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Use of Auxiliary Information for Two-phase Sampling
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ABSTRACT

Two-phase sampling designs offer a variety of possibilities for use of auxiliary information. We begin by reviewing the
different forms that auxiliary information may take in two-phase surveys. We then set up the procedure by which this
information is transformed into calibrated weights, which we use to construct efficient estimators of a population total. The
calibration is done in two steps: (i) at the population level; (ii) at the level of the first-phase sample. We go on to show that
the resulting calibration estimators are also derivable via regression fitting in two steps. We examine these estimators for
a special case of interest, namely, when auxiliary information is available for population subgroups called calibration
groups. Poststrata are the simplest example of such groups. Estimation for domains of interest and variance estimation are
also discussed. These results are illustrated by applying them to two important two-phase designs at Statistics Canada. The
general theory for using auxiliary information in two-phase sampling is being incorporated into Statistics Canada’s
Generalized Estimation System.

KEY WORDS: Generalized regression; Two-phase sampling; Model assisted approach; Domain estimation; Calibration

factors.

1. INTRODUCTION

Two-phase sampling is a powerful and cost-effective
technique. It was first proposed by Neyman (1938). In
Cochran’s (1977) book, and in its two earlier editions dated
1953 and 1963, one finds basic results for two-phase
sampling, including the simplest regression estimators for
such designs. This paper takes a broader outlook and
proposes a general approach to the use of auxiliary
information in two-phase survey designs. Our main
references are Sarmdal and Swensson (1987), Sirndal,
Swensson and Wretman (1992) and Dupont (1995). Recent
related work includes Breidt and Fuller (1993), who
presented computationally efficient estimation procedures
for three-phase sampling in the presence of auxiliary
information. Chaudhuri and Roy (1994) studied optimality
properties of the well-known simpler regression estimators
for two-phase sampling. Binder (1996) described a simple
linearization procedure to estimate variances of nonlinear
estimators. His procedure can be applied to any sampling
design, including two-phase-sampling. Throughout this
paper, we assume arbitrary sampling designs for each of
the two phases. _

Single-phase sampling involves the use of one layer of
information for estimation. In two-phase sampling, how-
ever, one has to consider two layers of information. This
complicates matters, and it is not clear-cut how best to
exploit the combined information from the two sources.
Two approaches are considered in this paper for building
estimators based on -auxiliary information. These are the
calibration approach and the generalized regression
approach. We show that the generalized regression
approach can be viewed as a special case of the calibration

approach. The two approaches are examined under a
common structure for the auxiliary information. It assumes
that information exists about an auxiliary vector x, for the
units of the entire population, and about a second auxiliary
vector x, for the units of the first phase sample.
Consequently, at the level of the first phase sample, there is
information about both vectors, x; and x,.

The generalized regression approach, as applied to two-
phase sampling, is discussed in Séirndal ef al. (1992). These
authors develop the general regression estimator for two-
phase sampling, assuming arbitrary sampling designs in
each of the two phases. Two regression fits are carried out.
A “bottom level” regression is fitted to produce predicted
values up to the level of the first phase sample, using the
auxiliary information available for this step. Next, a “top
level” regression is fitted to produce predicted values up to
the entire population level, using the information
appropriate for this step. The two sets of predicted values
are used to build a generalized regression estimator.

The calibration approach focuses on the weights given
to the units for purposes of estimation. Calibration implies
that a set of starting weights (usually the sampling design
weights) are transformed into a set of new weights, called
calibrated weights. The calibrated weight of a unit is the
product of its initial weight and a calibration factor. The
calibration factors are obtained by minimizing a function
measuring the distance between the initial weights and the
calibrated weights, subject to the constraint that the cali-
brated weights yield exact estimates of the known auxiliary
population totals. In two-phase sampling the two levels of
information imply two consecutive calibrations. The first
phase of calibration uses the auxiliary information available
(at least population counts) at the level of the entire
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population, resulting in first-phase calibrated weights. The
second phase of calibration uses these first-phase calibrated
weights and incorporates the information at the level of the
first-phase sample, resulting in a final set of calibrated
weights.

Both approaches profit from the two layers of infor-
mation. They do not necessarily yield identical results.
Whether they do or not depends on the exact formulations
given to the regression fits and the calibration approach.
This is apparent in Dupont (1995), where four alternative
estimators were developed under the regression approach.
These differ in the way that the auxiliary variables are used
in deriving the predicted y-values required for the
regression estimator. For each of these four approaches,
Dupont built a matching estimator using the calibration
approach. She succeeded in obtaining an exact equivalence
between the two approaches in only one of the four cases.
Three of Dupont’s four approaches can be considered as
special cases of the general approach in this paper.

