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Optimal Recursive Estimation for Repeated Surveys

IBRAHIM S. YANSANEH and WAYNE A. FULLER!

ABSTRACT

Least squares estimation for repeated surveys is addressed. Several estimators of current level, change in level and average
level for multiple time periods are developed. The Recursive Regression Estimator, a recursive computational form of the
best linear unbiased estimator based on all periods of the survey, is presented. It is shown that the recursive regression
procedure converges; and that the dimension of the estimation problem is bounded as the number of periods increases
indefinitely. The recursive procedure offers a solution to the problem of computational complexity associated with
minimum variance unbiased estimation in repeated surveys. Data from the U.S. Current Population Survey are used to
compare alternative estimators under two types of rotation designs: the intermittent rotation design used in the U.S. Current

Population Survey, and two continuous rotation designs.
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1. INTRODUCTION

We consider least squares estimation for surveys
conducted on repeated occasions with partial overlap of
sampling units. See Duncan and Kalton (1987) for a
general discussion of different types of surveys and the
objectives of such surveys. In this paper, we shall be
concerned with rotating panel surveys, in which repeated
determinations are made on some sampling units but not
every unit appears in the sample at every time point.

Theoretical foundations for the design and estimation for
repeated surveys based on generalized least squares proce-
dures were laid down by Patterson (1950), following initial
work by Cochran (1942) and Jessen (1942). Least squares
procedures have been considered further by several other
authors. See, for instance, Fuller (1990), and the references
cited therein. Least squares estimation for a fairly general
class of repeated surveys was considered by Yansaneh
(1992). Composite estimation is a procedure of estimation
for repeated surveys which makes use of the observations
from the current and preceding periods, and the estimator of
level from the preceding period. Breau and Ernst (1983)
compared various alternative estimators to a composite
estimator for the U.S. Current Population Survey (CPS).
Kumar and Lee (1983) did similar work using data from
the Canadian Labor Force Survey (LFS). Wolter (1979)
provided a general composite estimation strategy for
two-level rotation schemes such as the one used in the U.S.
Census Bureau’s Retail Trade Survey. Singh (1996) has
proposed an alternative class of composite estimators,
These authors assumed the unknown quantities on each
occasion to be fixed parameters. Other authors, such as
Scott, Smith, and Jones (1977), Jones (1980), Binder and
Dick (1989), Bell and Hillmer (1990), and Pfeffermann
(1991) considered estimation for repeated surveys under the

assumption that the underlying true values constitute a
realization of a time series.

In this paper, we discuss estimation procedures for
repeated surveys, under the assumption that the unknown
true values are fixed parameters. The estimators are
compared to the method of composite estimation currently
used in the CPS. The paper is organized as follows: In
section 2, we state some basic assumptions regarding the
general class of repeated surveys considered in this paper.
A description of the CPS method of composite estimation
is given in section 3. The method of best linear unbiased
estimation is discussed in section 4. In section 5, we
present a recursive regression estimation procedure
designed to reduce the computational complexity associated
with best linear unbiased estimation. Section 6 is devoted
to an application to data from the CPS. Alternative
estimators and rotation designs are compared.

2. BASIC ASSUMPTIONS

In this section, we describe surveys of the type we will
study. A rotation group is a set of individuals selected for
the sample and observed for a fixed number of periods and
in a fixed pattern over time. Assume that in each period of
the survey, s rotation groups are included in the sample,
where s> 1 is fixed. Assume that the basic data from the
survey can be organized in a set of elementary estimators
(such as simple sample means and estimated totals) of the
parameters of interest (such as population means and
totals), where a set of elementary estimators is associated
with each rotation group. For computational convenience,
the data for p periods can be arranged in a pxs data
matrix, denoted by H, in such a way that the observations
on a rotation group appear in only one column. The total
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number of elementary estimators is n = p x s. We call the
columns of H streams. Several rotation groups can appear
in a stream. Assume that:

(1) A given rotation group in a stream is observed over a
period of total length m + 1, and the observation
pattern for rotation groups is fixed and is the same for
all groups.

(2) The design is balanced on time-in-sample. That is, of
the s rotation groups included in the sample at a given
time, one group is being observed for the first time, one
is being observed for the second time, ..., one is being
observed for the last time, where the last time is
separated by m periods from the first observation.

These assumptions are satisfied by surveys such as the CPS
and the Canadian Labor Force Survey. See Yansaneh
(1997) for an illustration of the 4-8-4 rotation scheme used
in the CPS.

