk-Y]2~ (6.3.1)

For the k-th sample, the ratio type estimators of variance

I711 (YRATIO)lk’ h=12,

given by (6.1.1) and (6.1.2) respectively, for estimating the
variance of the ratio estimator were also obtained. The bias
in the A-th ratio type estimator of variance was computed as

B{I}h (?RAHO)} =
N
(n) prt Vh(YRATIO)|k—MSE(YRAHO) (6.3.2)

and mean squared error was computed as

47

[ N) > [17" (?RATTO)|k_ MSE (YRA’HO)]Z' (6.3.3)

The percent relative efficiency of the estimator
V, (Yramo) with respectto V| {YraTio) Was calculated as

RE:

~

MSE {7, (Pexrio) } X 100/MSE {7, (Framo) }- 63.4)
The coverage by 95% confidence intervals

CCI[7, (Peumo) |

for h = 1,2 were calculated for A-th ratio type estimator of
variance by counting the number of times the true
population total, ¥, falls between the limits defined as

A

Yeatio e ¥ taons @ Vi \Vramio |-

(6.3.5)
These results were also obtained from all possible samples
of size 6 and 7 and have been presented in Table 1.

The same process was repeated for the regression
estimator

YGREG|k:Y+(_ZI:xiyi/2xi2] (X‘X)
i= i=

of total obtained from (1.6) under a SRSWOR design. The
biases, relative efficiency and CCI were obtained by using
h-th estimator of variance of the regression estimator,
V, Porec)|x for h=1,2, given by (6.2.1) and (6.2.2),
respectively. The results obtained have been presented in
Table 2. In addition, it was observed that for
n=>5, 0.020% estimates of variance obtained from the
estimator 171 (?QREQ) and 0.022% estimates obtained from
the estimator ¥V, (Ygreg) Were negative. Similar results
were observed for more natural populations given by
Cochran (1963) and Sukhatme and Sukhatme (1970). Over
all, second order calibration estimators perform better than
first order calibration in case of the finite populations.

In real life situations, the study variable and auxiliary
variables may follow certain kinds of distributions like
normal, beta or gamma efc. In order to see the performance
of the proposed strategies under such circumstances, we
generated artificial populations and considered the problem
of estimation of finite population mean through simulation
as follows.
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Table 1
Comparison of 1% ( RATIO) with 171 ( ARATIO) for finite populations

n B[I}l (fRATlo)] B[I}z(f/RATIo)] RE CCI[ ( RATIO)] CCI[ ( RATIO)]

5 -211.33 217.01 166.57 0.93 0.95

6 -141.92 102.00 115.06 0.91 0.92

7 -99.34 58.60 109.23 0.90 0.90
Table 2

Comparison of ¥, ( GREG) and V (Y

GREG) for finite populations

n BY (Foreo)) B[7% (Fonze) RE P, (Fonss)] 17 (Fonsc)
5 ~328.49 -194.78 112.04 0.92 0.96
6 -223.92 -136.34 103.02 0.90 0.93
7 -157.88 -94.38 101.21 0.91 0.94
6.4 Infinite Populations
The size N of these populations is unknown. We genera- B { Vi (; RATIO)} =
ted » independent pairs of random numbers y,.* and x,.* 15.000
(say), i=1,2,..,n, from a subroutine VNORM with 1 S _ MSE(3 6.4.4
PHI = 0.7, seed(y) = 8987878 and seed(x) = 2348789 15,000 ,; i (Pramio) i (Pramo)  644)

followmg Bratley, Fox and Schrage (1983). For fixed

=50 and S =50, we generated transformed variables,
¥=30+yS;A-pYy +pS,x/ (6.4.1)

and
x,=40+S x, (6.4.2)

for different values of the correlation coefficient p. For the
k-th sample, the estimator

- (x o= 1

yRAno|k=y(—_—),w1thy:— v, and
X noj=1

-1

x:_

n =

-

was computed. Empirical mean squared error of this
estimator was computed as

~ 1 15,000 . _
MSE (Vramo) = 72 50 /; Framoli~ F]2 643)

For the k-th sample, the ratio type estimators of variance

I}h(}_;RATIONk’h =1,2,

obtained from (6.1.1) and (6.1.2) respectively, for estima-
ting the variance of the ratio estimator of population mean
were also derived. The bias in the A-th ratio type estimator
of variance was computed as

and mean squared error was computed as

MSE {7, o)} -

15,000

15,1)00 kX:l: [I}h ()_;RAHO) e~ MSE(J_;RATIO)]Z' (6.4.5)

The percent relative efficiency of the estimator

~

V. (yRATIO) with respect to ¥ ( Yratio) Was calculated as

RE =

MSE{7, (Fario) } X 100/ MSE{7, (Femo)} (6:4.6)

The coverage by 95% confidence intervals
CCI| 7, (Fgamo) ] for A =1.2

was calculated for A-th ratio type estimator of variance by
counting the number of times the true population mean, ¥,
falls between the limits defined as

Yratio i ¥ 1-96VVh (j;RATIO)|k'

These results were obtained for samples of sizen = 60,
80 and 100 for different values of correlation coefficient as
presented in Table 3.