In this paper, building on Hidiroglou and Sirndal (1995),
we provide a unified theory for two-phase sampling with
auxiliary information. We show that the regression estima-
tors can be obtained as a special case of the calibration
approach. Direct linkage between the two approaches is
therefore possible. One motivation for our work was the
necessity to provide tools for efficient use of administrative
data sources in several important Statistics Canada surveys.
Our work has prepared the way for the inclusion of two-
phase sampling into Statistics Canada’s Generalized
Estimation System described in Estevao, Hidiroglou and
Sidrndal (1995).

We illustrate our general theory by applying it to two
survey designs currently used at Statistics Canada. The first
application, Armstrong and St-Jean (1994), describes the
use of the two-phase approach for sampling tax records.
Our second application, Hidiroglou, Latouche, Armstrong
and Gossen (1995), involves the use of two-phase sampling
of payroll deduction accounts used in Statistics Canada’s
Survey of Earnings, Payrolls and Hours.

The paper is organized as follows. Section 2 sets up the
notation. Section 3 specifies our version of the calibration
approach in two-phase sampling. Section 4 establishes the
important result that the resulting calibration estimator can
be expressed, with exact equivalence, as a two-phase
regression estimator, that is, one derived via two consecu-
tive regression fits. Additional theoretical results are
reported in Sections 5 and 6. Section 5 examines the forms
taken by our two-phase calibration estimator under impor-
tant special types of information, namely, when some of the
auxiliary variables, either in the first or in the second phase,
correspond to categorical variables that codify a grouping
of the units into mutually exclusive and exhaustive classes.
Section 6 gives results on two issues that always require
attention in a survey, which are central to the GES, namely,
(a) estimation for domains (sub-populations), and (b)
design-based variance estimation. For variance estimation

we use the approach of Sdrndal and Swensson (1987).
Section 7 shows how the preceding theory is applied to
two-phase designs currently in use at Statistics Canada.
Finally, Section 8 provides a brief summary.

2. NOTATION

The population is represented by U = {1, ..., k, ..., N}.
A first-phase probability sample s, (s, ¢ U) is drawn from
the population U, according to a sampling design with the
selection probabilities n;, = P (ke Sl) Given s, a second-
phase sample s,(s,cs,cU) is selected from s,,
according to a sampling design with the selection proba-
bilities m,, = P(kes, | s,). Note that these are conditional
probabilities, given s, . We assume that w;, > 0 forall ke U
and m,, >0 for all £ € s,. From this point on, we work with
weights in the estimation process. We will denote the first-
phase sampling weight of unit k£ as w,, = 1/x;, and the
second-phase sampling weight as w,, = 1/x,,. The overall
sampling weight for a selected unit is w;” =w,, w,,.

Our objective is to estimate the population total ¥ =
Y.V Where y, is the value of the variable of interest y
for unit . If 4 < U is an arbitrary set of units, we write
simply ), for ), _,. The customary two-phase sampling
procedure calls for collecting inexpensive information
about the units & belonging to a large first-phase sample s, .
This information is then used to realize efficient sampling
and estimation in the second phase. The values y, are
recorded for ke€s,. An unbiased estimator of Y'is given by
Y= Z wy yk This estimator uses sampling weights only.
A moré extensive use of available auxiliary information is
achieved through the regression estimators that we will now
examine.

We denote the auxiliary vector at the level of the first-
phase sample as x and its value for unit k£ as x,. As in
Séirndal et al. (1992, chapter 9), we partition x, as

= (X{»X,,)". Information is available up to the entire
populat10n level for the vector x,,, whereas for the vector x,,
information is only available up to the level of the first-
phase sample. Table 1 summarizes our assumptions on the
auxiliary information available for estimation.

Table 1
Relationship between set of units and available data
at different levels

Data available

{xlk ke U} or ¥ ,x,,
First-phase sample {x,r t ke sl}

{(xk,yk): kssz}

Note that individual values x,,, k& U, are not required. It
suffices to know the total ), x,,, which may be taken from
a reliable administrative source. The presence of auxiliary
information in one or both phases opens the possibility of
modifying the sampling weights with the aid of calibration

Set of units

Population

Second-phase sample
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factors calculated using the auxiliary information. In each
of the two phases, a unit’s sampling weight is modified by
multiplying it by the calibration factor, resulting in a
calibrated weight.

The first-phase calibrated weight W, is computed for
units kes, as W, =w,, g, The first-phase sampling
weight is w,,, and the first-phase calibration factor is & ¢
Slmllarly, we compute overall cahbratlon weights W) =
w, g, forunits ke s,, wWhere g, is the overall calibration
factor. The superscript “*”” denotes overall weights taking
into account both phases. The superimposed symbol “~”
denotes calibrated weights.