3. THE CPS COMPOSITE ESTIMATOR

In general, composite estimators combine recent esti-
mator(s) and data from the current and preceding period(s)
to form an estimator for the current period. With the CPS,
six of the eight rotation groups observed at time 7 were
observed at time # - 1. We shall refer to these six rotation
groups as continuing rotation groups, and the remaining
two as incoming rotation groups.

The composite estimator currently in use is determined
by two parameters. The estimator is

0,,=A-m)y, +m@®, , * O, 1) ¥ 1,0, (1
where, for the estimator currently used, m, =0.4 and
m, =02, y,, is the elementary estimate of level obtained
from the rotatlon group which is in its A-th time in sample
attime £,y,= 8" Zk 1Y, is the basic estimator, defined as
the mean of the elementary estimates based on the eight
rotation groups observed at time ¢, 9, 1o is the composite
estimator for time ¢ - 1, 6, .1 is an estimate of change in
level, based on the six continuing rotation groups at time ¢,
and 8 is the difference between the averages of the two
incoming rotation groups and the six continuing rotation
groups. Thus,

8:,:—1 = 6_12 (yt,k - yt—l,k—l)’
keS
and

'I(E PARERDY y,,k),

keT keS

where T={1,5) and S = {2, 3,4, 6,7, 8}. The composite
estimator used until 1985 contained only the first two terms
on the right of (1). The third term was introduced for the

purpose of reducing the time-in-sample effects appearing in
the original estimator. The incoming rotation groups
produce larger estimates of unemployed than do the
continuing rotation groups. Therefore, the direct differ-
ence 6, ,.; is influenced by the fact that the rotation group
in its first time-in-sample has a larger expected value than
that of the second time-in-sample. The time-in-sample
effects do not cancel out in the difference estimate. The
third term is an adjustment term which has the effect of
reducing both the variance of the original composite
estimator and the bias associated with time-in-sample
effects. See Bailar (1975) or Breau and Ernst (1983) for a
discussion of the bias of the pre-1985 composite estimator
due to time-in-sample effects. We shall refer to the three-
term composite estimator currently used in the CPS as the
CPS Composite Estimator. This estimator has a variance
close to that of the best linear unbiased estimator for
monthly estimates of unemployment level. Let y, ,
i=1,2,..,s, be the elementary estimator of the parameter
of interest obtained from the rotation group which is in
stream i at time . The CPS composite estimator can be
written as

A

8 8
- 21 Oy ki Vit * Zl O pinVier T (2
=

i=

where k(i, t) = k defines the time-in-sample of observa-
tion (it) as a function of the stream (i) and time (#). If
A = 1/8 and A, = -1/6, and )»3 = 1/3, then 0, =T 7“2’
and

(1-m)h, - A, - A A, for keS
®

P-4 my) for keT
Let
Py = (ml,k(l,t)’ Oy k2, ml,k(8,1)>”
Py = (mz,k(l,t)’ ®y k2,17 -+ mz,k(g,,)) )
and .V, = (Vl,,,yzy,, ""yS,t)l' Then,
et,L‘:pt{yt+p2,yt_1 +Tc191—1,c (3)

Substituting in (3) recursively, we have, for an estimator
initiated at time zero,

t
1 -1 /
6 c:P1y1+2nlj (P, + 1 P) Vi )
=

Equation (4) is an expression of 6 . as a linear function of
current and past observations, Where the weight of an
observation declines as its distance from the current period
increases.
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4. BEST LINEAR UNBIASED ESTIMATION

Suppose ® =(0,,9,,....6, )' is the px 1 vector of
parameters of mterest where 9 =1,2,..,p, is the level
of the parameter of interest at t1me L. Thus at time j, 6 is
the current level of the parameter of interest. For example
in the context of the CPS, 9 might represent the population
mean or proportion of unemployed at time j. Our objective
is to construct efficient estimators of the current level of the
parameters. The change in level and average level over
multiple periods of time are also of interest.

The best linear unbiased estimator (BLUE) of the current
level is defined to be the minimum-variance unbiased linear
combination of the elementary estimators from the rotation
groups available for estimation. It is possible in the process
of computing the BLUE for the current level, to also
compute the BLUE:s for all periods using data available at
the current time.