(6.4.7)
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The same process was repeated for the regression estimator

)_;GREG|k =y + ﬁ(X—E)

of mean obtained from (1.6) under a SRSWR design. The
biases, relative efficiency and CCI were obtained by using
h-th estimator of variance of the regression estimator,

I7}. ()_;GREG) | for h=1,2,

derived from (6.2.1) and (6.2.2), respectively. The results
obtained have been presented in Table 4. We acknowledge
that it is worth while studying the proposed strategy through
simulation in more detail and its application in actual
practice. The empirical study was carried out in
FORTRAN-77 using a PENTIUM-120.
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7. CONCLUSION

Higher level calibration approach can be used if variance
of the auxiliary character is known in addition to the known
total of that character. The statistical package GES
developed by Statistics Canada can be modified to obtain
better estimators of the variance of GREG, useful for
surveys where information on variance of auxiliary charac-
ters is available or can be calculated.

ACKNOWLEDGEMENTS

The authors are heartily thankful to the Associate Editor
and the two learned referees for fruitful and constructive
comments to bring the original manuscript in the present
form. They are also grateful to Dr. M.P. Singh for his kind
suggestions. The opinions and results discussed in this
paper are of authors and not necessarily of their institute(s).

Table 3
Comparison of V, (ﬁRATIO) with 7, (y:R AT]O) for infinite populations

n p B [Vl (J_’ RATIO)] B [Vz (; RATIO)] RE CCl [Vl (J_’ RA’I'[O)] ccl [Vz (f RATIO)]
0.1 13.02 10.33 188.7 0.96 0.95
0.3 8.07 6.35 192.6 0.97 0.95
60 0.5 4.33 3.37 195.9 0.96 0.96
0.7 1.77 1.37 197.9 0.97 0.97
0.9 0.33 0.26 197.7 0.99 0.98
0.1 3.27 291 123.2 0.94 0.93
0.3 2.06 1.84 123.0 0.94 0.94
80 0.5 1.13 1.01 122.7 0.95 0.95
0.7 0.47 0.42 122.0 0.97 0.96
0.9 0.08 0.08 119.1 0.98 0.97
0.1 0.76 0.77 106.1 0.94 0.93
0.3 0.49 0.49 105.8 0.94 0.94
100 0.5 0.27 0.27 105.3 0.95 0.95
0.7 0.12 0.12 104.4 0.96 0.95
0.9 0.02 0.02 102.2 0.97 0.95
Table 4
Comparison of 7, (ﬁGREG) with 7, (szREG) for infinite populations
n p B [V1 (J—’GREG)] B [Vz (;GREG)] RE CCI[VI (;GREG)] CCI[Vz ()_’GREG)]
0.1 10.12 8.42 177.6 0.98 0.95
03 5.06 4.33 161.5 0.97 0.95
60 0.5 3.32 2.36 152.5 0.95 0.96
0.7 0.72 0.38 151.9 0.97 0.95
0.9 0.13 0.10 147.7 0.99 0.97
0.1 1.23 1.11 153.9 0.96 0.95
0.3 1.03 1.01 143.5 0.98 0.94
80 0.5 0.13 0.11 132.8 0.97 0.95
0.7 0.07 0.06 121.6 0.97 0.95
0.9 0.02 0.03 117.1 0.96 0.96
0.1 0.65 0.57 136.1 0.95 0.94
03 0.39 0.32 135.1 0.94 0.94
100 0.5 0.13 0.13 129.6 0.95 0.95
0.7 0.02 0.02 114.4 0.96 0.95
0.9 0.01 0.01 112.2 0.97 0.96
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APPENDIX

This appendix has been devoted to deriving the optimum
value of Q,.j as given in (3.4). The Lagrange's function is
given by

L=lz": ; (Q"J'—Dij)z_
2 D0,
1 v ¢ i
2kEi:l ,Zl: Qy(d’x"_alf'xj)z_ VYG(XHT) . (AD

On differentiating (A.1) with respect to Qij and equating to
zero, we get

Q,=D;+AD,Q,(dx,-dx). (A2)

On putting (A.2) in (3.2), we get

VYG(XHT) B %E . D, (dx~ dx)?
A= — - (A3)
< jzl D,;Q,(dx, - dx)

N | =

On substituting (A.3) in (A.2), we get the optimum value
of Q,.j as given in (3.4).
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