3. CALIBRATION WITH GENERALIZED
LEAST SQUARES DISTANCE

Auxiliary information available at each phase of sam-
pling can improve weights by the process known as
calibration. This improvement yields smaller variances of
the resulting estimates if there is a strong correlation
between the auxiliary variables and the variables of interest.
We seek a set of “new” weights that lie as close as possible
to a set of starting weights. The calibration requires the
specification of a measure of the distance between the
starting weights and the new weights. Several distance
functions have been proposed; see Deville and Sirndal
(1992), Deville, Sirndal, and Sautory (1993), and Singh
and Mohl (1996). Any one of these distance functions could
be used for two-phase calibration. However, we concentrate
on one of these, namely, the generalized least squares
(GLS). For an arbitrary set of units s, it is of the form

D-_Z c,——*

) 3.1)
Wk '

where {w, : kes} are the starting weights, {W  :kes} are
the new calibrated weights, and {C,: ke s} are specified
positive factors that control the relative importance of the
terms of this sum. For each of the two phases, we minimize
a GLS distance measure with suitable factors C,, subject to
constraints. After applying the two successive calibrations,
we have a set of overall calibrated weights.

(i) First-phase calibration (from s, to U).

The first-phase sampling weights {w, :kes,} are used
as starting weights. Let {C,,:kes } be pre-specified
positive factors. We determine the first-phase calibrated
weights by minimizing the GLS distance

1 (W~ W)
-2 ES] Clk 1k 1k (32)
2 1k
subject to the first-phase calibration equation
DINRVE LD I (3.3)

1

13

where the total ), x,, is known. Note that this calibration
does not involve information concerning x,, because it is
available only up to s, .

The resulting weights are

Wik =W 8k (3.4)
with
; -l xlk
+ (ZU Xk~ ZSI wlkxlk) T, e (3.5)
1k
and
wlkxlkxlk
T=), — (3.6)

lk

Some of the w,, given by (3.4) may be negative, or zero.
Many users prefer weights to be always positive. This can
be achieved by adding to (3.3) the inequality constraints
W, >0 forall kes,. The resulting weights have no closed
expression, in contrast to (3.4).

(ii) Second-phase calibration (from s, to s,).

Weuse {W, w,,,kes,} as starting weights, where w
is given by (3.4). These weights incorporate the information
about x,, available up to the full population level.
Applying them to the data {y,:kes,} yields one possible
estimator, namely = Yo Wi Wy v, However, since these
weights do not contain the X,,-value information available
for kes,, they can be improved through a second-phase
calibration. Let {C,,: k€s,} be specified positive factors
We determine the overall calibrated weights W, by
minimizing

% ~ 2
p,-ly Cot (W = Wy W) 3.7)
S R W W
1 Wor
subject to the second-phase calibration equation
Esz WX, = Es] WXy 3.8)

where x, = (xl’k,xz’k)’. The resulting overall calibrated
weights are
imw g (39)
where
8 = 8u8u (3.10)
with g, given by (3.5) and g,, by
(3.11)

- _ . e
+(Eslwlkxk Zszwlszkxk) T, —

2k



14 Hidiroglou and Sarndal: Use of Auxiliary Information for Two-phase Sampling

for kesz, and

—~ 1
Wy Wor Xp Xy

T =
2 L)) Czk

(3.12)

Again, some g, may be zero or negative, but always
positive g, can be ascertamed by adding to (3.8) the
inequality constraints w, >0 for ke S5

Having determined the overall weights ), by equation
(3.9), the estimator of Y is given by

?:Zs W;cyk

2

(3.13)

Remark 3.1 A potential problem with the above approach
is that some of the g,,’s may be negative or even zero. If
this occurs, (3.7) is not a proper distance measure. Some of
the important applications, such as poststatification, do not
have this problem as their associated g,,’s are always
greater than zero. If all the g, ’s are greater than zero, then
the minimization criterion given by (3.7) is acceptable.
Otherwise, we have to modify it. One possible modification
is to impose on the above-mentioned constraints that the
w,, s are positive for k€ s, . Another possible modification
is to replace C,, in (3.7) by
. W
Cu=Cy —.
1k

Then

*
C2k 2k

YY) *
WieWa  wy

which is always positive. The resulting g, -factors in (3.9)
can be shown to be g, = &+ &y — 1, where g, is given
as before by (3.5), and g,, by (3.11) provided that we
instead define T, as

* ’
W, xkx k
52
Cv2k

It is our opinion that in most applications the choice
between the multiplicative g, = &1x &y and the additive
form g, =g, + &, -1 would have little effect on the
resulting estimates. That is, we believe the two point
estimates would be very close, and so would be their
associated estimates of variance.

Remark 3.2: Bounding the weights ordinarily has negli-
gible impact on the estimates. Recent experience with
calibration for single phase designs, Stukel, Hidiroglou, and
Sdrndal (1996), has shown that mildly different sets of
g-weights lead to point estimates that differ very little.
Some recently developed computer software for calibration,
for example, the software described in Deville et al. (1993),
minimizes a distance function such that the resulting

T, =

g-factors are guaranteed to be bounded from above and
from below.