Suppose that a repeated survey has been in operation for
p periods and that s streams of data collected over p periods
are available for estimation. Let y; = ( VipYiaYip) be
the vector of p observations in the i-th streamattime . Let ¥
be the data vector formed by the streams or columns of the p x
data matrix H, arranged chronologically. Thus, ¥ »
»y>¥y>-¥,) is an nx 1 vector of observations, where
n=sxp. LetX-= Jsx1®1 be the nx p design matrix
which relates the estimates'in ¥ to their expected values
in ®P where J__, is the s x 1 vector of ones, L,yp is the
identity matrix of order p, and @ denotes the Kronecker
product. The linear model for Yp is

I ta

Y, =X0,+U, 5)

where Up is the vector of error terms satisfying the
assumptions E(U,) = 0 and E(U U ’) = V where V is
assumed to be a known symmetrrc Fand posmve definite
matrix. By the Gauss-Markov Theorem, the BLUE of G)p
is
— 7 -1 -1y -1
0,=XV,X)"XV, Y,

The covariance matrix of @p sy, =XV, 'x)7,

5. RECURSIVE REGRESSION ESTIMATION

Recursive estimation techniques have been found useful
' in situations where data do not all become available at the
same time but rather accumulate over time, and the
computation of optimal estimates based on all available data
is impractical. See, for example, Odell and Lewis (1971),
Sallas and Harville (1981) and references cited therein, for
recursive algorithms for best linear unbiased estimation.
Tiller (1989) presented a Kalman-filter approach to
estimation of labor force characteristics using survey data.

As described in Section 4, the direct computation of the
BLUE becomes progressively more complicated as the
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number of periods increases. We develop a recursive
regression estimation procedure for repeated surveys that
uses a judiciously chosen set of initial estimates, new
observations of the current level, and the previous
observations on the currently observed rotation groups to
produce the BLUE of current level.

5.1 Transformed Elementary Estimates and
a Proposed Estimator

Suppose a survey has been in operation for at least m
periods and assume:

(3) The rotation groups are independent.
(4) The covariance structure of the observations is known.

(5) The covariance structure of the observations in a
stream is constant over time, and it is the same for all
streams.

These assumptions are used in the construction of a linear
estimator. Assumption (3) will be relaxed for the
computation of the variance of the estimator. Under
assumptions (1) and (3), observations that are more than m
periods apart are independent. At the current time, denoted
by ¢, where ¢ >m, a set of s elementary estimates of the
parameter 8 are observed. To construct the generalized
least squares estimator, the s current observations are
transformed so that they are uncorrelated with previous
observations. After transformation, the expected values of
the transformed observations are functions of 6, and the
parameters for the m preceding periods. Assume that the
BLUE of the vector of parameters for the previous m
periods, and the mXxm covariance matrix of these
estimators, are available. Thus, at time ¢, we have: (i) m
initial estimates ®c Yom) = (Gc m C_1) ; (ii) the covari-
ance matrix Y, . of 6, 1(my> @nd (iii) s independent
observations on the s streams at the current time. Let the
transformed observations, denoted by z,,i=1,2,..,s, be

m

Zie=Vic~ 21: bk(f,c).jyi,c-j ©)

Jj=

where bk (.o, are the coefficients such that z, = is
uncorrelated with Vivesj for all j>0. By assumptlons @)
and (5), the coefficients b, - are fixed over time. By
assumption (3), z, , is uncorrelated with all earlier observa-
tions. The expected value of z, is 6, -
i=1,2,.

Zj=1 bk(l, C),j cj?

5.2 The Recursive Regression Estimator

Let 6 ,(2), h < t, denote the least squares estimator of the
(scalar) parameter 9,, constructed usmg data through time
t; and let G), o (9, a1 (E)s o t(t))’ denote the least
squares estimator of the vector of m parameters
0, .1 -+ 0,, at time # constructed using data through time
t. Our objective is to construct the minimum variance
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estimator for 6, the current level of the parameter of
interest using all data available at time ¢. A linear model
for data available at the current time is

Zc = W®c(m+l) + Uc (7)

where
( )
‘.KZI s ’

(@c 10my Ze .2, = (2 - 2y), and X, , isan sxm
matrlx whose entnes are constant over trme and are
functrons of the coefficients b, . of (6). If Var{z .} =

=1,2,..,5 and Q,, is the d1agona1 matrix with 02 as
the dlagonal entrles then the covariance matrix of Z 1s
V, = blockdiag{} __, oy 2} TS assumed that c,,
i=1,2,..,s, are positive.

The recursive regression estimator (RRE) of ©, mep) 1 i
defined to be the least squares estimator of ®,, ., based on
model (7). Thus the RREof ®, ., is

) -wviwylwv'z, ®)

c(m+1)
and the covariance matrix of © is
wv'wyl

The utility of the estimator (8) is its computational
simplicity. At any fixed time # in a repeated survey, all the
information relevant to the problem of estimating
6,6, ..,96,, canbe obtained from a set of m recursive
least squares ‘estimates and the current observations.