Remark 3.3: The auxiliary data in Table 1 can be used in
several ways for two-phase calibration. Considering in
particular the second-phase calibration equation defined by
(3 8), three different specifications of the vector x, are: (i)

= (X)) %y)" s (1) x,=x,; and (iii)) x, =x,. We
comment on these possibilities, assuming for each of these
that a first-phase calibration has been carried out, resulting
in the first-phase calibrated weights (3.4).

The case (i) specification x, = (x;,, X,, )", recommended
in Sérndal et al. (1992), capltahzes on all the available
information. Thus, in this respect case (i) is ideal. Cases (ii)
and (iii) disregard some available information. Case (i) is
sometimes of interest, despite some loss of information; an
example is given in Section 7.1. Case (iii) implies that the
data {x,,:kes,} are observed, but not used: we do not
further con51der this case. Wecall x = (x/,,x,,) the full
vector and x, = x,, the reduced vector.

Second-phase calibration on the reduced vector x, = x,,
can be carried out without significant loss of information if x,,
is a good substitute for x,,, as also observed by Dupont
(1995). However, if x,, complements x,,, then the full
vector x, = (x;,,X,,)" should clearly be used in the
calibration defined by (3.7). Otherwise, significant loss of
information and increased variance may result.

Remark 3.4: Both the full and the reduced x,-vectors lead
to overall weights Wy x calibrated on x,, from s, to s,. This
means that ) wkak Y, W15 %y because (3. 8) holds,
and x,, is contained in x .- However, there exists a
difference between the full and reduced vector specifica-
tions with respect to the calibration on x,, . If the full vector
specification is used in phase two, the resulting overall
weights W, are calibrated on 1, from 5, 105, , and from s,
to U. This means that ) _ wk = s WXy =Y X, In
contrast, if the reduced’ vector specification is used, the
resulting overall weights , are calibrated on x,, from s,
to U by virtue of the first-phase calibration. That is
Y, 5 WX = =) ,X;,- However, they are not calibrated
from s, to s,, because Xx,, is not present in the second-
phase calibration. Hence, Z Wi X # X Wy, X, =
Y%, Thus if the survey requ1res a weight §ystem that
will reproduce the known ) x,,, then the full vector
specification must be used.

So far, we have focused on the general framework for
calibration with two levels of auxiliary information. This
framework does not reveal the many interesting forms that
the estimator ¥ given by (3.13) may take for specific cases
of auxiliary information. Some illustrations are given in
Section 7. We first address three issues that are of practical
interest in virtually every major survey: (i) poststratifica-
tion or, more generally, the presence of auxiliary informa-
tion for population subgroups (Section 5), (ii) estimation for
domains of interest (Section 6), and (iii) the construction of
variance estimates (Section 6).
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4. THE TWO-PHASE CALIBRATION
ESTIMATOR VIEWED AS A REGRESSION
ESTIMATOR

An alternative expression for the calibration estimator
(3.13) is given by formula (4.1) below. This expression
links it exactly with the regression estimator for two-phase
designs introduced in Sérndal et al. (1992, chapter 9).

Theorem 4.1: When the overall calibrated weights W are
determined by (3.9), the calibration estimator (3.13) is
identical to the two-phase regression estimator given by

7= ZU D1k +Es] W (P~ Y1) +Zs2 wy (v, =Py @D

where y,, and y,, are successive regression predictions
such that

~

Y =X B, 4.2)
with
g -7 Z WX Yok N E we Xy, 0, = Vo) 4.3)
1771 s 0 .
! Cy : Ci
where T is given by (3.6), and
Py =x; B, (4.4)
with
o _ W, W, X
B, - T21 S WX Vi (4.5)
: Cu

where T, is given by (3.12).

The proof for Theorem 4.1 uses some tedious but
straightforward algebra and is not presented here.

We now show that (4.1) can be constructed via
regression estimation in two steps. For the first step,
suppose that the variable of interest y, were observed for
the full first-phase sample s, . The auxiliary information on Xy
is available for k€s, and the population total Y  x;; is
known. The resultmg regression estimator of Y=Yy,
would then be given by

E ylk + Esl wlk(yk_ﬁlok)
D INETIEARE ) JHETYED SRR ) RO

In the last expression, the first term represents the
(hypothetical) first-phase Horvitz-Thompson estimator of
Y. The second and third terms represent a regression
adjustment, where yl . 1s the predictor of y, based on the
flg)ted regressmn of y, on x,, for kes . That is,
Y= B with

15

Wik X1 Vi
51 °
Ci

Note that ), P = Xy X)) lf‘l) where ), x|, is known.
However, none of the terms in (4.6) can be computed
directly, because y, is only observed for the second-phase
sample. A second step of regression estimation is thus
necessary. It is carried out by replacing the unknown
le w,, Y, in (4.6) by its conditional regression estimator

Zsl W Do +Esz Wy (YD)

where ,, =x, ﬁz, with ﬁz given by (4.5), is the predictor
of y, based on theABegression of y,onx,, knownuptos,.
Next, the vector B, required for computing y;, contains a
known matrix T, and an unknown vector

) -1
B, =T,

4.7

E Wik XuVe
E Cix

Using a regression estimator for this unknown vector we
obtain B1 given by (4.3) as a replacement for B These
two substitutions in (4.6) lead to the two-phase regressmn
estimator given by (4.1), which is identical to the
calibration estimator (3.13).

Remark 4.1: A more direct alternative to l§1 in (4.3)
would be to use only the second-phase sample. This would
have produced

A

B =
L,alt

' 2 C 2 C

2k 2k

1

* , *

E Wi X Xy E Wi XV
'S, 'S.

The resulting predictions P , =X, B1 a Wwould be
replacing y1 ¢ in (4.1). However, the resultmg regression
estimator is not 1dent1Acal to (3.13) and is a less efficient
altemative, because B, ., uses less x,, -information than
B

1,alt
1°

5. CALIBRATION GROUPS

In this Section we apply the results of Sections 3 and 4
to the important case where the auxiliary data in Table 1
include information about mutually exclusive and
exhaustive subsets of the population U, and of the first-
phase sample s, . The population subsets are denoted by
U,i=1,..,1, and the first-phase subsets by 850 =
1,. J Such subsets are called calibration groups, for
reasons that will become clear later in this Section. Simple
examples of calibration groups are poststrata.

Two vectors denoted A, and A,, will be used to specify
the membership of a given unit £ in the calibration groups U,
and 5y respectively. These group identifiers are

By = (Byys o By e 817 (5.1
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with
1 if keU,
8,4 = fori=1,..1 5.2)
0  otherwise
and
A = (Byppr vvor Oppr s 8 )' (5.3)
with
1 if kes]j
62jk = . forj=1,..,J 5.4)
0  otherwise

Besides the group membership information, which is
qualitative and specified by A,, and A,,, there may exist
information for the unit &£ about quantitative (continuous or
discrete) variables. We call them supplementary auxiliary
variables. For example, categorical information about a
unit (enterprise) in a business survey may consist of an
industry code or a geographical location code. In addition,
quantitative variable information may also be available
concerning the number of employees or the gross business
income of the unit. Some of these supplementary auxiliary
variables may be known up to the level of the population,
and others up to the level of the first-phase sample.

We assume in this Section that the vector x,,, used in
calculating the first-phase g-factors, has the structure

X = 0[Oz, (5.5)
where z,, of dimension @, is the vector of supplementary
auxiliary variables available for the first-phase sample. The
information requirements in Table 1 apply to the vector
x,,. This implies that we must know either the group
membership specified by A,, and the value of z;, forevery
keU, or the total } v, %1k separately for each group,
i=1,..,1.

When x,, has the form given by (5.5), the first-phase g-
factors g,, in (3.5) can be obtained by a group by group
calculation. The 7, matrix to be inverted, given by (3.6), is
block diagonal and of dimension 7 Q, by 7 Q,. The typical
diagonal block, denoted as T, of dimension Q, by Q,, is
given by

Wik S ik
1 5., (5.6)
¥ Cp

for i =1, .., 1. The resulting 1nverse of T, is also block
diagonal w1th diagonal matrices T1 The off diagonal
blocks of the inverse of T, are zero matrices. So we obtain

from (3.6)

(5.7

(EU ST E Wlkzlk) 1—’12_

1k

for kes,;, i =1, ..., I, where T, is given by (5.6). Note that
the resulting weights w,, are the same as those obtained by
carrying out the first-phase calibration group by group,
calibrating for group 7 on the known total ZU 2, That s,

o, Wik Tuk = ZU z, for i=1,.., 1. Itis thusfitting to call
the groups U, first-phase calzbratzon groups.

Now consider the second-phase g-factors g,, given by
(3.11). They are based on the auxiliary vectors x,,
required to be known for the units k€s,. We assume that
X, contains information about the second-phase groups so
that

X =N, ®7 (5.8)
where A, is the second-phase group identifier, and z, is
the value of a vector of supplementary auxiliary variables
available for kes,. Since the requirements in Table 1
apply, it follows that A, (the second-phase group
membership) and the value of z, (the supplementary
auxiliary vector) must be known for every k€s,. Here z,
may contain some or all of the information in x,, given by
(5.5), and any other information available for the units
kes,.