We now describe more fully the recursive regression
procedure. At time ¢, we have ®: (m+1y theRRE of ©, .,
and its (m +1)x(m +1) covariance matrix
Partition Y, ., as

c(m+1) c(m+1) =

t(m+1)"

v

E _ Vit 12,1
t(m+1) Vl?,t Et(m) ’

where v,,, is the variance of 9, () Z is the
covariance matrix of (6t a1 (25 - .0 (1)), and 12,0 is the
covariance between these two quantrtles Observe that if
0,_,, is retained in the parameter vector and 9 . 18 retained
in the data vector, the estimator of 9, is unchanged (the
estimator of 6, would, in general, be changed). This is
because the estimator of the original parameter vector of a
least squares problem is not changed if an observation
whose expectation is equal to a single new parameter is
added to the problem. Thus, to update the RRE for the next
perrod we drop the initial estimate for the earliest period,
(1), from the data vector, and drop the corresponding
parameter 8,.,, from the parameter vector. The parameter 6,

is then added to the parameter vector. In this way, the
dimension of the basic model matrix W of the estimation
problem is kept constant over time. Thus in the class of
repeated surveys considered in this paper, there is an upper
bound on the computational effort required for the BLUE
of the vector of parameters of interest.

The model at time ¢ + 1 may be written as model (7),
with ¢c=1+1,Z,, (9, a1 (D)5 e 6, (), 6 A0, 2.0
®t+l(m+1) = (9t mapr 0 8,29,,)", and the covariance matrix
of Z, is V,, —blockdlag{zt(m), Q,,}. The BLUE of
©,.1(n.1) and its covariance matrix are then obtained from
the usual least squares formulas. The least squares
estimators of the last m elements of ®,, .., are then used
as the initial estimates in the model for the next iteration.

The following theorem states that the covariance matrix
of the vector of recursive least squares estimators converges
to a positive definite matrix as the number of periods in the
survey increases indefinitely. A proof is given in the
appendix.

Theorem: Atany time 1, let the vector of recursive least
squares estimators ®( =0, ,..(D, - (1), 6 (t)) be
the BLUE of the vector of parameters
(CRNPPI - 8,)" based on data through time ¢. Let il(m)
be the covariance matnx of @ Let the assumptlons (1)
through (5) hold. Also assume that the elements of V
bounded for all n, where V', is the covariance matrix of any
n observations. Then, the covariance matrix ),
converges as ¢- «; and the limit is an m x m positive
definite matrix.

6. APPLICATION TO THE U.S. CURRENT
POPULATION SURVEY

6.1 The CPS Design

The CPS is a monthly household survey conducted by
the United States Census Bureau in cooperation with the
Bureau of Labor Statistics for the purpose of providing
national estimates of labor force characteristics such as the
number employed, unemployed, and in the civilian labor
force; and other characteristics of the non-institutionalized
civilian population. The sample design of the CPS contains
a rotation scheme that includes the replacement of a fraction
of the households in the sample each month. For any given
month, the sample consists of eight time-in-sample panels
or rotation groups, of which one is being interviewed for the
first time, one is being interviewed for the second time,...,
and one is being interviewed for the eighth time. In other
words, the interview scheme is balanced on time-in-sample.
Households in a rotation group are interviewed for four
consecutive months, dropped for the next eight succeeding
months, and then interviewed for another four consecutive
months. They are then dropped from the sample entirely.
This system of interviewing is called the 4-8-4 rotation
scheme, and is a special case of schemes described by Rao
and Graham (1964).
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6.2 Estimation and Variance Estimation Procedures

We use estimates of the covariance structure of data
from the CPS to compare alternative estimators and rotation
designs. See Adam and Fuller (1992) and Fuller, Adam and
Yansaneh (1993) for a detailed description of the con-
struction of the model, the estimation of its parameters, and
the estimation of the covariance structure of observations
within a given rotation group for various characteristics of
interest. Because the rotation groups come from the same
set of primary sampling units, they are not independent and
a component is included in the covariances to reflect the
fact that the primary sampling units do not change. The
RRE is computed with the eight current simple estimators
and the 15 estimators for the 15 preceding periods. In
computing the RRE, the covariances are used to create eight
linear combinations of the current and the preceding fifteen
observations that are uncorrelated with the preceding fifteen
observations. Because of the primary sampling unit effect,
these linear combinations are correlated with observations
more than 15 periods in the past and in the same stream.
Hence, they are correlated with the preceding estimators.
The correlations with earlier estimators, 9 ei=1,.,15,
are included in the covariance matrix when the estimator of 0,
is constructed. However, because only the most recent 15
observations are used, the resultant estimator of 9, is not the
BLUE for current level. The calculated covariance matrix
of (éms’ s ét—l’ ér)’ is correct and, because the primary
sampling unit effect is modest, it is felt that the estimator
has efficiency close to that of the BLUE.

We shall restrict attention to the estimation of various
parameters for two characteristics of interest: Employed
and Unemployed. For each characteristic, the parameters
of interest are the current level and period-to-period change
for up to 12 periods. The estimators considered for
comparison are the CPS composite estimator; the RRE; and
the BLUEs using 2, 3, 12, 16, and 24 periods, where the
BLUE for p periods at time ¢ is the least squares estimator
constructed using data from time 7 - p + 1 through time 7.
Results are reported for BLUEs based on 12 and 16 periods.
In following the practice of the U.S. Bureau of Labor
Statistics for CPS estimators, the estimators are not
modified as new data become available. Thus the estimator
of change in level of a characteristic of interest between
times # ~ 1 and ¢ is not the best possible estimator given all
available data. It is the difference between the best
estimator at time ¢ based on data through time ¢ and the best
estimator at time f - 1 based on data through time ¢ - 1.

We do not consider seasonal adjustment in this
discussion. However, the estimation procedures presented
can be extended to include seasonal adjustments. To
compute the variance of a given estimator at a given time,
the estimator is first expressed as a linear combination of
all the observations available at that time. The variance of
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the estimator is then computed as a function of the
coefficients of the linear combination and the entries of the
covariance matrix.

6.3 Numerical Results and Discussion

6.3.1 Comparison of Alternative Estimators

The variances of the alternative estimators relative to the
variance of the basic estimator of current level, for each of
the characteristics of interest, are presented in Table 1.
Recall that the basic estimator of the current level, denoted
by y, is the simple mean of the eight elementary estimators
obtained from the eight rotation groups observed at time ¢.
That is, y, = 8’1Z,§=1y,,k, and Var(y,) = 6%/8, where
o? = Var( Viw) for all t and k. The basic estimator of change
between two periods is the difference between the simple
means for the two periods.

The BLUE procedure based on 3 periods or more
produces more efficient estimators of current level than the
CPS composite estimator. In general, the best linear
unbiased estimation procedure becomes more statistically
efficient as the number of periods increases. For both
characteristics, the results reveal that the best linear
unbiased procedure based on 12 periods is uniformly more
efficient than the CPS composite estimator for all
parameters, except one-period change in unemployed.
Recall that the estimator of change is not BLUE because the
estimator is the difference of estimators constructed at time
¢t and at time 7 - 1. Thus, the estimator called “BLUE” is
best only for current level using the stated amount of data.
The difference between the variance of the composite
estimator of one-period change and the variance of the
12-period BLUE of one-period change in unemployed is
less than one percent. The gain in precision of the best
linear unbiased estimation procedure for employed relative
to the CPS composite estimator for current level is 22% for
the BLUE for 12 periods, 28% for the BLUE for 16
periods, 30% for the BLUE for 24 periods, and 33% for the
RRE. The corresponding gains for unemployed are 2%,
3%, and 3%. These results are a reflection of the nature of
the autocorrelation functions of the characteristics. The
autocorrelation function for unemployed declines much
faster than that for employed.

With the exception of one-period change in employed,
there is an improvement in the efficiency of the estimation
of change from using the alternative estimators instead of
the CPS composite estimator. The gain in precision
increases as the number of periods increases, reaching a
maximum value at five-period change for both charac-
teristics. The gain then decreases slightly. In the case of
the RRE, the maximum gain in efficiency for estimated
change is 64% for employed and 5% for unemployed.
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Table 1
Variances of alternative estimators relative to the variance of the basic estimator of current level
Employed Unemployed
Parameter CPS BLUE for BLUE for Recursiw? Regression CPS BLUE_ for BLUE for Recursivg Regression
Comp. 12 periods 16 periods Estimator Comp. 12 Periods 16 periods Estimator
89 2 3 @ (5) (O] ™ & (&)
Current
Level 0.862 0.704 0.672 0.650 0.947 0.924 0.918 0.918
1-period
change 0.511 0.457 0.437 0.432 1.070 1.077 1.073 1.073
2-period
change 0.813 0.646 0.613 0.604 1.361 1.345 1.338 1.338
3-period
change 1.065 0.763 0.724 0.711 1.528 1.481 1.473 1.473
4-period
change 1.279 0.830 0.800 0.784 1.645 1.569 1.563 1.562
5-period
change 1.363 0.880 0.847 0.829 1.691 1.614 1.607 1.606
6-period
change 1.390 0.910 0.873 0.855 1.708 1.637 1.628 1.628
7-period
change 1.388 0.930 0.884 0.865 1.710 1.646 1.637 1.636
8-period
change 1.353 0.932 0.884 0.860 1.701 1.645 1.635 1.634
9-period
change 1.255 0.912 0.854 0.832 1.671 1.624 1.614 1.614
10-period
change 1.154 0.895 0.824 0.806 1.641 1.606 1.595 1.595
11-period
change 1.061 0.883 0.795 0.782 1.614 1.590 1.578 1.578
12-period '
change 0.992 0.883 0.767 0.761 1.593 1.577 1.563 1.563