V‘}hen x . has the structure (5.8), the factors g, can also
be obtained through a group by group calculation. This
simplification is a result of the fact that the matrix to be
inverted in (3.11) is block diagonal. We obtain

~ - -
Ex=1+ ( sy kLK _Eszj wlkWZkzk) T vl (5.9)
2%

for keszj :szmslj,j =1,..,J, where

W W, 2,2,
_ W Lr 2y
T,=), —2==

v Y C'2k

(5.10)

The resulting overall weights w, =w, g, where g, =
&1 &y are the same as those obtained by carrying out the
second-phase calibration group by group, calibrating for
group ] on the known quanmy Z W1k Z,. That is,
Vs, W 2, =), gy forj=1,..J. "The groups 5); are
called second.- phase calzbratzon groups We now have a
procedure for computing g,, and g,, group by group using
(5.7) and (5.9). The total Y is still estimated according to
(3.13).

6. DOMAIN ESTIMATION AND VARIANCE
ESTIMATION

The preceding sections dealt with estimation of the total
of y at the entire population level. In most surveys, there is
also a need to provide estimates for various subpopulations
or domains of interest. Requests for domain estimates can
be made either before or after the sampling stage of the
survey. Auxiliary information is essential for domains. A
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precise domain estimate may be obtained (even for small
domains) if: (i) calibration groups and domains of interest
agree closely, and (ii) the auxiliary variables exhibit a strong
regression relationship with the variable(s) of interest.

Denote by U, (U, < U) any domain of the population
U for which an estimate is required. The y-total for the
domain U, is defined by Y(d) = Y.u,y, = X, (d) with
v(d)y=y, ifkeU,and y, (d)=0if k¢ U,.

The estimator of Y (d) is

P(d) =3 Wy (d) (6.1)

where the overall calibrated weights w, =w, g, may be
calculated group by group as described in Section 5. The
calibration factors g,, and g, are calculated using all
relevant available auxiliary information, specified as in
Table 1. So in this sense, the resulting overall calibrated
weights W, are the best possible ones. Note that these
weights are independent of the particular domains requiring
estimation in the survey.

~ The estimator of the variance for the domain total
estimator ¥ (d) is obtained using a design-based approach.
This means that the variance is interpreted with reference to
repeated draws of samples s, and s,. Details for the
derivation of this variance are given in Séarndal et al. (1992)
(Result 9.7.1, p. 362). The first order and second order
inclusion probabilities enter into the weights used in the
variance formula. The weights associated with the first-
phase sample are w;, =1/n;, and w,, =1/xn, with
n,,=P(kand tes;). The weights w, =1/n, and
W,y =1/my,, with m,, = P(k and (€s,|s,) denote their
second phase counterparts. Two sets of regression residuals,
one for each phase, are also required. The estimator of the
variance of Y (d) is given by

v{P(ad)} =
E Z W W Wi~ W) (8181, () (8181 (D)) +

kes,, les,

k%: QX: WW 1 (W Way = Wap) (84894 (d)) (8850 (d))

6.2)

Note that for £ =¢ we have w,,, =w,,, and w,, =w,, in
(6.2). We now specify the regression residuals in (6.2)
assuming that there are first-phase calibration groups
U,i=1,..,1, and second-phase calibration groups
8100 =10, a8 explained in Section 5. We denote the
associated sample subsets as follows: s, =s,NU,;
8y =8, N8y, The required residuals in (6.2) are, for
ke(s,,n U,

ey (d) =y, (d) - z{, B, (d) (6.3)
and, for ke(szjm U,
ey (d) =y, (d) -7, B, (d) (6.4)
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The estimated regression vectors 1§” (d) and lfzj (d) are

ﬁli (d) = Tl_il
E Wy Yo (d) +E wy 2, (7 (d) - Py (d)) 6.5)
S1i Clk S2i Clk
where T, is given by (5.6), and
5 - W Wy 2 Y (d)
B, (d) = szl Zszj “Ik_ZkCJ“'IE_" (6.6)

2k
with T, 3 given by (5.10), and
P (d) =2, B, (d) for ke(s,nU,).

Remark 6.1: Note that for each new domain of interest, the
variance estimator (6.2) requires two new sets of domain
dependent residuals, e,, (d) and e,, (d). Moreover, these
are required for all of the units £ in the second-phase
sample s,, including units outside the domain. Variance
estimation for domains can therefore be cumbersome.

Remark 6.2: In practice the computation of estimated
variances is seldom carried out as a double sum. For some
important designs, the double sums reduce, after some
algebraic manipulation, to single sum expressions.
Examples of this occur for single sampling and for stratified
single random sampling in both phases. Explicit algebraic
developments for the variances have been given the former
case by Sidrndal ef al. (1992), and in the later case by
Hidiroglou (1995), and Binder, Babyak, Brodeur,
Hidiroglou and Jocelyn (1997).