6.3.2 Comparison of Alternative Estimators and
Rotation Designs

The variances of alternative estimators under various
rotation designs are givenin Table2. Allvariances arerelative
tothe variance of the basic estimator of current level under that
design. The efficiencies of alternative estimators of current
level, change in level, and average level for multiple time
periods are compared under the intermittent 4-8-4 rotation
designand twocontinuous rotation designs. The continuous
rotation designs are the 6-continuous scheme and the 8-
continuous scheme. The 6-continuous scheme is the rotation
scheme used in the Canadian Labor Force Survey conducted
by Statistics Canada. Foreach period of the survey, the sample
consists of six rotation groups, one rotation group in its first
time-in-sample, ..., and onerotation group inits sixth time-in-
sample. A givenrotation group remains in the sample for six
consecutive periods and then permanently drops out of the
sample. See Kumarand Lee (1983) for more details about the
design of the Canadian Labor Force Survey. In the
8-continuous scheme, there are 8 rotation groups in the sample
foreachperiod. A givenrotation group remains in the sample
foreight consecutive periods and then permanently drops out
ofthe sample.

We compare the performance under the various rotation
designsusing the BLUE of current level based on 36 periods.
We call this estimator the “best estimator” because its
efficiency is vitually the same as that of the RRE. For all
rotation schemes under consideration, there are some
improvements in the precision of the estimators of current
level from using the best estimator relative to the CPS
composite estimator. AsseeninTable2, the gainis highest for
employed where, under the 4-8-4 rotation scheme, the
variance of the best estimator of current level is only 76% of
that of the CPS composite estimator.

The precision of the estimators of change relative to the
precision of the CPS composite estimator depends on the
rotation design. From Table 2, we see that under the 4-8-4
rotation scheme, there is some gain in precision, which
increases as the lag increases. For employed, the variance
of the least squares estimator is 85% of the variance of the
CPS composite estimator for one-period change, 61% of the
variance of the CPS composite estimator for six-period
change, and 76% of the variance of the CPS composite
estimator for 12-period change. (Compare columns (2) and
(3) of Table 2.)
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Table 2
Variances of alternative estimators and rotation designs; the variance of the basic estimator of current level under each design equals one
Employed Unemployed
Best Est. Best Est. Best Est. Best Est. Best Est. t.
Parameter  CPS Comp. (4-sis)‘ (8 Cont) (6 Cont) CPS Comp. (4-8-4) (8 Cont) ](366 Sc[:;sx)
(1) (2) (3) 4) (5) ©) ()] (8) 9)
Current
Level 0.862 0.653 0.761 0.759 0.947 0918 0.944 0.938
1-period
change 0.511 0.432 0.395 0.434 1.070 1.073 1.003 1.051
2-period
change 0.813 0.604 0.559 0.619 1.361 1.338 1.250 1.312
3-period
change 1.065 0.710 0.669 0.747 1.528 1473 1.372 1.443
4-period
change 1.279 0.783 0.731 0.829 1.645 1.562 1.473 1.543
S-period
change 1.363 0.828 0.782 0.901 1.691 1.606 1.533 1.607
6-period
change 1.390 0.854 0.828 0.970 1.708 1.628 1.577 1.655
7-period
change 1.388 0.863 0.874 1.026 1.710 1.636 1.612 1.686
8-period
change 1.353 0.858 0.828 0.960 1.701 1.934 1.642 1.705
9-period
change 1.255 0.830 0.960 1.108 1.671 1.614 1.663 1.719
10-period
change 1.154 0.803 0.993 1.139 1.641 1.595 1.678 1.727
11-period
change 1.061 0.779 1.021 1.165 1.614 1.578 1.688 1.733
12-period
change 0.992 0.758 1.046 1.186 1.593 1.564 1.696 1.737
12-period
average 0.369 0.326 0.440 0.394 0.255 0.249 0.301 0.266
12-change
in averages 0.248 0.162 0.365 0.403 0.273 0.262 0.372 0.359

For estimating 12-period averages in employed using the
4-8-4 design, the CPS composite estimator is about 13%
less efficient than the least squares estimator and, for
estimating change in 12-period averages, it is about 53%
less efficient, as can be seen by comparing the second and
third columns of Table 2. For unemployed and the 4-8-4
design, there are only modest gains in precision from using
the least squares estimator relative to the CPS composite
estimator, as shown in the sixth and seventh columns of
Table 2.

For estimation of 12-period change, 12-period average
and change in 12-period averages, the 4-8-4 design is much
superior to both continuous rotation designs for both
characteristics. The continuous designs are generally
superior for period-to-period changes for short periods.

6.3.3 Internal Consistency

In our analysis, we have constructed the best estimator of
employed using only the past history of employed and the
best estimator of unemployed using only the past history of

unemployed. There is no formal reason not to include the
past history of both employed and unemployed in the
construction of the estimators. However, Fuller et al. (1993)
state that the estimated cross correlations are less than 0.10,
suggesting that there is little gain from such inclusion.

A method of constructing estimates of multiple
characteristics that are internally consistent was suggested
by Fuller (1990). In this procedure, estimates of employed,
unemployed, and not-in-the-labor-force are constructed.
Then these estimates are used as controls in a regression
procedure to construct weights for the current observations.
The weights can then be used to construct internally
consistent estimates of any parameter of interest. The
estimation procedure, including estimates of subdivisions
of the labor force, is planned for implementation in 1998 for
the CPS. See Lent, Miller and Cantwell (1996).

6.4 Conclusions

The main conclusions emerging form the variance
computations in this section can be summarized as follows:
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1. For all rotation designs and all characteristics under
consideration, there are alternative estimation proce-
dures with a variance of the current level smaller than
that of the CPS composite estimator.

2. For estimation of change under the 4-8-4 rotation
design, the gain in precision of the alternative estimators
relative to the CPS composite estimator increases as the
lag increases, and peaks around the lag of minimum
overlap.

3. The intermittent 4-8-4 rotation design is inferior to the
continuous rotation designs for short-period changes,
but superior for current level, long-period averages, and
changes in long-period averages.

4. The CPS composite estimator is comparable to the RRE
for unemployed for the estimation of one-period change
and 12-period change. However, the recursive regres-
sion estimation procedure is superior to the CPS
composite estimator for other measures of change.

5. The RRE is more efficient in estimating change in level
at lags for which the CPS composite estimator is not
targeted, for instance, lags of four months to six months.
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APPENDIX

Lemma 1. Let the assumptions of the theorem hold.
Then the variance of the estimator of current level 6,
converges to a positive number as the number of periods
increases.

Proof. If the means 6, ,,0_,,...,0,  , were known,
then g, ,i=1,2,...,s areunbiased estimators of 6, where

glc ylc’g2c yZC b21(y2c1 cl)' ';andgsc:ysc_

Z} 1bsj(y“_ 0, Furthermzore gsi=1,2,..,5 are
mdependent with variances c;,i=1,2,..,s. We may
write the linear model:

g=J0, +e (A1)

where g = (glc, 8o - &) J isthe s x 1 column vector
of ones, and e is the s x 1 vector of errors with E(e) =0,
and E(ee’) = V', = Diag{o}, 3, ..., 5, }. Thus the BLUE of
6, for model (Al) has variance (Z, 10, ) !, By assump-

tion, the variances o =1,2, ..., s are bounded below and
the quantity (Z,:lo, ) lisa pos1tive lower bound for the
variance of the estimator of 0, [see Lemma 4.2.3 of
Yansaneh (1992)]. The variance of the estimator of 6 is
non-increasing as the number of observations increases, and
hence, the variance converges to a positive

number.

Lemma 2. Let the assumptions of the theorem hold.
Then the variance of the least squares estimator of each of
the parameters 6, ,0,_ ., ..., 0,_,, based on data through
time ¢, converges to a positive number as ¢ increases.

Proof. First, suppose at a fixed time t, at least m
periods of observations are available both prior to T and
after . Define a transformation of the following form for
the observations in each of the s streams at time T

¢ =Vie Lyeombrgin, Vi Where by =0 and u,,
uncorrelated with all observatlons precedmg and
succeedmg ¥, inthe i-th stream. Let the variance of u,
be k =1,2,...,s. These variances are bounded below by
assumptron. We conclude, as before, that there is a positive
lower bound for the diagonal elements of the covariance
matrix of the vector of recursive least squares estimators.