7. APPLICATIONS WITH
POSTSTRATIFICATION AT THE FIRST PHASE

7.1 The Case of the Tax Sample at
Statistics Canada

An application of the calibration group approach in
section 5 has been in use at Statistics Canada, in the two-
phase design for sampling of tax records. The example is
important because it provides the extension to two-phase
designs of the traditional postratification technique as used
in a single phase design. The sampling procedure, the post-
stratification criteria, and the estimators are described in
Armstrong and St-Jean (1994). We now show how these
estimators are obtained as special case of the technique in
section 5. The sampling design, in each phase, is stratified
Bernouilli, carried out with the permanent random number
technique. The two stratifications are based on different
criteria. The realized sample sizes are random at each phase
on account of the Bernouilli sampling. To offset the
resulting tendency toward an increased variance, poststrati-
fication is carried out at both phases of sampling. The two
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poststratification criteria are different. We have in effect
two crossing poststratifications. In the terminology of
section 5, the first phase poststrata are the first-phase
calibration groups. They are denoted as U, ;i =1, ..., I, and
the group membership of a unit £ is indicated by the vector
by A,, given by (5.1). The second phase poststrata are the
second phase calibration groups. They are denoted as
S0 j =1,...,J and the corresponding membership of a unit
k is indicated by the vector A, given by (5.3).

The first-phase calibration is carried out using the
information about the first-phase poststrata sizes, N,. In this
survey design, there is no supplementary information, so
7, =1 for all kin (5.5), yielding x, = A ,. Specifying
C,, =1 for all k£ we obtain from (5.7) that

1 = NINy, (1.1)
for all kes,, where Nl ; Z W), estimates the known
first-phase poststratum count N and s, =s,n U, denotes
the part of the first-phase sample s, that falls in the first-
phase poststratum U,.

We arrive at the estimator of Armstrong and St-Jean
(1994) by carrying out the second-phase calibration with
x, = A,,, thatis, we have z, =1 for all kin (5.8). Thisis
areduced x ,-vector specification since it does not involve x,, .
Specifying C, =1 for all k€s,,, and using (5.9) and
(3.10), we obtain the overall calibrated weights

. N N,
& = (7.2)
Nli N2j
for all ksszl.j, where
- KN ZI: ]
1~ 4 - 2if (7.3)
=1 le = Nl:
w1thN =Y, w,and N =X, wy . Here, s, =s,Ms,.

denotes ‘the parf of the second phase sample s2 tfxat falls i 1n
the second-phase poststratum s ., and s, =U, N 5y

=5, n U, N 5yj¢ It follows that the estlmator of the total
is given by Y(d)=

S21
Y (ld) for a given domain U,

Zszwk gx ,(d), or equivalently as

N, — .
I N—UESZU’ Wy yk(d)
i ‘Y2

The estimated variance requires two types of residuals
that are easily obtained from the general expressions given
in Section 6.

Alternatives exist to the reduced vector specification
x, = A,, used for this design. We therefore examine what
the estimator would look like under a full vector
specification. For the first-phase calibration, as earlier, let
X, =A,, corresponding to z,, =1 for all k£ in (5.8). The
first-phase g-factors g,, are then given by (7.1). In this

survey, information is available for assigning every unit
kes, to one of the Ix J cells formed by cross-classifying
the two poststratification criteria. Therefore, the vector x,
for the second-phase calibration can be taken as

X, =Ap @A, 74

This is a full vector specification in that it includes the
first-phase information carrier A ,. Let us also specify
C,, =1 for all k. Since (7.4) is of the form (5.8), the
second-phase g-factors g,, are obtainable group-by-group
from (5.9) with z, = A,,. The overall calibration factors
are given by

* Ni lej
Er ~ (7.5)
Nli N2ij

for all k€S2 Here, N is defined in (7.1), and N and
N are as in (7.3). These overall calibration factors are the
product of two poststratified calibration factors. They are
all positive and well defined, provided all sample cells s, 2
are non-empty. Collapsing of small cells s, with relatively
large non-empty cells is recommended for stable estimation.
As pointed out in Remark 3.4, the overall weights obtained
from (7.5) reproduce the known first-phase postrata sizes
N,, whereas those obtained from (7.2) do not.

Remark 7.1: Let us compare the calibration factors (7.2)
and (7.5), resulting, respectively, from the reduced form
x, = A,, and from the full form (7.4). Both factors are a
product of two terms. The only difference lies in the second
term. In both cases, the computation of the second term
requires cross-classification information. Thatis, forevery k€,
we need to identify the cross-classification cell ij to which
k belongs. In the case of the reduced vector, the cell
information is pooled across the first-phase groups. For the
full vector, the cell information is kept separate, and one
would expect the resulting weights to be more efficient.

Remark 7.2: For the second-phase calibration, an
alternative to (7.4) that also captures the information about
the first-phase poststrata is to use

i = (A% A (7.6)
Note that with this specification, there is only one

calibration group in the second phase, namely the whole
first-phase sample s,.