Now, assume that at time ¢, we begin the sequence of
estimation with the vector of recursive least squares
estimators @t_l(m) = (ét_m, ....08,.))" based on data for the
preceding m periods; and the vector of transformed
observations z; = (z,,, ..., z,,). Thus the linear model for
the data at time ¢ is given by (7), with ¢ replaced by t. The
data vector Z, is of fixed dimension. Therefore, the
covariance matrix of the BLUE of the vector of parameters
©,maty = Oy 8,1, 0))" 88 Xyyy = W'V, W)™ !. For
computational convemence we express W as ( I .M,
where I, is the identity matrix of order m + 1, and M is
an (s - 1)x (m +1) matrix which is constant over time.
Thus we have

Zt(mﬂ)

= (Qx_—lr(mu) + M QééM)‘l

(A2)
:Qt—l(m+1) t- 1(m+1)M,D MQ: 1(m+1)
where
T blockdlag{zt 1(m),cl} Q,, = diag{c3,....c2},
and D, = +M Q Smce the second term on

the ngnt hand side oft(zl&(ri) lrs positive definite, we conclude
that the first m diagonal elements of ), ., are less than or
equal to the original diagonal elements of ) _ Lm: This
means that as ¢ increases, the variances of the estimators of
0, 9,50, are non-increasing. Since these variances
are bounded below by a positive quantity, we conclude that
the variances of the estimators of 0,_ ,....0,,,0,_
converge to positive numbers as f increases.

Lemma 3. Let the assumptions of the theorem hold.
Then, the variance of the least squares estimator of each of
the parameters 8, ,0, ., -6, ,...0,-6_,, based on data
through time f, converges to a positive number as ¢
increases.
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Proof. First, we show that variance of the least squares
estimator of 6, - 6,_, (where denotes the current period)
converges as the number of periods increases by mimicking
the arguments in the proof of Lemma 1. Also, arguments
similar to those in the proof of Lemma 2 can be used to
show that the variances of the least squares estimators of the
parameters ©,_,0, ., -9, ....0,-0,_, all converge as
the number of periods increases.

Proof of theorem. Since Z,(m) is a submatrix of the
covariance matrix (m-1y Of the Jeast squares estimators of
the full set of parameters 9,_,, 8,_.1, ..., 0,_;, 0,, at time ¢,
it is enough to show that Zt(m+1) converges to a positive
definite matrix as f- «. From Lemma 1 and Lemma 2,
each of the diagonal elements of Zt(WI) converges to a
positive number as ¢ - «. From Lemma 3, the variance of
the least squares estimator of each of the parameters
e,_.8_,,-9_,..8-6,_, converges to a positive
number as ¢ - . It follows that for each j, 1 <j < m, the
covariance between the least squares estimators of 6, and 9
converges as ¢ ~ « and hence the covariance matrlx y ,(Wl)
converges as t - .

Next, we prove that the limiting covariance matrix is
positive definite. Let lim Y, =Y . Itis enough to
show that the variance of any non-trivial linear combination
of the recursive least squares estimators 9 (t)
j=1,2,..., m, isbounded below by a positive quantity Let
v, be the lower bound of every linear combination of the
observations with one of the coefficients equal to one. The
bound is positive by the assumption that the elements of
V! are bounded.

Now, every estimator ]
j=0,1,..,m is a linear combination of all observations
such that the sum of the coefficients for the observations in
the s streams at time ¢-j is one, and the sum of the
coefficients for the observations in the s streams at any
other time is zero. This is a condition for the unbiasedness
of the estimator for time ¢-j. For the sum of the
coefficients of the s observations at time ¢ - j to be equal to
one, at least one of the coefficients must be greater than or
equal to s . The minimum variance of any linear combi-
nation with first coefficient equal to s - is 572y
Therefore, for j =0, 1, ..., m, Var{9 (t)} Vo

Now, consider an arbitrary, non- triVial linear
combination of the recursive least _squares estimators
8, (0),j=0,1,..,m, given by Z oY 91_ (t), where,
w1th0ut loss of generahty, Yo = L. This linear combination
can be expressed as

Z 1,8,,(5) =8,(t) + E 1,8,

t-17

of the parameter 0 o

mm*

(A3)

m

—ZZC,;,J’,;,“"Z'YE th(lj)ylh

i=1 h=1

K m
= - C Z Il(lj)

ih

s t-1 m
Yitt s 1 ; [cfh +'21: VS na-p Y

i= j=
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s, are the coefficients of y,, in é,(t),

m, are the coefficients of y, in

where c,,i= =1,2..,
an nd jf,(lj), j=1,.. : )
6, NONA 1, ..., m, respectively. Therefore, Zizicn =1,
and Y f, =0, for j=1,.,m Thus ¥ [c,+
Zj 1Y 7, ,(”)] 1. That is, in the linear combination (A3),
the sum of the coefficients for the observations y, ,
i=1,2,.., s, attime ¢ is one. Therefore, at least one of the
coefficients is greater than or equal to s’ Hence
Var{Ej oyje, ()} 2 s ?v,__, and we conclude that Yim
positive definite
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