7.2 The Case of the Canadian Survey Employment,
Payrolls and Hours

The Survey on Employment Payrolls, and Hours (SEPH)
covers all sectors of Canadian industry, and collects data
on four principal variables: (i) salaries and payments to
employees (denoted as z,; called payrolls); (ii) number of
employees (z,; employment); (iii) hours worked by
employees (y,;hours); and (iv) summarized earnings
(y,; earnings).
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SEPH (1994) uses a stratified two-phase sampling
design. In the first phase, a sample of payroll deduction
accounts is selected using a stratified Bernoulli sampling
design with sampling rates within strata ranging from 10%
to 100%. The strata are defined by region. A region is
made up of one or more Canadian provinces. We describe
the estimation for SEPH by considering one specific region.

For units selected in the first-phase sample, two variables
are transcribed, namely, payrolls (z,) and number of
employees (z,). In the second-phase, a simple random
sample is drawn. Data on the two variables of interest, y,
and y,, are collected for respondents in this sample. In
addition, classification by industry and province is recorded
for sampled units. The first-phase sample is poststratified
by employment size groups. These are used as first-phase
calibration groups and denoted U,; i =1, ..., /. Their sizes
denoted as N, for i=1,...,/ are assumed known. The
vector x,, used for a first-phase calibration is of the form
(5.5), where A, is given by (5.1) and z, = 1 for all k. We
choose C,, =1 forall k. It follows from (5.7) that the first-
phase g-factors are

W =N,IN, (1.7)

forall kes, =s,NU,, where ]\A/'” =YW, i=1,..,1

We now turn to second-phase calibration. It is carried out
using calibration groups s, ., j = 1, ..., J, identified by the
vector A, given by (5.3). These groups are based on a
province by industry classification. They are constructed so
that: (i) there is a strong regression relationship between y,
and the two z-variables, and that (ii) there are at least 30
observations within each group. The J (f + 2) dimensional
x ,-vector for the second-phase calibration is given by

= A ® (Ajpy 2oy Z3) (7.8)

This specification requires (see Table 1) that every k€,
can be classified into one of the I by J cells formed by
crossing the calibration groups in the two phases. Let
Sy = ﬂslj, Sy = ﬂ Uy sy, = =s,MNs,, . Also, the quan-
t1tat1ve variable values Zy, (payrolls) and z,, (number of
employees) must be known for kes,. The x, -vector
specification given by (7.8) is full, because it incorporates
X =0, A reduced vector, ignoring the first-phase
groups, would be x,; = A, ® (z,;, 23,).

As in Example 7 1, we have two crossing sets of
calibration groups.

Since the x-vector (7.8) has the structure defined by
(5.8), we used (5.9) to derive the second-phase g-factors for
each group j=1,...,J. It follows from (7.8) that we are
fitting, within each second-phase calibration group, a
separate regression of y, on ( =(z,,z,)" with an
intercept that varies with the first-phase calibration group.

Spec1fy1ng C,, =1 for all £, and using the additive form,
g =g, * &~ 1, for the overall calibration factors, we
obtain after some algebra
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* = | -
& =G,Gy +H;T; (Ck - Csz,j)

forall ke S0 where

with
*
g oy, Mubop oy Mbog oy
Sy Sy Ny > 95y S2i5 N Lij S1if 1k?
1ij 2if
*
and Nzu ZSz,-,-wk'

It follows Jthaﬁ we can write the estimator (6.1) as
Y(d) =Y, 12-1Y,(d) with

P =G R {5, @+ &, T, )B@d)

where

ysz (d) Z wk yk(d)/ 2ij

and B,(d) = T;' ¥y L, wi (G- T, )@

The form of ¥ (d) is easy to understand It is composed
of Ix J cell estimates Y, ’ (d), each reflecting the regression
of y,(d) on {,. Note that the two-dimensional slope vector
B (d) is obtained by pooling data across the first-phase
groups This is because the specification (7.8) of x, allows
the intercept, but not the two regression slopes, to vary with
the first-phase groups.

8. CONCLUSIONS

Two-phase designs have the advantage of being both
economical and efficient. The present paper has provided
a general theory for such designs when auxiliary
information is present in each phase.

Qur goal is to incorporate this two-phase survey method-
ology into Statistics Canada’s Generalized Estimation
System (GES) described in Estevao et al. (1995). The GES
is a general purpose program that currently handles domain
estimation for arbitrary single phase designs and incor-
porates auxiliary information in its estimation process. In
this paper we have extended the basic principles of the
GES, including the important idea of calibration groups, to
two-phase designs.
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We have illustrated the theory by showing its use in two
current surveys at Statistics Canada. Given its generality,
the theory has potential application to any two-phase
sample design that uses auxiliary information.
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